脉冲编码调制(PCM)实验报告

合集下载

3.脉冲编码调制PCM_标准实验报告

3.脉冲编码调制PCM_标准实验报告

3.脉冲编码调制PCM_标准实验报告一、实验目的:1. 了解脉冲编码调制(PCM)的原理及其应用。

2. 熟悉DSP开发平台。

3. 完成PCM的硬件电路设计与软件编程。

二、实验原理:1. PCM原理:脉冲编码调制(PCM)是一种数字信号处理技术,将模拟信号按照一定的规律离散化,转化为数字信号,再传输或存储。

PCM系统由三个部分组成:采样、量化和编码。

缺点:1. PCM方法对采样率和量化位数较为敏感。

2. 处理量大,处理速度慢。

3. 每次采样都独立进行,与前一次的采样结果没有关联。

1. 采样值易于处理,可以方便地进行数字信号处理。

2. 可以通过更改量化位数和采样率等参数,以兼顾信号的数据量和品质。

2. 实验步骤:a. 编程:使用CCS软件并在TI DSP C 5428 Starter Kit开发板上完成。

b. 硬件设计:ADC和DAC芯片接口实现PCM。

三、实验过程:1. 编译代码:在CCS软件中设置项目属性,并编译好主程序、看门狗模块程序、初始化模块程序及中断模块程序。

2. 设置采样率:根据需要,设置采样率及准备除采样及量化外的程序代码。

3. 硬件电路设计:将ADC芯片、DAC芯片及DSP开发板连接起来,实现PCM功能。

Four、实验结果:经过实验及测试,能够成功将模拟信号转换为数字信号,并以数字信号的方式进行输出或存储。

同时,PCM系统在处理语音、图像及信号传输等领域中应用广泛。

五、实验感想:通过本次实验,掌握了PCM技术的原理和应用,加深了对总线接口及模拟信号与数字信号的概念和认知。

同时,也学习到了如何使用DSP开发平台及CCS软件进行程序开发、编译及测试等工作。

在今后的研究工作中,PCM技术将是一个非常有用的数学处理工具,值得进一步深入研究。

pcm编译码实验报告

pcm编译码实验报告

pcm编译码实验报告PCM 编译码实验报告一、实验目的1、掌握脉冲编码调制(PCM)的基本原理。

2、熟悉 PCM 编译码系统的构成及工作过程。

3、观察和分析 PCM 编译码过程中的信号波形,理解量化和编码的概念。

二、实验原理PCM 是一种将模拟信号变换成数字信号的编码方式。

其基本原理是对模拟信号进行周期性采样,然后将每个采样值进行量化,并将量化后的数值用二进制编码表示。

采样过程遵循奈奎斯特采样定理,即采样频率应大于模拟信号最高频率的两倍,以保证能够从采样后的信号中无失真地恢复出原始模拟信号。

量化是将采样值在幅度上进行离散化,分为若干个量化级。

量化级的数量决定了量化误差的大小。

编码则是将量化后的数值用二进制代码表示。

常见的编码方式有自然二进制编码、折叠二进制编码等。

在 PCM 编译码系统中,发送端完成采样、量化和编码的过程,将模拟信号转换为数字信号进行传输;接收端则进行相反的过程,即解码、反量化和重建模拟信号。

三、实验仪器与设备1、通信原理实验箱2、示波器3、信号源四、实验内容与步骤1、连接实验设备将通信原理实验箱接通电源。

用信号线将信号源与实验箱的输入端口连接,将实验箱的输出端口与示波器连接。

2、产生模拟信号设置信号源,产生频率为 1kHz、幅度为 2V 的正弦波模拟信号。

3、观察采样过程调节实验箱上的采样频率旋钮,分别设置为不同的值,观察示波器上的采样点。

4、量化与编码观察实验箱上的量化和编码模块,了解量化级的设置和编码方式。

5、传输与接收发送端将编码后的数字信号传输给接收端。

观察接收端解码、反量化后的模拟信号。

6、改变输入信号参数改变模拟信号的频率和幅度,重复上述实验步骤,观察 PCM 编译码的效果。

五、实验结果与分析1、采样频率对信号的影响当采样频率低于奈奎斯特频率时,示波器上的信号出现失真,无法准确还原原始模拟信号。

当采样频率高于奈奎斯特频率时,信号能够较好地还原,随着采样频率的增加,还原效果更加理想。

pcm编码实验报告

pcm编码实验报告

pcm编码实验报告PCM编码实验报告一、引言在数字通信领域,PCM(脉冲编码调制)是一种常用的信号编码技术。

本实验旨在通过对PCM编码的实际操作,深入了解PCM编码的原理、特点以及应用。

二、实验目的1. 理解PCM编码的基本原理;2. 掌握PCM编码的实验操作方法;3. 分析PCM编码的优缺点及其在通信领域的应用。

三、实验设备和原理1. 实验设备:计算机、PCM编码器、PCM解码器、示波器等;2. PCM编码原理:PCM编码是通过对模拟信号进行采样和量化,然后将量化结果转换为二进制码流的过程。

采样率越高,量化精度越高,PCM编码的质量越好。

四、实验过程1. 连接实验设备:将模拟信号输入PCM编码器,再将PCM编码器的输出连接到PCM解码器,最后将解码器的输出连接到示波器;2. 设置采样率和量化精度:根据实验要求,设置合适的采样率和量化精度;3. 进行PCM编码:通过PCM编码器对输入信号进行采样和量化,得到二进制码流;4. 进行PCM解码:将PCM编码器的输出连接到PCM解码器,解码器将二进制码流转换为模拟信号;5. 观察示波器显示:将PCM解码器的输出连接到示波器,观察解码后的信号波形。

五、实验结果与分析1. 通过示波器观察,可以看到PCM编码器输出的二进制码流经过解码后,波形与输入信号基本一致,证明PCM编码解码过程的准确性;2. 随着采样率的增加,PCM编码的质量提高,但同时也会增加数据传输量;3. 在实际应用中,PCM编码常用于音频信号的数字化处理,如CD、MP3等。

六、实验总结通过本次实验,我们深入了解了PCM编码的原理和实验操作方法。

PCM编码作为一种常用的信号编码技术,在数字通信领域有着广泛的应用。

通过对模拟信号的采样和量化,PCM编码可以将信号转换为二进制码流,实现信号的数字化处理。

实验结果表明,PCM编码解码过程准确可靠,能够保持原始信号的质量。

同时,我们也意识到采样率和量化精度对PCM编码的影响,需要在实际应用中进行合理的选择。

脉冲编码调制实验报告

脉冲编码调制实验报告

一、实验目的1. 了解脉冲编码调制(PCM)的工作原理和实现过程;2. 掌握PCM编译码器的组成和功能;3. 验证PCM编译码原理在实际应用中的有效性;4. 分析PCM编译码过程中可能出现的问题及解决方法。

二、实验原理脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的方法。

其基本原理是:首先对模拟信号进行抽样,使其在时间上离散化;然后对抽样值进行量化,使其在幅度上离散化;最后将量化后的信号编码成二进制信号。

PCM编译码器是实现PCM调制和解调的设备。

1. 抽样:抽样是指在一定时间间隔内对模拟信号进行采样,使其在时间上离散化。

抽样定理指出,为了无失真地恢复原信号,抽样频率必须大于信号最高频率的两倍。

2. 量化:量化是指将抽样值进行幅度离散化。

量化方法有均匀量化和非均匀量化。

均匀量化是将输入信号的取值域按等距离分割,而非均匀量化则是根据信号特性对取值域进行不等距离分割。

3. 编码:编码是指将量化后的信号编码成二进制信号。

常用的编码方法有自然二进制编码、格雷码编码等。

三、实验仪器与设备1. 实验箱:包括模拟信号发生器、抽样器、量化器、编码器、译码器等;2. 示波器:用于观察信号波形;3. 数字频率计:用于测量信号频率;4. 计算机软件:用于数据处理和分析。

四、实验步骤1. 模拟信号发生器输出一个连续的模拟信号;2. 通过抽样器对模拟信号进行抽样,得到一系列抽样值;3. 对抽样值进行量化,得到一系列量化值;4. 将量化值进行编码,得到一系列二进制信号;5. 将二进制信号输入译码器,恢复出量化值;6. 将量化值进行反量化,得到一系列反量化值;7. 将反量化值通过重建滤波器,恢复出模拟信号;8. 观察示波器上的信号波形,分析PCM编译码过程。

五、实验结果与分析1. 观察示波器上的信号波形,可以发现,通过PCM编译码过程,模拟信号被成功转换为数字信号,再恢复为模拟信号。

这验证了PCM编译码原理在实际应用中的有效性。

pcm编译码器实验报告

pcm编译码器实验报告

pcm编译码器实验报告PCM编码器实验报告引言在现代通信领域中,数字信号处理技术扮演着至关重要的角色。

PCM编码器作为一种数字信号处理技术的应用,被广泛应用于音频和语音通信系统中。

本文将介绍PCM编码器的原理、实验过程和结果,并对其性能进行评估和分析。

一、PCM编码器的原理PCM编码器(Pulse Code Modulation Encoder)是一种将模拟信号转换为数字信号的技术。

其基本原理是将连续的模拟信号离散化,然后将每个采样值用二进制数表示。

PCM编码器由采样、量化和编码三个步骤组成。

1. 采样采样是将连续的模拟信号在时间上进行离散化的过程。

在实验中,我们使用了一个采样频率为Fs的采样器对模拟信号进行采样。

采样频率决定了信号在时间轴上的离散程度,过低的采样频率会导致信号失真,而过高的采样频率则会浪费计算资源。

2. 量化量化是将连续的采样值映射为离散的量化级别的过程。

在实验中,我们使用了一个分辨率为N的量化器对采样值进行量化。

分辨率决定了量化级别的数量,过低的分辨率会导致信息丢失,而过高的分辨率则会增加编码的复杂性。

3. 编码编码是将量化后的离散值用二进制数表示的过程。

在实验中,我们使用了一种线性编码的方法,将每个量化级别映射为一个二进制码字。

编码后的二进制数可以通过数字信号传输或存储。

二、实验过程为了验证PCM编码器的性能,我们设计了一套实验方案,包括信号生成、PCM 编码器实现和性能评估三个步骤。

1. 信号生成我们选择了一个简单的音频信号作为实验输入信号。

通过声卡输入设备,我们将音频信号输入到计算机中。

在计算机上,我们使用MATLAB软件对音频信号进行处理,包括采样频率和量化分辨率的设置。

2. PCM编码器实现为了实现PCM编码器,我们使用MATLAB编程语言编写了一段代码。

该代码根据采样和量化的参数,对输入信号进行采样、量化和编码,最终输出PCM编码的二进制数据。

3. 性能评估为了评估PCM编码器的性能,我们使用了两个指标:信噪比(SNR)和失真度。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM 数字电话终端机的结构示意图1、实验原理和电路说明PCM 编译码系统由定时部分和PCM 编译码器构成,电路原理图附于本章后.◆ PCM 编译码原理为适应语音信号的动态范围,实用的PCM 编译码必须是非线性的.目前,国际上采用的 均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和 15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A 律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的. ◆ PCM 编译码器简介鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067专用大规模集成电路,它 是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器. TP3067的管脚如图4.4所示,内部组成框图如图4.5所示. TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考. (3)VPO- 收端功放的反相输出端. (4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端. (6)VCC +5V 电压输入.(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列. (8)DR 接收部分PCM 码流解码输入端.(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟 可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.混合装置V oice发滤波器波器收滤编码器器码译分路路合发收(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz,1544MHz 或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR 被选择为内部时钟,当 MCLKx 接高电平,该芯片进入低功耗状态.(11)MCLKx 发送部分主时钟,必须为1536MHz,1544MHz 或2048MHz.可以和MCLKR 异步,但 是同步工作时可达到最佳状态.(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端.可以为从64KHz 到2048MHz 的任意 频率,但必须和MCLKx 同步.(13)Dx 发送部分PCM 码流编码输出端.(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列. (15)TSx 漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送 部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连. (17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益. (18)VFxI 发送部分输入放大器的反相输入端。

pcm编译码器实验报告

pcm编译码器实验报告

PCM编码器实验报告1. 引言在通信系统中,音频信号的传输是一项重要的任务。

为了有效地传输音频信号,需要对其进行编码和解码处理。

本实验将介绍PCM编码器的设计和实现过程。

2. 实验目的本实验的目的是设计和实现PCM编码器,将模拟音频信号转换为数字信号。

通过实验,我们将了解PCM编码器的原理,并验证其在音频信号传输中的有效性。

3. 实验原理PCM(脉冲编码调制)是一种常用的音频信号编码方法。

其基本原理是将模拟音频信号离散化为一系列数字样本,并将每个样本量化为特定的二进制码字。

PCM编码器的主要步骤包括采样、量化和编码。

首先,模拟音频信号按照一定的采样频率进行采样,得到一系列采样值。

然后,每个采样值经过量化处理,将连续的模拟值转换为离散的数字值。

最后,将每个数字值编码为相应的二进制码字,以便传输或存储。

4. 实验步骤步骤1:信号采样在本实验中,我们选择了一个模拟音频信号作为输入。

首先,使用采样设备对该音频信号进行采样。

采样频率的选择应根据音频信号的特性和传输要求进行确定。

步骤2:量化处理采样得到的模拟音频信号是连续的,需要将其离散化为一系列数字样本。

量化是将连续信号转换为离散信号的过程。

根据量化精度的不同,可以将其分为均匀量化和非均匀量化。

本实验中,我们选择了均匀量化的方式。

步骤3:编码处理量化后的信号需要进一步编码为二进制码字。

编码器可以使用各种编码技术,如差分编码、熵编码等。

在本实验中,我们选择了一种简单的编码方式,将每个量化样本直接转换为二进制码字。

步骤4:输出编码结果完成编码处理后,将编码结果输出供进一步传输或存储。

可以通过串口、网络等方式将编码结果传输到接收端,或将其保存到文件中。

5. 实验结果分析通过本实验,我们成功设计和实现了PCM编码器。

将实验中选择的模拟音频信号进行采样、量化和编码处理后,得到了相应的二进制码字。

通过对编码结果的分析,可以验证PCM编码器的有效性和准确性。

6. 实验总结本实验通过对PCM编码器的设计和实现,深入了解了PCM编码的原理和过程。

PCM编码实验报告

PCM编码实验报告

PCM编码实验报告实验目的:本实验旨在了解PCM(脉冲编码调制)编码的原理和应用,掌握PCM编码的基本过程和方法,以及理解PCM编码的优缺点。

实验器材:1.音频信号源2.音频调制解调器3.示波器4.电脑及相关软件实验原理:实验过程:1.连接音频信号源和音频调制解调器,将音频信号输出到音频解调器的输入端口。

2.设置音频信号频率和幅度,调节调制解调器的参数,使得有合适的幅度和频率。

3.将音频解调器的输出连接到示波器上,观察波形是否有明显的变化。

4.使用电脑及相关软件,将示波器上的波形进行基于PCM编码的数字化处理。

5.观察PCM编码后的音频信号在电脑软件上的显示效果。

实验结果:经过PCM编码,音频信号成功地被数字化处理,并在电脑软件上显示出来。

信号的幅度和频率得到了有效的量化和编码。

实验分析:PCM编码的优点包括:可靠性高,抗干扰能力强,传输质量好。

PCM 编码可以将连续的模拟信号转换为数字信号进行传输和处理,可以减少信号传输过程中的噪声和失真。

同时,PCM编码还可以对信号进行压缩,提高传输效率。

PCM编码的缺点包括:需要较大的带宽和传输速率;编码和解码的复杂度较高,需要较多的处理器和存储空间。

此外,PCM编码对信号的输入范围和精度有一定的要求,如果输入的信号超出了范围或者精度不够高,就会导致编码误差增大或者数据丢失。

实验感想:通过本次实验,我对PCM编码的原理和应用有了更深入的了解。

PCM 编码是一种常用的数字音频编码方式,广泛应用于音频信号的传输、存储和处理中。

掌握PCM编码的基本过程和方法,对于理解和应用数字音频技术具有重要意义。

同时,我还发现PCM编码在音频信号的数字化处理中,具有较高的可靠性和传输质量,但也存在一定的局限性。

综上所述,PCM 编码是一种值得深入研究和应用的数字音频编码技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脉冲编码调制(PCM)实验
一、 实验目的 1. 了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。

二、 实验仪器
双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真度测试仪l 台;PCM 实验箱l 台。

三、 实验原理 PCM 数字终端机的结构示意图如下:
PCM 原理图如下:
模拟信源 预滤波
抽样器 波形编码器 量化、编码 数字信道
波形解码器
重建滤波器
抽样保持、X/sinx 低通
模拟终端
()x t ()
x n ()ˆx
n ()ˆx
t 发送端
接收端
PCM 编译码原理为:
1.PCM主要包括抽样、量化与编码三个过程。

2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号;
3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号;
4.编码:将量化后的信号编码形成一个二进制码组输出。

5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用
A 律或u 律编码律。

A律13折线和其编码表为:
A律13折线图A律13折线编码表
段落序号段落码
c2 c3 c4
段内码c5 c6 c7 c8
8 111 0000
…….
1111
7 110 0000
…….
1111
6 101 0000
…….
1111
5 100 0000
…….
1111
4 011 0000
…….
1111
3 010 0000
…….
1111
2 001 0000
…….
1111
1 000 0000
…….
1111
内为均匀分层量化,即等问隔16 个分层。

系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。

在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。

PCM 编译码系统动态范围样板值图:
动态范围测试框图:
四、 实验步骤
(一)时钟部分:
1. 主振频率为4096KHz ;用示波器在测试点(1)观察主振波形,用示波器测量其频率。

同样在(2) 、(3)和(4)观察并测量其它时钟信号,并记录各点波形的频率和幅度。

(二)PCM 编译码器:
1.音频信号(f=1KHz,Vpp=2V) 从(5)、(5’)输入;在(6)观察到PCM 编码输出的码流;
2.连接(6)-(7),在测试点(8)可观察到经译码和接收低通滤波器恢复出的输出音频信号,记录测试此点的波形参数。

(三)系统性能测试:
1. 动态范围:取输入信号的最大幅度为5Vpp ,信号由小至大调节,测出此时的S/N 值,记录于表。

2. 信噪比特性:在上一项测试中选择出最佳编码电平(S/N 最高),在此电平下测试不同频率下的信噪比值。

频率选择在500Hz 、1000Hz 、1500Hz 、2000Hz 、3000Hz ;记录对应的信噪比。

3. 频率特性:选一合适的输入电平(Vin=2Vpp) ,改变输入信号的频率,在(8)处逐频率点测出译码输出信号的电压值,频率特性测试数据记录于表。

音频 发生器 可变 衰减器
编码器
失真仪
译码器
示波器
五、实验数据处理
实验得到的数据如下:
(一)(1):主振波形
f=4.098MHz;T=244.8ns;
Vpp=3.16V
(2):位定时波形
f=2.047MHz;T=488.3ns;
Vpp=3.36V
(3):主同步波形
f=8KHz;T=125μs;Vpp=3.32V
(4):路时钟波形
f=8KHz;T=125μs;Vpp=3.32V
(二)(6)点:码流
用光标限定ΔT=3.92μs
从图中可以看出码流为:
10110011(8位)
(8)点:输出音频信号波形
Vpp=1.47V;f=996Hz
输入信号频率为1KHz,说明解
调结果与输入信号相差很小
(三).1:得到的数据如下表所示:
0dB -10dB -20dB -30dB -40dB Vin(mV)pp 5000 1620 540 164 58
S/N(dB) 39 37.5 38.5 37.5 32.2 由实验数据作得动态特性图如下:
2:得到的数据如下表所示:
F(Hz) 500 1000 1500 2000 3000
S/N(dB) 38.5 39 36.5 35.5 32.2
由实验数据作得信噪比特性图如下:
图系统信噪比受频
率影响小。

3:得到的数据如下表所示:
F(Hz)100 500 1000 2000 3000 4000
Vout(V) 0.448 2.68 2.76 2.76 2.80 0.162
由实验数据作得频率特性图如下:
此结果与理论的频
率特性大致一样。

理论的结果是:
在频率大约为
300Hz-3KHz,Vpp不
变。

六、实验报告思考题
1.PCM编译码系统由哪些部分构成?各部分的作用是什么?
答:PCM编译码系统由收滤波器,发滤波器,编码器,译码器,合路,分路构成。

滤波器的作用滤掉不必要的频率成分,减少噪声干扰。

编码器的任务是根据输入的样值得到相应的8位二进制代码。

译码的作用是把收到的PCM 信号还原成相应的样值信号。

2.对PCM和△M系统的性能比较,总结它们各自的特点。

答:PCM和△M都是模拟信号数字化的基本方法,△M实际上是DPCM的一种特例。

在相同的信道传输速率下,对于量化信噪比,在传输速率低时,△M性
能优越,在编码位数多、码率较高时,PCM性能优越。

在编码位数时,△M性能优于PCM性能;△M与PCM抗干扰性能取决于误码的影响。

由于△M中误码只会引起2 的脉冲幅度误差,而在PCM中误码所引起的误码脉冲幅度一般大于2 ,所以,在同样误码条件下,△M系统质量优于PCM质量。

如果希望两者有相同的误码噪声功率,则PCM系统中误码率小于△M系统中的误码率;△M比PCM更适用于对语音信号和图像信号的编码。

PCM系统的特点:多路信号统一编码,一般采用8位编码(语音信号).编码设备复杂,但质量较好。

PCM系统一般用于大容量的干线通信。

△M系统的特点:单路信号单用一个编码设备,设备简单,一般数码率比PCM的低,质量次于PCM。

△M一般适用于小容量支线通信,话路增减方便灵活。

相关文档
最新文档