高中函数性质总结

合集下载

高中函数基本性质知识点总结

高中函数基本性质知识点总结

高中函数基本性质知识点总结知识点概述关于函数的基本性质的知识点是一个系统的知识体系,需要重点掌握.知识点总结1.函数的有关概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)xA}叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.2.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)y=f(x),xA}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。

高中函数架构知识点总结

高中函数架构知识点总结

高中函数架构知识点总结一、函数的定义与表示方法1. 函数的定义:函数是一个对应关系,它把一个数集的每一个元素映射到另一个数集的元素上。

2. 函数的表示方法:函数可以用公式、表格、图像和符号等多种方式来表示。

二、函数的性质与分类1. 函数的性质(1)定义域:函数的自变量的取值范围称为函数的定义域。

(2)值域:函数的因变量的取值范围称为函数的值域。

(3)奇偶性:满足$f(-x)=f(x)$的函数称为偶函数,满足$f(-x)=-f(x)$的函数称为奇函数。

(4)周期性:若存在正数$T$,使得对任何$x\in D$有$f(x+T)=f(x)$,则称函数$f(x)$为周期函数,而最小的这样的正数$T$称为函数$f(x)$的周期。

(5)单调性:若对于$x_1<x_2$,总有$f(x_1)\le f(x_2)$或者$f(x_1)\ge f(x_2)$,则称$f(x)$在定义域上是单调的。

(6)最值:若对于每一个$x\in D(f)$,总有$f(x)\le M$或者$f(x)\ge m$,则称$M$为函数$f(x)$的最大值,$m$为函数$f(x)$的最小值。

(7)有界性:若存在正数$A$和$B$,对于任意$x\in D(f)$,有$f(x)\le A$和$f(x)\ge B$,则称函数$f(x)$在定义域上有上界$A$和下界$B$。

2. 函数的分类(1)多项式函数:函数由一系列单项式组成,例如$f(x)=x^n$。

(2)指数函数:函数的自变量是指数的函数,例如$f(x)=a^x$。

(3)对数函数:函数的因变量是对数的函数,例如$f(x)=\log_ax$。

(4)三角函数:函数的自变量是角度的函数,例如$f(x)=\sin x$和$f(x)=\cos x$。

(5)反三角函数:函数的因变量是角度的函数的反函数,例如$f(x)=\arcsin x$和$f(x)=\arccos x$。

(6)组合函数:多个函数的组合形成的新函数,例如$f(x)=g(h(x))$。

高中数学函数性质总结

高中数学函数性质总结

高中数学函数性质总结高中数学函数性质总结函数性质1..函数的单调性(1)设x1x2a,b,x1x2那么f(x1)f(x2)0f(x)在a,b上是增函数;x1x2f(x1)f(x2)(x1x2)f(x1)f(x2)00f(x)在a,b上是减函数.x1x2(2)设函数yf(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.注:如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)g(x)也是减函数;如果函数yf(u)和ug(x)在其对应的定义域上都是减函数,则复合函数yf[g(x)]是增函数.(x1x2)f(x1)f(x2)02.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.注:若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).注:对于函数yf(x)(xR),f(xa)f(bx)恒成立,则函数f(x)的对称轴是函数xabab;两个函数yf(xa)与yf(bx)的图象关于直线x对称.22a注:若f(x)f(xa),则函数yf(x)的图象关于点(,0)对称;若2f(x)f(xa),则函数yf(x)为周期为2a的周期函数.3.多项式函数P(x)anxan1xnn1a0的奇偶性多项式函数P(x)是奇函数P(x)的偶次项(即奇数项)的系数全为零.多项式函数P(x)是偶函数P(x)的奇次项(即偶数项)的系数全为零.23.函数yf(x)的图象的对称性(1)函数yf(x)的图象关于直线xa对称f(ax)f(ax)f(2ax)f(x).(2)函数yf(x)的图象关于直线xab对称f(amx)f(bmx)2f(abmx)f(mx).4.两个函数图象的对称性(1)函数yf(x)与函数yf(x)的图象关于直线x0(即y轴)对称.(2)函数yf(mxa)与函数yf(bmx)的图象关于直线x(3)函数yf(x)和yf1ab对称.2m(x)的图象关于直线y=x对称.25.若将函数yf(x)的图象右移a、上移b个单位,得到函数yf(xa)b的图象;若将曲线f(x,y)0的图象右移a、上移b个单位,得到曲线f(xa,yb)0的图象.5.互为反函数的两个函数的关系f(a)bf1(b)a.27.若函数yf(kxb)存在反函数,则其反函数为y11[f(x)b],并不是ky[f1(kxb),而函数y[f1(kxb)是y1[f(x)b]的反函数.k6.几个常见的函数方程 (1)正比例函数f(x)cx,f(xy)f(x)f(y),f(1)c.(2)指数函数f(x)a,f(xy)f(x)f(y),f(1)a0.(3)对数函数f(x)logax,f(xy)f(x)f(y),f(a)1(a0,a1).(4)幂函数f(x)x,f(xy)f(x)f(y),f(1).(5)余弦函数f(x)cosx,正弦函数g(x)sinx,f(xy)f(x)f(y)g(x)g(y),“xf(0)1,limx0g(x)1.x7.几个函数方程的周期(约定a>0)(1)f(x)f(xa),则f(x)的周期T=a;(2)f(x)f(xa)0,1(f(x)0),f(x)1或f(xa)(f(x)0),f(x)12或f(x)f(x)f(xa),(f(x)0,1),则f(x)的周期T=2a;21(3)f(x)1(f(x)0),则f(x)的周期T=3a;f(xa)f(x1)f(x2)(4)f(x1x2)且f(a)1(f(x1)f(x2)1,0|x1x2|2a),则1f(x1)f(x2)f(x)的周期T=4a;(5)f(x)f(xa)f(x2a)f(x3a)f(x4a)f(x)f(xa)f(x2a)f(x3a)f(x4a),则f(x)的周期T=5a;(6)f(xa)f(x)f(xa),则f(x)的周期T=6a.或f(xa)8.分数指数幂(1)a(2)amn1nmnam1mn(a0,m,nN,且n1).(a0,m,nN,且n1).a9.根式的性质(1)(na)a.(2)当n为奇数时,aa;nnna,a0当n为偶数时,a|a|.a,a0nn10.有理指数幂的运算性质(1)aaarsrrsrs(a0,r,sQ).(2)(a)a(a0,r,sQ).(3)(ab)ab(a0,b0,rQ).p注:若a>0,p是一个无理数,则a表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式rrrslogaNbabN(a0,a1,N0).34.对数的换底公式logmN(a0,且a1,m0,且m1,N0).logmann推论logamblogab(a0,且a1,m,n0,且m1,n1,N0).mlogaN11.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1)loga(MN)logaMlogaN;MlogaMlogaN;Nn(3)logaMnlogaM(nR).(2)loga2注:设函数f(x)logm(axbxc)(a0),记b4ac.若f(x)的定义域为2R,则a0,且0;若f(x)的值域为R,则a0,且0.对于a0的情形,需要单独检验.12.对数换底不等式及其推论1,则函数ylogax(bx)a11(1)当ab时,在(0,)和(,)上ylogax(bx)为增函数. aa11(2)(2)当ab时,在(0,)和(,)上ylogax(bx)为减函数.aa若a0,b0,x0,x推论:设nm1,p0,a0,且a1,则(1)logmp(np)logmn.(2)logamloganloga【例1】求下列各式的值:n(3)(1)n(n1,且nN*);(2)(xy)2.n(3)3;解:(1)当n为奇数时,nn(3)|3|3.当n为偶数时,n2mn.2(2)(xy)2|xy|.当xy时,(xy)2xy;当xy时,(xy)2yx.a3na3n【例2】已知a21,求n的值.naa3n3nnn2naa(aa)(a1a2n)12n2n解:na1a211221nnnaaaa212n 【例4】已知函数f(x)a23x(a0,且a1).(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.2时,a23xa01.32所以,该函数的图象恒过定点(,1).3(2)∵u23x是减函数,∴当0a1时,f(x)在R上是增函数;当a1时,f(x)在R上是减函数.21【例3】求下列函数的单调区间:(1)yax2x3;(2)y.x0.21u2解:(1)设ya,ux2x3.解:(1)当23x0,即x由ux22x3(x1)24知,u在(,1]上为减函数,在[1,)上为增函数.根据yau的单调性,当a1时,y关于u为增函数;当0a1时,y关于u为减函数.∴当a1时,原函数的增区间为[1,),减区间为(,1];当0a1时,原函数的增区间为(,1],减区间为[1,).(2)函数的定义域为{x|x0}.设y而根据y1,u0.2x.易知u0.2x为减函数.u11的图象可以得到,在区间(,1)与(1,)上,y关于u均为减函数.u1∴在(,0)上,原函数为增函数;在(0,)上,原函数也为增函数.xx2f(x1)f(x2)【例1】若f(x)ax(a0,且a1),则f(1.)22证明:x1x2f(x1)f(x2)x1x2ax1ax2ax1ax22ax1ax2(ax1ax2)220.f()a22222xx2f(x1)fx( 2)∴f(1.(注:此性质为函数的凹凸性))22bx【例2】已知函数f(x)2(b0,a0). ax111(1)判断f(x)的奇偶性;(2)若f(1),log3(4ab)log24,求a,b的值.22bx解:(1)f(x)定义域为R,f(x)2f(x),故f(x)是奇函数.ax1b1(2)由f(1),则a2b10.又log3(4a-b)=1,即4a-b=3.a12a2b10由得a=1,b=1.4ab3exa【例3】(01天津卷.19)设a>0,f(x)是R上的偶函数.aex(1)求a的值;(2)证明f(x)在(0,)上是增函数.exa解:(1)∵f(x)是R上的偶函数,∴f(x)f(x)0.aexexaexa111∴xx0(a)ex(a)ex0(a)(exex)0.aeaeaaaex-e-x不可能恒为“0”,∴当1-a=0时等式恒成立,∴a=1.a(2)在(0,)上任取x1<x2,ex11111f(x1)f(x2)x1ex2x2(ex1ex2)(x1)(ex1ex2)(1x1x2)x2aeeeeee(ex1ex2)( ex1ex21)x1x2x1x2∵e>1,x1<x2,∴ee1,∴ee>1,<0,ex1ex2∴f(x1)f(x2)0,∴f(x)是在(0,)上的增函数.【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t年后的世界人口数y(亿)与t的函数解析式;(2)若人口的平均增长率为x%,写出20xx年底世界人口数为y(亿)与x 的函数解析式.如果要使20xx年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?t*解:(1)经过t年后的世界人口数为y54..8(11.t2)54.8t1.0N12,(2)20xx年底的世界人口数y与x的函数解析式为y54.8(1x)18.由y54.8(1x)1866.8,解得x100(18所以,人口的年平均增长率应控制在1.1%以内.66.81)1.1.54.扩展阅读:高中数学函数概念及其性质知识总结数学必修1函数概念及性质(知识点总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式注意:○3函数的定义域、值域要写成集合或区间的形式.子有意义的实数的集合;○定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。

高中函数知识点归纳总结

高中函数知识点归纳总结

高中函数知识点归纳总结一、函数的概念和性质1.1 函数的定义函数是一个数学概念,它是一种特殊的关系。

如果对于集合D中的每一个元素x,都有一个确定的元素y与之对应,那么这个对应关系就叫作函数。

其中,x是自变量,y是因变量。

1.2 函数的记法函数一般用f(x)表示,其中f是函数的名称,x是自变量。

1.3 函数的性质函数有很多性质,包括定义域、值域、奇偶性、周期性等。

1.3.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

1.3.2 奇偶性如果对于所有x∈D,都有f(-x) = f(x),那么函数f是偶函数;如果对于所有x∈D,都有f(-x) = -f(x),那么函数f是奇函数。

1.3.3 周期性如果存在一个正数T,使得对于所有x∈D,都有f(x+T) = f(x),那么函数f是周期函数,T 称为函数的周期。

1.4 函数的图象函数的图象是函数在平面直角坐标系中的图形,它显示了函数的变化规律。

1.5 函数的运算函数有四则运算、复合运算、反函数运算等。

二、基本函数2.1 一次函数一次函数的一般形式是f(x) = kx + b,其中k和b是常数,k≠0。

一次函数的图象是一条直线。

2.2 二次函数二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

二次函数的图象是抛物线。

2.3 幂函数幂函数的一般形式是f(x) = x^n,其中n是常数。

2.4 指数函数指数函数的一般形式是f(x) = a^x,其中a是正数且不等于1。

2.5 对数函数对数函数的一般形式是f(x) = loga(x),其中a是正数且不等于1,x是正数。

2.6 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

2.7 反比例函数反比例函数的一般形式是f(x) = k/x,其中k是常数且不等于0。

三、函数的性质和应用3.1 函数的性质函数有很多性质,如单调性、极值、最值、奇偶性、周期性等。

高中函数总结

高中函数总结

高中函数总结高中函数总结一、函数的概念和基本性质函数是一种特殊的关系,它将一个集合中的每一个元素对应到另一个集合中的唯一元素上。

函数的概念在高中数学中具有重要的地位,贯穿于整个数学学科中。

函数具有以下基本性质:1. 定义域和值域:函数的定义域是指所有可能作为函数输入的值的集合,而值域则是指所有可能作为函数输出的值的集合。

函数的定义域和值域可以是任意集合,可以是实数集、整数集以及更一般的数集。

2. 解析式表示:函数可以通过解析式表示,其中通过一个或多个变量表示函数的输入,再通过定义函数关系的表达式表示函数的输出。

3. 函数的图像:函数的图像是函数在平面上的表示,其中自变量的取值确定了函数的值。

函数的图像可以通过画出自变量和函数值的对应关系来表示,具有很多有用的性质和特点。

4. 奇偶性:函数可以根据其解析式的奇偶性进行分类。

如果函数满足f(x) = f(-x)对于所有的x成立,则函数是偶函数;如果函数满足f(x) = -f(-x)对于所有的x成立,则函数是奇函数。

5. 单调性:函数可以根据其解析式的单调性进行分类。

如果函数在其定义域上递增,则函数是递增函数;如果函数在其定义域上递减,则函数是递减函数。

二、函数的运算高中函数的运算涉及了四则运算、复合运算和逆运算三个方面。

1. 四则运算:函数之间可以进行加、减、乘、除的操作。

两个函数的加法定义为两个函数在同一自变量上的值相加,乘法定义为两个函数在同一自变量上的值相乘,减法和除法可以通过加法和乘法进行定义。

2. 复合运算:函数之间可以进行复合运算,即将一个函数的输出作为另一个函数的输入。

两个函数的复合定义为先将一个函数的输出作为另一个函数的输入,再计算出最终的输出。

3. 逆运算:函数的逆运算是指将函数的输出和输入进行交换,并解出输入的对应值。

函数的逆运算要求函数必须为一一对应的函数,即每个输出值对应唯一一个输入值。

三、函数的图像和性质函数的图像是函数在平面上的表示,它可以通过画出自变量和函数值的对应关系来得到。

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分

高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。

- 函数的性质:单调性、奇偶性、周期性等。

2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。

- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。

- 指数函数:y = a^x,a为正常数,图像单调递增或递减。

- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。

3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。

- 复合运算:由两个或多个函数构成一个新的函数。

- 反函数:原函数与定义域互为值域的函数。

- 平移、压缩、翻折等函数的变换。

4. 函数的图像与性质
- 函数图像的绘制和分析方法。

- 函数的最值、零点、极值等特性。

5. 函数的应用
- 函数在物理、经济等领域的应用。

- 函数在数学建模中的应用。

6. 解函数方程
- 求函数方程的解法与步骤。

以上是高中数学函数知识点的精华总结和知识分享。

掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。

注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。

(完整版)高中的常见函数图像及基本性质

(完整版)高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R )1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k |越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k 〉0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r y=f (x ); y=g (x )都有反函数,且f (x-1)和g —1(x )函数的图像关于y=x 对称,若f (4)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法:xy b Of (x )=bx yOf (x )=kx +b R 2)点关于直线(点)对称,求点的坐标2、与曲线函数的联合运用反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k 〉0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线;既是中心对成图形也是轴对称图形定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)—-入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图)1)、y=1/(x —2)和y=1/x —2的图像移动比较 2)、y=1/(—x)和y=—(1/x)图像移动比较3)、f (x )= dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当0<a 时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的基本性质一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。

定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。

3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么: ①1()()()F x f x g x =+的增减性不能确定;②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F x g x g x =≠为增函数,5()()(()0)()g x F x f x f x =≠为减函数。

4.奇偶函数的单调性奇函数在其定义域的对称区间上的单调性相同,偶函数在其定义域的对称区间上的单调性相反。

二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。

1.函数()y f x =的图象的对称性(自身):定理1: 函数()y f x =的图象关于直2a b x +=对称 ()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=特殊的有:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=。

②函数()y f x =的图象关于y 轴对称(奇函数))()(x f x f =-⇔。

③函数)(a x f y +=是偶函数)(x f ⇔关于a x =对称。

定理2:函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--⇔b x a f x a f 2)()(=-++特殊的有:① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。

② 函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。

③ 函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。

定理3:(性质)①若函数y=f (x)的图像有两条铅直对称轴x=a 和x=b(a 不等于b),那么f(x)为周期函数且2|a-b|是它的一个周期。

②若函数y=f (x)的图像有一个对称中心M(m.n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。

③若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a ≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

④若一个函数的反函数是它本身,那么它的图像关于直线y=x 对称。

2.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--⑤函数y = f (x)与a -x = f (a -y)的图像关于直线x +y = a 成轴对称。

函数y = f (x)与x -a = f (y + a)的图像关于直线x -y = a 成轴对称。

函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。

3.奇偶函数性质对于两个具有奇偶性的函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)满足定义式子)()(x f x f =-(偶)0)()(=-+x f x f (奇)(2)在原点有定义的奇函数有0)0(=f(3)当()f x 和()g x 具有相同的奇偶性时,假设为奇函数,那么:①函数1()()()F x f x g x =+、3()()()F x f x g x =-也为奇函数;②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠为偶函数; ③两个偶函数之和、差、积、商为偶函数(4)当()f x 和()g x 具有相异的奇偶性时,那么: ①1()()()F x f x g x =+、3()()()F x f x g x =-的奇偶性不能确定; ②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠为奇函数。

简单地说: 奇函数±奇函数=奇函数,偶函数±偶函数=偶函数, 奇函数×奇函数=偶函数, 偶函数×偶函数=偶函数,奇函数×偶函数=奇函数.(6)任意函数)(x f 均可表示成一个奇函数[])()(21)(x f x f x g --=与一个偶函数[])()(21)(x f x f x h -+=的和。

(7)一般的奇函数都具有反函数,且依然是奇函数,偶函数没有反函数(8)图形的对称性 关于y 轴对称的函数(偶函数)关于原点()0,0对称的函数(奇函数)(9)若)(x f 是偶函数,则必有[])()(b ax f b ax f +-=+若)(x f 是奇函数,则必有[])()(b ax f b ax f +--=+(10)若)(b ax f +为偶函数,则必有)()(b ax f b ax f +-=+若)(b ax f +是奇函数,则必有)()(b ax f b ax f +--=+(11)常见的奇偶函数三、函数的周期性函数的周期性反映了函数的重复性,在试题中它的主要用途是将大值化小,负值化正,求值。

1.周期性的定义对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,非零常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

如果非零常数T 是函数()f x 的周期,那么T -、nT (*n N ∈)也是函数()f x 的周期。

2. 函数的周期性的主要结论:结论1:如果()()f x a f x b +=+(a b ≠),那么()f x 是周期函数,其中一个周期T a b =-结论2:如果()()f x a f x b +=-+(a b ≠),那么()f x 是周期函数,其中一个周期2T a b =- 结论3:如果定义在R 上的函数()f x 有两条对称轴x a =、x b =对称,那么()f x 是周期函数,其中一个周期2T a b =-结论4:如果偶函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期2T a =结论5:如果奇函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期4T a =结论6:如果函数同时关于两点(),a c 、(),b c (a b ≠)成中心对称,那么()f x 是周期函数,其中一个周期2T a b =-结论7:如果奇函数()f x 关于点(),a c (0a ≠)成中心对称,那么()f x 是周期函数,其中一个周期2T a =结论8:如果函数()f x 的图像关于点(),a c (0a ≠)成中心对称,且关于直线x b =(a b ≠)成轴对称,那么()f x 是周期函数,其中一个周期4T a b =-结论9:如果1()()f x p f x +=或1()()f x p f x +=-,那么()f x 是周期函数,其中一个周期2T p = 结论10:如果1()()21()p f x f x f x ++=-或1()()21()p f x f x f x -+=+,那么()f x 是周期函数,其中一个周期2T p =结论11:如果()()f x p f x +=-,那么()f x 是周期函数,其中一个周期2T p =例1:定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( ) (第十二届希望杯高二 第二试题)(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)例6.求证:若()f x ()x R ∈为奇函数,则方程()f x =0若有根一定为奇数个。

相关文档
最新文档