信号实验报告
实验报告_信号产生实验

一、实验目的1. 了解信号产生的原理和方法;2. 掌握常用信号的产生方法,如正弦波、方波、三角波等;3. 学会使用示波器观察和分析信号波形;4. 培养实验操作技能和数据分析能力。
二、实验原理信号产生实验主要研究信号的生成原理和常用信号的产生方法。
信号是信息传输、处理和存储的基础,分为模拟信号和数字信号。
模拟信号是指连续变化的信号,如正弦波、方波、三角波等;数字信号是指离散变化的信号,如二进制信号。
正弦波是最基本的模拟信号,其数学表达式为:y(t) = A sin(ωt + φ),其中A为振幅,ω为角频率,φ为初相位。
方波是周期性的信号,其在一个周期内取两个值,通常表示为高电平和低电平。
方波可以看作是多个正弦波的叠加。
三角波是一种周期性的信号,其在一个周期内从0变化到最大值,再变化到最小值,最后回到0。
三角波可以看作是多个正弦波的叠加。
三、实验仪器与设备1. 函数信号发生器;2. 示波器;3. 信号线;4. 电源。
四、实验步骤1. 开启函数信号发生器,调整输出频率和振幅,观察示波器上的波形;2. 产生正弦波信号,调整频率和振幅,观察波形变化;3. 产生方波信号,调整频率和振幅,观察波形变化;4. 产生三角波信号,调整频率和振幅,观察波形变化;5. 使用示波器观察不同信号叠加后的波形,分析波形变化规律。
五、实验结果与分析1. 正弦波信号的产生在函数信号发生器上设置频率为100Hz,振幅为5V,观察示波器上的波形。
通过调整频率和振幅,可以观察到正弦波信号的波形变化。
2. 方波信号的产生在函数信号发生器上设置频率为100Hz,振幅为5V,将输出信号切换为方波。
观察示波器上的波形,可以发现方波信号在一个周期内取两个值,表示为高电平和低电平。
3. 三角波信号的产生在函数信号发生器上设置频率为100Hz,振幅为5V,将输出信号切换为三角波。
观察示波器上的波形,可以发现三角波信号在一个周期内从0变化到最大值,再变化到最小值,最后回到0。
信号检验论实验报告(3篇)

第1篇一、实验背景信号检测论(Signal Detection Theory,SDT)是心理学中用于研究个体在噪声环境中对信号的识别和判断的理论。
该理论强调个体在感知和决策过程中的主观因素,并通过对信号和噪声的辨别能力进行量化分析,揭示个体在感知过程中的心理机制。
本次实验旨在探讨信号检测论在心理学研究中的应用,通过模拟信号和噪声环境,考察被试在不同条件下的信号识别能力和决策倾向。
二、实验目的1. 了解信号检测论的基本原理和实验方法。
2. 探讨信号和噪声对被试识别能力的影响。
3. 分析被试在不同先验概率下的决策倾向。
三、实验方法1. 实验设计本实验采用2(信号与噪声)× 2(先验概率)的混合实验设计,即信号与噪声两个因素各分为两个水平,先验概率因素也分为两个水平。
实验流程如下:(1)向被试介绍实验目的和规则;(2)展示信号和噪声样本,并要求被试判断样本是否为信号;(3)记录被试的判断结果,包括击中、虚报、漏报和正确否定。
2. 实验材料(1)信号样本:随机生成的具有一定频率和振幅的正弦波;(2)噪声样本:随机生成的白噪声;(3)先验概率:信号出现的概率和噪声出现的概率。
3. 被试招募20名年龄在18-25岁之间的志愿者,男女比例均衡。
四、实验结果1. 信号检测指标(1)击中率(Hit Rate):被试正确识别信号的概率;(2)虚报率(False Alarm Rate):被试错误地将噪声识别为信号的概率;(3)漏报率(Miss Rate):被试错误地将信号识别为噪声的概率;(4)正确否定率(Correct Rejection Rate):被试正确否定噪声的概率;(5)似然比(Likelihood Ratio):信号与噪声的似然比,用于衡量被试对信号的识别能力。
2. 先验概率对信号检测指标的影响结果表明,先验概率对被试的信号检测指标有显著影响。
当信号先验概率较高时,被试的击中率和正确否定率显著提高,虚报率和漏报率显著降低;当信号先验概率较低时,被试的击中率和正确否定率显著降低,虚报率和漏报率显著提高。
信号资源分析实验报告(3篇)

第1篇一、实验目的1. 理解信号资源的基本概念和分类。
2. 掌握信号采集、处理和分析的方法。
3. 分析不同信号资源的特点和适用场景。
4. 提高信号处理和分析的实际应用能力。
二、实验背景信号资源在通信、遥感、生物医学等领域具有广泛的应用。
本实验通过对不同类型信号资源的采集、处理和分析,使学生了解信号资源的基本特性,掌握信号处理和分析的方法。
三、实验内容1. 信号采集(1)实验设备:信号发生器、示波器、数据采集卡、计算机等。
(2)实验步骤:1)使用信号发生器产生正弦波、方波、三角波等基本信号。
2)将信号通过数据采集卡输入计算机,进行数字化处理。
3)观察示波器上的波形,确保采集到的信号准确无误。
2. 信号处理(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)利用MATLAB软件对采集到的信号进行时域分析,包括信号的时域波形、平均值、方差、自相关函数等。
2)对信号进行频域分析,包括信号的频谱、功率谱、自功率谱等。
3)对信号进行滤波处理,包括低通、高通、带通、带阻滤波等。
4)对信号进行时频分析,包括短时傅里叶变换(STFT)和小波变换等。
3. 信号分析(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)分析不同类型信号的特点,如正弦波、方波、三角波等。
2)分析信号在不同场景下的应用,如通信、遥感、生物医学等。
3)根据实验结果,总结信号资源的特点和适用场景。
四、实验结果与分析1. 时域分析(1)正弦波信号:具有稳定的频率和幅度,适用于通信、测量等领域。
(2)方波信号:具有周期性的脉冲特性,适用于数字信号处理、数字通信等领域。
(3)三角波信号:具有平滑的过渡特性,适用于模拟信号处理、音频信号处理等领域。
2. 频域分析(1)正弦波信号:频谱只有一个频率成分,适用于通信、测量等领域。
(2)方波信号:频谱包含多个频率成分,适用于数字信号处理、数字通信等领域。
(3)三角波信号:频谱包含多个频率成分,适用于模拟信号处理、音频信号处理等领域。
信号的运算_实验报告

一、实验目的1. 理解信号的基本运算概念,包括信号的加法、减法、乘法和除法。
2. 掌握使用MATLAB进行信号运算的方法。
3. 分析信号运算后的特性,如幅度、相位和时域变化。
二、实验原理信号的运算是指对两个或多个信号进行数学运算,得到新的信号。
常见的信号运算包括:1. 信号的加法:将两个信号的幅度值相加,得到新的信号。
2. 信号的减法:将一个信号的幅度值减去另一个信号的幅度值,得到新的信号。
3. 信号的乘法:将两个信号的幅度值相乘,得到新的信号。
4. 信号的除法:将一个信号的幅度值除以另一个信号的幅度值,得到新的信号。
三、实验仪器与软件1. 仪器:示波器、信号发生器、计算机2. 软件:MATLAB四、实验内容与步骤1. 实验一:信号的加法与减法(1)使用信号发生器产生两个正弦信号,频率分别为1Hz和2Hz,幅度分别为1V和2V。
(2)将两个信号分别输入示波器,观察波形。
(3)使用MATLAB编写程序,将两个信号相加和相减,并绘制结果波形。
(4)分析结果,比较加法和减法运算对信号特性的影响。
2. 实验二:信号的乘法与除法(1)使用信号发生器产生两个正弦信号,频率分别为1Hz和2Hz,幅度分别为1V和2V。
(2)将两个信号分别输入示波器,观察波形。
(3)使用MATLAB编写程序,将两个信号相乘和相除,并绘制结果波形。
(4)分析结果,比较乘法和除法运算对信号特性的影响。
3. 实验三:信号运算的时域分析(1)使用MATLAB编写程序,对实验一和实验二中的信号进行时域分析,包括信号的幅度、相位和时域变化。
(2)比较不同信号运算后的特性变化。
五、实验结果与分析1. 实验一:信号的加法与减法通过实验,观察到信号的加法和减法运算对信号的幅度和相位有显著影响。
加法运算使信号的幅度增加,相位保持不变;减法运算使信号的幅度减小,相位保持不变。
2. 实验二:信号的乘法与除法通过实验,观察到信号的乘法和除法运算对信号的幅度和相位有显著影响。
信号取样平均实验报告(3篇)

第1篇一、实验目的1. 理解信号取样平均原理,掌握信号取样平均方法。
2. 分析信号取样平均对信号的影响,了解其优缺点。
3. 通过实验验证信号取样平均的可行性。
二、实验原理信号取样平均是一种信号处理技术,通过对连续信号进行取样、平均处理,实现对信号的平滑处理。
其原理如下:1. 信号取样:将连续信号在一定时间间隔内进行取样,得到一系列离散的采样值。
2. 信号平均:对采样得到的离散信号进行平均处理,得到平滑后的信号。
信号取样平均的方法有:1. 简单平均法:将连续信号在一定时间间隔内进行取样,得到一系列离散的采样值,然后对采样值进行平均。
2. 加权平均法:对采样值进行加权处理,然后对加权后的采样值进行平均。
三、实验器材1. 信号发生器2. 示波器3. 信号分析仪4. 计算机及信号处理软件四、实验步骤1. 将信号发生器输出信号连接到示波器上,观察信号波形。
2. 将信号发生器输出信号连接到信号分析仪上,观察信号频谱。
3. 设置信号发生器输出信号为正弦波,频率为f0,幅度为A。
4. 将信号发生器输出信号连接到计算机信号处理软件上,进行信号取样平均处理。
5. 观察信号处理软件中处理后的信号波形和频谱。
6. 对比分析处理前后的信号波形和频谱,分析信号取样平均对信号的影响。
五、实验结果与分析1. 信号波形分析实验结果表明,经过信号取样平均处理后,信号波形变得更加平滑,波动幅度减小。
这是因为取样平均可以消除信号中的高频噪声,使信号更加平稳。
2. 信号频谱分析实验结果表明,经过信号取样平均处理后,信号频谱中的高频成分减小,低频成分增大。
这是因为取样平均可以消除信号中的高频噪声,使信号频谱更加集中。
3. 信号取样平均的优缺点优点:(1)可以消除信号中的高频噪声,使信号更加平稳;(2)可以降低信号处理复杂度。
缺点:(1)会降低信号采样频率,增加信号处理时间;(2)对信号进行平均处理,可能损失部分信号信息。
六、实验结论1. 信号取样平均是一种有效的信号处理技术,可以消除信号中的高频噪声,使信号更加平稳。
时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
大学信号分析实验报告

一、实验目的1. 理解信号分析的基本概念和原理;2. 掌握信号的时域和频域分析方法;3. 熟悉MATLAB在信号分析中的应用;4. 培养实验操作能力和数据分析能力。
二、实验原理信号分析是研究信号特性的科学,主要包括信号的时域分析和频域分析。
时域分析关注信号随时间的变化规律,频域分析关注信号中不同频率分量的分布情况。
1. 时域分析:通过对信号进行采样、时域卷积、微分、积分等操作,分析信号的时域特性。
2. 频域分析:通过对信号进行傅里叶变换、频域卷积、滤波等操作,分析信号的频域特性。
三、实验内容1. 信号采集与处理(1)采集一段语音信号,利用MATLAB的录音功能将模拟信号转换为数字信号。
(2)对采集到的信号进行采样,选择合适的采样频率,确保满足奈奎斯特采样定理。
(3)绘制语音信号的时域波形图,观察信号的基本特性。
2. 信号频谱分析(1)对采集到的信号进行傅里叶变换,得到信号的频谱。
(2)绘制信号的频谱图,分析信号的频域特性。
3. 信号滤波(1)设计一个低通滤波器,滤除信号中的高频噪声。
(2)将滤波后的信号与原始信号进行对比,分析滤波效果。
4. 信号调制与解调(1)对原始信号进行幅度调制,产生已调信号。
(2)对已调信号进行解调,恢复原始信号。
(3)分析调制与解调过程中的信号变化。
四、实验步骤1. 采集语音信号,将模拟信号转换为数字信号。
2. 对采集到的信号进行采样,确保满足奈奎斯特采样定理。
3. 绘制语音信号的时域波形图,观察信号的基本特性。
4. 对信号进行傅里叶变换,得到信号的频谱。
5. 绘制信号的频谱图,分析信号的频域特性。
6. 设计低通滤波器,滤除信号中的高频噪声。
7. 对滤波后的信号与原始信号进行对比,分析滤波效果。
8. 对原始信号进行幅度调制,产生已调信号。
9. 对已调信号进行解调,恢复原始信号。
10. 分析调制与解调过程中的信号变化。
五、实验结果与分析1. 时域分析通过观察语音信号的时域波形图,可以看出信号的基本特性,如信号的幅度、频率等。
常用信号测量实验报告(3篇)

第1篇一、实验目的1. 熟悉常用信号测量仪器的操作方法。
2. 掌握信号的时域和频域分析方法。
3. 学会运用信号处理方法对实际信号进行分析。
二、实验原理信号测量实验主要包括信号的时域测量、频域测量以及信号处理方法。
时域测量是指对信号的幅度、周期、相位等参数进行测量;频域测量是指将信号分解为不同频率成分,分析各频率成分的幅度和相位;信号处理方法包括滤波、放大、调制、解调等。
三、实验仪器与设备1. 示波器:用于观察信号的波形、幅度、周期、相位等参数。
2. 频率计:用于测量信号的频率和周期。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等。
4. 滤波器:用于对信号进行滤波处理。
5. 放大器:用于对信号进行放大处理。
6. 调制器和解调器:用于对信号进行调制和解调处理。
四、实验内容与步骤1. 时域测量(1)打开示波器,调整波形显示,观察标准信号的波形。
(2)测量信号的幅度、周期、相位等参数。
(3)观察不同信号(如正弦波、方波、三角波)的波形特点。
2. 频域测量(1)打开频率计,调整频率显示,测量信号的频率和周期。
(2)使用信号发生器产生标准信号,如正弦波,通过频谱分析仪分析其频谱。
(3)观察不同信号的频谱特点。
3. 信号处理方法(1)滤波处理:使用滤波器对信号进行滤波处理,观察滤波前后信号的变化。
(2)放大处理:使用放大器对信号进行放大处理,观察放大前后信号的变化。
(3)调制和解调处理:使用调制器对信号进行调制,然后使用解调器进行解调,观察调制和解调前后信号的变化。
五、实验结果与分析1. 时域测量结果通过时域测量,我们得到了不同信号的波形、幅度、周期、相位等参数。
例如,正弦波具有平滑的波形,周期为正弦波周期的整数倍,相位为正弦波起始点的角度;方波具有方波形,周期为方波周期的整数倍,相位为方波起始点的角度;三角波具有三角波形,周期为三角波周期的整数倍,相位为三角波起始点的角度。
2. 频域测量结果通过频域测量,我们得到了不同信号的频谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活塞压力计静态校准一、实验目的1. 掌握压力传感器的原理;2. 掌握压力测量系统的组成;3. 掌握压力传感器静态校准实验和静态校准数据处理的一般方法。
二、实验设备本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,4 位半数字电压表,直流稳压电源盒采样电阻组成,设备列于表一。
图一为实验系统方框图,图二为实验电路接线图。
图1实验系统方框图图2实验电路接线图表1实验设备型号及精度三、实验原理在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6MPa。
信号调理器为压力传感器提供恒流电源,并将压力传感器输出的电压信号放大并转换为电流信号。
信号调理器输出为二线制,4‐20mA 信号在250 欧采样电阻上转换为1‐5V 电压信号,由4 位半数字电压表读出。
四、实验步骤1. 用调整螺钉和水平仪将活塞压力计调至水平。
2. 核对砝码重量及个数,注意轻拿轻放。
3. 将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭(严谨未打开油杯针阀时,用手轮抽油,以防破坏传感器)。
4. 加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。
反复1‐2 次,以消除压力传感器内部的迟滞。
5. 卸压后,重复步骤3,并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。
6. 按0.05MPa 的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。
7. 加载至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。
此后逐级卸载,每卸载一次需要用手轮保证测量杆上的标记对齐,然后从电压表上读出相应的电压值。
8. 卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。
9. 稍停1‐2 分钟,开始第二次循环,从步骤(5)开始操作,共进行3 次循环。
五、实验数据处理1.原始数据列表2、数据处理:(1)确定校准曲线压力/MP正行程输出ui反行程输出平均输出0 1.025 1.025 1.0250.05 1.347 1.341 1.3440.1 1.653 1.651 1.6520.15 1.964 1.963 1.9630.2 2.274 2.271 2.2720.25 2.580 2.582 2.5810.3 2.890 2.892 2.8910.35 3.200 3.202 3.2010.4 3.512 3.513 3.5120.45 3.823 3.823 3.8230.5 4.136 4.138 4.1370.55 4.453 4.453 4.453平均输出校准曲线最小二乘法拟合直线:平均输出直线拟合可以得出,a=1.0286,b=6.2159,,线性度很高。
(2)计算非线性度L ξ:计算非线性偏差非线性度%100|)(|max ⨯∆=FSl L y y ξ其中,)...3,2,1(||max )(,max n i y y L i l =∆=∆,yy y i i -=∆005825.0|)(|max =∆l y()4187.355.0*2159.6b min max ==-=x x y FS故%1704.0%1004187.3005825.0=⨯=L ξ可以看出,非线性误差非常小。
(3迟滞误差列表迟滞误差:%1002)(max⨯∆=FSH H y y ξ可得:%082926.0%100*2*1874.300567.0==H ξ可以得出,迟滞误差也很小。
(4)计算重复性:重复性计算表格标准偏差:0012.0),(==di ui s s Max s重复性:%1053.0%100*4187.30012.0*3%100*3===FSR y sξ(5)计算总精度:%2168.0001053.0.0008290017040.0222222=++=++=R H L a ξξξξ六、 实验总结这次试验由测量结果看出,测量很稳定,误差很小。
通过实验数据的处理增强了数据处理的能力。
超声测距实验一、实验目的:1、了解超声波的特性及其速度;2、了解测距的原理;3、了解超声波探头距离变化时,测量波形的变化。
二、实验仪器:1、超声波传感器测距实验模块2、超声探头3、示波器:DS5062CE4、电源:WD990型,±12V5、电源连接电缆6、万用表:VC9804A,附表笔及测温探头三、实验原理:1、超声波特性:超声波是一种频率高于20kHz,在弹性介质中传播的机械振荡。
其波长短,频率高,故它有其独特的特点:2、绕射现象小,方向性好,能定向传播。
3、能量较高,穿透力强,在传播过程中衰减很小。
在水中可以比在空气或固体中以更高的频率传的更远。
而且在液体里的衰减和吸收比较低。
4、能在异质界面产生反射、折射和波形转换。
5、超声波速度:超声波速度公式为式中:r —气体定压热容与定容热容的比值,对空气为1.40,R —气体普适常量,8.314kg·mol-1·K-1,M—气体分子量,空气为28.8×10-3kg·mol-1,T —绝对温度,273K+T℃。
近似公式为:V=V0+0.607×T℃式中:V0 为零度时的声波速度332m/s;T 为实际温度(℃)。
6、测距原理:根据超声波在空气中的传播速度,通过相关电路得到发射波与接收波之间的时间,即可得到发射与接收之间的距离,原理框图如下图所示:四、实验步骤及实验数据:1、将超声波探头相对装于滑轨中,使两探头垂直于滑轨平行相对,连接探头电缆至超声波传感器测距实验模块的“超声探头”接口;2、用连接电缆连接电源与超声波传感器测距实验模块(接口位于前侧面),其中电缆的橙蓝线为+12V,白蓝线为-12V,隔离皮(金色)为地,切记勿接错!3、将示波器通道1连接超声波传感器测距实验模块的“超声发射”,示波器通道2连接4、超声波传感器测距实验模块的“超声接收”;将示波器调至单次触发状态,并调出时间测量标尺,使示波器显示两标尺之间的时间差t;(后附示波器相关使用说明)5、将温度探头连接在万用表的“TEMP”插座,万用表置于“C”档;万用表可测量温度;6、打开微机电源的开关,打开超声波传感器测距实验模块的“电源”开关,电源指示灯亮,数码管显示数据;7、按动超声波传感器测距实验模块的“时间/距离显示切换”按钮,数码管显示的数据在距离和时间之间切换,对应的“时间”、“距离”指示灯亮;8、打开示波器电源开关,按动示波器操作面板右上角“RUN CONTROL”框中的“RUN/STOP”按钮,示波器状态可在“WAIT”和“STOP”之间转换;9、使两探头紧贴相互靠近(如两表面不平行可稍许扳动超声探头角度使两平面吻合),此时数码管显示输出并不为零;10、记录此时超声波传感器测距实验模块上数码管显示的时间和距离,并按动示波器的“RUN/STOP”按钮,示波器捕获到超声波信号,用示波器的标尺测量超声反射波形(1通道)的第一个下降沿与超声接收波形(2通道)的上升沿之间的时间,记录这个时间值;同时用万用表记录当时的温度值;11、移动接收器,使接收器离开探头,每隔50mm重复第(9)步;12、记录数据填表1;表中计算距离为根据示波器得到的时间值及环境温度测量的数值;五、实验数据分析及总结从图中可以看出超声测距与示波器测距之间存在一定误差且随着位置的远离而逐步增大,但均呈现良好的线性度。
误差分析:1、实验室温度测量不准确。
2、测距太小,导致实验结果不准确。
3、手工移动导致测量不精确。
4、系统误差。
电容式传感器实验一、实验目的3、了解电容式传感器原理及位移测量的原理;二、实验仪器1、电容传感器实验模块2、示波器:DS5062CE3、微机电源:WD990型,±12V4、万用表:VC9804A型5、电源连接电缆6、螺旋测微仪三、实验原理差动式同轴变面积电容的两组电容片Cx1与Cx2作为双T电桥的两臂,当电容量发生变化时,桥路输出电压发生变化.四、实验步骤1、用电源电缆连接电源和电容传感器实验模块(插孔在后侧板),其中电缆的橙蓝线为+12V,白蓝线为-12V,隔离皮(金色)为地,切记勿接错!2、观察电容传感器结构:传感器由一个动极与两个定级组成,按图1接好实验线路,增益适当。
3、打开微机电源,用测微仪带动传感器动极位移至两组定极中间,调整调零电位器,此时模块电路输出为零。
4、前后位移动极,每次0.5mm,直至动静极完全重合为止,记录数据,作出电压-位移曲线。
五、 实验数据及分析对于数据1,可以画出其曲线关系并处理:同样,对数据2,有:六、实验结论可以看出,电容传感器测得的数据有很好的线性度,但是随着距离的增加,误差会增大。
本实验中,采用同轴式电容,当覆盖的长度变化时,电容也会变化,并且与距离的变化成线性关系,所以可以通过这个关系来测量位移。
金属箔式应变计实验一、实验原理1.应变片测量原理:应变片电阻随应变发生变化,测量电阻变化即可得知应变。
2.应变电桥原理:四个应变片组成电桥,均无应变时输出电压为0。
有应变时输出不为0的电压,接成电桥形式可以减小误差,提高灵敏度。
3.称重原理:双孔悬臂梁式称重传感器,灵敏度高,性能稳定。
R1和R3、R2 和R4的受力方向分别相同,因此将它们串接就形成差动电桥。
4.应变片温补原理:当应变片所处环境温度发生变化时,由于其敏感栅本身的温度系数,自身的标称电阻值发生变化,而贴应变片的测试件与应变片敏感栅的热膨胀系数不同,也会引起附加形变,产生附加电阻。
为避免温度变化时引入的测量误差,在实用的测试电路中要进行温度补偿。
本实验中采用的是电桥补偿法。
二、实验数据及处理温度补偿:应变片温度补偿数据记录未补偿加热前温度稳定后温漂mV温度(℃)2268电压(mV )5320315补偿加热前温度稳定后温度(℃)2248电压(mV )-30434通过温度补偿后的温漂有明显下降.这是由于桥臂2的温度补偿片与应变片1处于相同的温度下,当温度变化时,两者产生相等的温漂电压变化,这两个变化的电压值通过电桥连接而抵消。
三、滞回曲线温度传感器实验一、实验目的:了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 掌握热电偶的冷端补偿原理; 掌握热电偶的标定过程;了解各种温度传感器的性能特点并比较上述几种传感器的性能。
二、实验仪器:温度传感器实验模块 热电偶(K 型、E 型)CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆万用表:VC9804A ,附表笔及测温探头 万用表:VC9806,附表笔三、实验原理:(1)热电偶测温原理由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。