Pcm编译码实验报告

合集下载

pcm编译码实验报告

pcm编译码实验报告

pcm编译码实验报告PCM编码实验报告引言在数字通信领域中,编码和解码是非常重要的环节。

编码是将原始信号转换为数字信号的过程,而解码则是将数字信号还原为原始信号的过程。

PCM编码(Pulse Code Modulation)是一种常用的数字信号编码方法,广泛应用于音频和视频传输等领域。

本实验旨在通过实际操作,深入理解PCM编码的原理和实现过程。

实验目的1. 了解PCM编码的基本原理和概念;2. 掌握PCM编码的实验操作方法;3. 分析PCM编码的优缺点及应用领域。

实验设备和材料1. 信号发生器;2. 示波器;3. PCM编码器;4. 解码器;5. 音频播放器。

实验步骤1. 连接信号发生器和示波器,调节信号发生器输出为正弦波信号;2. 将信号发生器的输出连接到PCM编码器的输入端;3. 设置PCM编码器的采样率和量化位数;4. 将PCM编码器的输出连接到解码器的输入端;5. 连接解码器的输出到音频播放器;6. 调节示波器观察PCM编码器输出信号的波形;7. 播放音频,观察解码器输出的音频效果。

实验原理PCM编码是一种将连续模拟信号转换为离散数字信号的方法。

其基本原理是将模拟信号进行采样和量化。

采样是指在一定时间间隔内对模拟信号进行取样,将连续信号转换为离散信号。

量化是指将采样得到的离散信号映射到离散的量化级别上,以便数字化表示。

在本实验中,信号发生器产生的正弦波信号作为输入信号,经过PCM编码器进行采样和量化处理后,输出为数字信号。

解码器接收到数字信号后,通过解码过程将其还原为模拟信号,最终通过音频播放器播放出来。

PCM编码的优点是可以准确地还原原始信号,保持良好的信号质量。

同时,由于PCM编码是一种线性编码方式,具有较好的抗噪声能力。

然而,PCM编码的缺点是需要较大的存储空间和传输带宽,不适用于对存储和传输资源要求较高的场景。

实验结果与分析通过实验观察,可以发现PCM编码器输出的信号波形与输入信号相似,但存在一定的误差。

pcm编译码实验报告

pcm编译码实验报告

pcm编译码实验报告PCM 编译码实验报告一、实验目的1、掌握脉冲编码调制(PCM)的基本原理。

2、熟悉 PCM 编译码系统的构成及工作过程。

3、观察和分析 PCM 编译码过程中的信号波形,理解量化和编码的概念。

二、实验原理PCM 是一种将模拟信号变换成数字信号的编码方式。

其基本原理是对模拟信号进行周期性采样,然后将每个采样值进行量化,并将量化后的数值用二进制编码表示。

采样过程遵循奈奎斯特采样定理,即采样频率应大于模拟信号最高频率的两倍,以保证能够从采样后的信号中无失真地恢复出原始模拟信号。

量化是将采样值在幅度上进行离散化,分为若干个量化级。

量化级的数量决定了量化误差的大小。

编码则是将量化后的数值用二进制代码表示。

常见的编码方式有自然二进制编码、折叠二进制编码等。

在 PCM 编译码系统中,发送端完成采样、量化和编码的过程,将模拟信号转换为数字信号进行传输;接收端则进行相反的过程,即解码、反量化和重建模拟信号。

三、实验仪器与设备1、通信原理实验箱2、示波器3、信号源四、实验内容与步骤1、连接实验设备将通信原理实验箱接通电源。

用信号线将信号源与实验箱的输入端口连接,将实验箱的输出端口与示波器连接。

2、产生模拟信号设置信号源,产生频率为 1kHz、幅度为 2V 的正弦波模拟信号。

3、观察采样过程调节实验箱上的采样频率旋钮,分别设置为不同的值,观察示波器上的采样点。

4、量化与编码观察实验箱上的量化和编码模块,了解量化级的设置和编码方式。

5、传输与接收发送端将编码后的数字信号传输给接收端。

观察接收端解码、反量化后的模拟信号。

6、改变输入信号参数改变模拟信号的频率和幅度,重复上述实验步骤,观察 PCM 编译码的效果。

五、实验结果与分析1、采样频率对信号的影响当采样频率低于奈奎斯特频率时,示波器上的信号出现失真,无法准确还原原始模拟信号。

当采样频率高于奈奎斯特频率时,信号能够较好地还原,随着采样频率的增加,还原效果更加理想。

PCM编译码器系统实验

PCM编译码器系统实验

PCM编译码器系统实验PCM编译码器系统实验(2010-01-11 15:30:44)标签:pcm编码 tp 编译码器时钟信号实验⽬的1、了解语⾳编码的⼯作原理,验证PCM编译码原理2、熟悉PCM抽样时钟、编码输⼊/输出时钟和PCM编码数据间的关系3、了解PCM专⽤⼤规模集成电路的⼯作原理和应⽤实验仪器1、光纤通信多功能综合实验系统⼀台2、20MHz双踪⽰波器⼀台实验原理PCM编译码模块(主要电路在实验箱⾥⾯的电路板上,属于第三种配置)将来⾃⽤户接⼝模块的模拟信号进⾏PCM编译码,该模块采⽤MC145540集成电路完成PCM编译码功能。

该器件具有多种⼯作模式和功能,因此⼯作前将其配置成直接PCM模式(直接将PCM码进⾏打包传输),使其具有以下功能:1、对来⾃接⼝模块发⽀路的模拟信号进⾏PCM编码输出。

2、将输⼊的PCM码字进⾏译码(即通话对⽅的PCM码字),并将译码之后的模拟信号送⼊⽤户接⼝模块。

PCM编译码模块的电路框图见图5.3.1所⽰。

PCM编译码器模块电路主要由语⾳编译码集成电路U302(MC145540)、运放U301(TL082)、晶振U303(20.48MHz)及相应的跳线开关、电位器组成。

PCM编译码模块的电路原理图见图5.3.2所⽰。

电路⼯作原理如下:PCM编译码模块中,由收、发两个⽀路组成。

在发送⽀路上发送信号经U301A运放后放⼤后,送⼊U302的2脚进⾏PCM编码。

编码输⼊时钟为BCLK(256KHz),编码数据从U302的20脚输出(ADPCM_DT),FSX为编码抽样时钟(8KHz)。

编码之后的数据结果送⼊后续数据复接模块进⾏处理,或直接送到对⽅PCM译码单元。

在接收⽀路中,收数据是来⾃解数据复接模块的信号(ADPCM_DR),或是直接来本地⾃环测试⽤PCM编码数据(ADPCM_DT),在接收帧同步时钟FSX(8KHz)与接收输⼊时钟BCLK(256KHz)的共同作⽤下,将接收数据送⼊U302中进⾏PCM译码。

Pcm编译码实验报告

Pcm编译码实验报告

Pcm编译码实验报告学院:信息学院姓名:靳家凯专业:电科学号:20141060259一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、熟悉了解W681512。

二、实验器材1、主控&信号源模块、3号、21号模块2、双踪示波器3、连接线三、实验原理1、实验原理框图图1 21号模块w68 1 5 1 2芯片的PCM编译码实验图2 3号模块的PCM编译码实验图3 ~µ律编码转换实验2、实验框图说明图1中描述的是信号源经过芯片W6815 12经行PcM编码和译码处理。

w681512的芯片工作主时钟为2o48KHz, 根据芯片功能可选择不同编码时钟进行编译码。

在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。

图2中描述的是采用软件方式实现PcM编译码, 并展示中间变换的过程。

PcM 编码过程是将音乐信号或正弦波信号, 经过抗混叠滤波 (其作用是滤波 3.4kHz 以外的频率, 防止A/D转换时出现混叠的现象) 。

抗混滤波后的信号经A/D转换,然后做PcM编码,之后由于G.711协议规定A律的奇数位取反, µ律的所有位都取反。

因此, PcM编码后的数据需要经G.711协议的变换输出。

PcM译码过程是PcM编码逆向的过程,不再赘述。

A/µ律编码转换实验中,如实验框图3所示,当菜单选择为 A律转µ律实验时,使用3 号模块做 A律编码, A律编码经 A转µ律转换之后, 再送至21号模块进行µ律译码。

同理, 当菜单选择为µ律转 A律实验时,则使用3号模块做µ律编码,经l,转A律变換后,再送入21号模块进行 A律译码。

四、实验步骤实验项目一测试 w68l512的幅频特性概述:该项目是通过改变输入信号频率,观测信号经 w681512编译码后的输出幅频特性, 了解芯片 w681512的相关性能。

实验三PCM编译码器通信实验

实验三PCM编译码器通信实验

PCM编译码器一.实验原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原始信号。

通常将语音信号通过一个3400 Hz低通滤波器(或通过一个300~3400Hz 的带通滤波器),限制语音信号的最高频率为3400Hz,这样可以用频率大于或等于6800 Hz的样值序列来表示。

实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz 的语音信号,通常采用8KHz抽样频率。

这样可以留出一定的防卫带(1200Hz)。

当抽样频率fs 低于2倍语音信号的最高频率fh,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。

在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个频率为fh 的信号来代替实际语音信号。

通过改变函数信号发生器的频率fh,观察抽样序列和低通滤波器的输出信号,检验抽样定理的正确性。

PCM编译码模块将来自用户接口模块的模拟信号进行PCM编译码,该模块采用MC145540集成电路完成PCM编译码功能。

该器件具有多种工作模式和功能,工作前通过显示控制模块将其配置成直接PCM模式(直接将PCM码进行打包传输),使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。

2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。

PCM编译码器模块电路与ADPCM编译码器模块电路完全一样,由语音编译码集成电路U502(MC145540)、运放U501(TL082)、晶振U503(20.48MHz)及相应的跳线开关、电位器组成。

pcm编译码器实验报告

pcm编译码器实验报告

pcm编译码器实验报告PCM编码器实验报告摘要:本实验旨在通过使用PCM编码器来对模拟信号进行数字化编码,以便在数字通信系统中进行传输和处理。

实验结果表明,PCM编码器能够有效地将模拟信号转换为数字信号,并且在一定程度上保持了信号的原始信息。

本实验为数字通信系统的设计和优化提供了重要的参考和实践基础。

引言:随着数字通信技术的不断发展,PCM编码器作为一种重要的数字信号处理技术,被广泛应用于语音通信、数据传输、音频存储等领域。

PCM编码器能够将模拟信号转换为数字信号,从而实现信号的数字化处理和传输。

本实验旨在通过对PCM编码器的实验研究,探讨其在数字通信系统中的应用和性能表现。

实验目的:1. 了解PCM编码器的基本原理和工作过程;2. 掌握PCM编码器的实验操作方法;3. 分析PCM编码器在数字通信系统中的应用和性能特点。

实验原理:PCM编码器是一种基于脉冲编码调制(PCM)原理的数字信号处理设备,其工作原理是将模拟信号进行采样、量化和编码,最终输出数字信号。

在PCM编码器中,采样率和量化位数是影响编码质量的重要参数,采样率越高、量化位数越大,编码精度越高。

实验过程:1. 连接实验设备,调试参数;2. 输入模拟信号,观察编码输出;3. 调整采样率和量化位数,比较编码效果;4. 记录实验数据,分析结果。

实验结果:通过实验观察和数据分析,我们发现在一定范围内,增加采样率和量化位数可以提高PCM编码器的编码精度,但是也会增加系统的复杂度和成本。

另外,我们还发现在一定程度上,PCM编码器能够有效地保持原始信号的信息,但是在高频信号和动态范围较大的信号上,编码效果会有所下降。

结论:本实验通过对PCM编码器的实验研究,深入理解了其工作原理和性能特点,为数字通信系统的设计和优化提供了重要的参考。

未来的研究方向包括进一步优化编码器的算法和结构,提高编码精度和系统性能。

同时,还可以探索PCM编码器在不同应用场景下的性能表现,为其在实际工程中的应用提供更多的参考和指导。

通信原理实验报告PCMADPCM编译码实验

通信原理实验报告PCMADPCM编译码实验

PCM/ADPCM编译码实验一、实验原理和电路说明PCM/ADPCM编译码模块将来自用户接口模块的模拟信号进行PCM/ADPCM编译码,该模块采用MC145540集成电路完成PCM/ADPCM编译码功能。

该器件工作前通过显示控制模块将其配置成直接PCM或ADPCM模式,使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。

2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。

电路工作原理如下:PCM/ADPCM编译码模块中,由收、发两个支路组成,在发送支路上发送信号经U501A 运放后放大后,送入U502的2脚进行PCM/ADPCM编码。

编码输出时钟为BCLK(256KHz),编码数据从语音编译码集成电路U502(MC145540)的20脚输出(DT_ADPCM1),FSX为编码抽样时钟(8KHz),晶振U503(20.48MHz)。

编码之后的数据结果送入后续数据复接模块进行处理,或直接送到对方PCM/ADPCM译码单元。

在接收支路中,收数据是来自解数据复接模块的信号(DT_ADPCM_MUX),或是直接来自对方PCM/ADPCM编码单元信号(DT_ADPCM2),在接收帧同步时钟FSX(8KHz)与接收输入时钟BCLK(256KHz)的共同作用下,将接收数据送入U502中进行PCM/ADPCM译码。

译码之后的模拟信号经运放U501B放大缓冲输出,送到用户接口模块中。

二、实验内容及现象记录与分析1.准备工作:加电后,将KB03置于左端PCM编码位置,此时MC145540工作在PCM编码状态。

将K501设置在右边。

2.PCM/ADPCM编码信号输出时钟和抽样时钟信号观测①输出时钟和抽样时钟即帧同步时隙信号观测:测量、分析和掌握PCM编码抽样时钟信号与输出时钟的频率、占空比以及它们之间的对应关系等。

记录与分析:输出时钟。

由图中右侧测量数据可见,抽样信号频率为8kHz,输出时钟信号频率为256kHz(见下图CH2频率,上图测得为260.4kHz存在误差,因为时间轴选取得太密)。

pcm编译码器实验报告

pcm编译码器实验报告

pcm编译码器实验报告PCM编码器实验报告引言在现代通信领域中,数字信号处理技术扮演着至关重要的角色。

PCM编码器作为一种数字信号处理技术的应用,被广泛应用于音频和语音通信系统中。

本文将介绍PCM编码器的原理、实验过程和结果,并对其性能进行评估和分析。

一、PCM编码器的原理PCM编码器(Pulse Code Modulation Encoder)是一种将模拟信号转换为数字信号的技术。

其基本原理是将连续的模拟信号离散化,然后将每个采样值用二进制数表示。

PCM编码器由采样、量化和编码三个步骤组成。

1. 采样采样是将连续的模拟信号在时间上进行离散化的过程。

在实验中,我们使用了一个采样频率为Fs的采样器对模拟信号进行采样。

采样频率决定了信号在时间轴上的离散程度,过低的采样频率会导致信号失真,而过高的采样频率则会浪费计算资源。

2. 量化量化是将连续的采样值映射为离散的量化级别的过程。

在实验中,我们使用了一个分辨率为N的量化器对采样值进行量化。

分辨率决定了量化级别的数量,过低的分辨率会导致信息丢失,而过高的分辨率则会增加编码的复杂性。

3. 编码编码是将量化后的离散值用二进制数表示的过程。

在实验中,我们使用了一种线性编码的方法,将每个量化级别映射为一个二进制码字。

编码后的二进制数可以通过数字信号传输或存储。

二、实验过程为了验证PCM编码器的性能,我们设计了一套实验方案,包括信号生成、PCM 编码器实现和性能评估三个步骤。

1. 信号生成我们选择了一个简单的音频信号作为实验输入信号。

通过声卡输入设备,我们将音频信号输入到计算机中。

在计算机上,我们使用MATLAB软件对音频信号进行处理,包括采样频率和量化分辨率的设置。

2. PCM编码器实现为了实现PCM编码器,我们使用MATLAB编程语言编写了一段代码。

该代码根据采样和量化的参数,对输入信号进行采样、量化和编码,最终输出PCM编码的二进制数据。

3. 性能评估为了评估PCM编码器的性能,我们使用了两个指标:信噪比(SNR)和失真度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pcm编译码实验报告学院:信息学院:靳家凯专业:电科学号:20141060259一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、熟悉了解W681512。

二、实验器材1、主控&信号源模块、3号、21号模块2、双踪示波器3、连接线三、实验原理1、实验原理框图图1 21号模块w68 1 5 1 2芯片的PCM编译码实验图2 3号模块的PCM编译码实验图3 ~µ律编码转换实验2、实验框图说明图1中描述的是信号源经过芯片W6815 12经行PcM编码和译码处理。

w681512的芯片工作主时钟为2o48KHz, 根据芯片功能可选择不同编码时钟进行编译码。

在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。

图2中描述的是采用软件方式实现PcM编译码, 并展示中间变换的过程。

PcM 编码过程是将音乐信号或正弦波信号, 经过抗混叠滤波 (其作用是滤波 3.4kHz 以外的频率, 防止A/D转换时出现混叠的现象) 。

抗混滤波后的信号经A/D转换,然后做PcM编码,之后由于G.711协议规定A律的奇数位取反, µ律的所有位都取反。

因此, PcM编码后的数据需要经G.711协议的变换输出。

PcM译码过程是PcM编码逆向的过程,不再赘述。

A/µ律编码转换实验中,如实验框图3所示,当菜单选择为 A律转µ律实验时,使用3 号模块做 A律编码, A律编码经 A转µ律转换之后, 再送至21号模块进行µ律译码。

同理, 当菜单选择为µ律转 A律实验时,则使用3号模块做µ律编码,经l,转A律变換后,再送入21号模块进行 A律译码。

四、实验步骤实验项目一测试 w68l512的幅频特性概述:该项目是通过改变输入信号频率,观测信号经 w681512编译码后的输出幅频特性, 了解芯片 w681512的相关性能。

1、关电,按图1所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。

调节 w1主控&信号源使信号 A_0UT输出峰峰值为3V左右。

将模块21的开关 Sl 拨至“A-Law”, 即完成 A律PCM编译码。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波; PCM编码及译码时钟 CLK为64KHz方波;编码及译码帧同步信号 FS为8KHz。

4、实验操作及波形观测。

(1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A_out峰峰值为3V。

(2)将信号源频率从50Hz增加到4oooHz,用示波器接模块21的音频输出,观测信号的幅频特性。

实验项目二 PCM编码规则验证概述:该项目是通过改变输入信号幅度或编码时钟,对比观测 A律 PcM编译码和µ律PcM编译码输入输出波形, 从而了解 PcM编码规则。

1、关电,按图2所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。

调节 w1主控&信号源使信号 A_0UT输出峰峰值为3v左右。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波, PcM编码及译码时钟 cLK为64KHz;编码及译码帧同步信号FS为8KHz。

4、实验操作及波形观测。

(1)以 Fs为触发,观测编码输入波形。

示波器的 DIV(扫描时间)档调节为1oOus。

将正弦波幅度最大处调节到示波器的正中间, 记录波形。

(2)在保持示波器设置不变的情况下, 以 FS为触发观察 PCM量化输出,记录波形。

五、实验结果图5 3K+1K输入波形和用于抽样方波波形对比图6 译码输出和输入波形对比图7 输入3K+1K信号频谱图8 译码输出频谱图9 编码输出频谱图10 译码输出和编码输出波形图11 译码输出和输入波形图12 译码输出频谱图13 输入波形频谱图14 clk和fs波形对比图15 编码输出和clk波形对比图16 4KHz正弦输入波形和64KHz的clk波形图17 抽样波形和编码输出波形对比图18 clk波形与编码输出波形对比六、思考题(1)PCM的速率是多少,ADPCM的速率又是多少?有何意义?今天VoIP采用什么样的信源编码(请查找资料)?答:PCM的速率是64kbps,ADPCM的速率是32kbps,意义:ADPCM标准是一个代码转换系统,以实现64 kbps A律或μ律PCM速率与32 kbps速率之间的相互转换。

现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。

(2)实验中接收译码的时钟来自于发送端编码器的,而实际的通信系统中接收译码时钟怎么得到?(即时钟同步问题)答:在数字传输系统或设备的标准接口上,信码与时钟信号总是成对出现的。

但是在数字传输系统部,为了节省信道,通常是把时钟信号与信码综合到一起传输。

在发信端把两者合并起来,到收信端再把它们分开。

在收信端进行信号分离时,通常是首先提取时钟信号,然后再借助于时钟信号来识别信码。

时钟信号就是定时信号,用来同步△m编译码实验报告一、实验目的1、掌握简单增量调制的工作原理。

2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。

3、了解简单增量调制与 cvsD工作原理不同之处及性能上的差别。

二、实验器材1、主控&信号源模块、21号、3号模块2、双踪示波器3、连接线三、实验原理1、 Am编译码( 1 ) 实验原理框图图一△m编译码框图(2)实验框图说明编码输入信号与本地译码的信号相比较, 如果大于本地译码信号则输出正的量阶信号, 如果小于本地译码则输出负的量阶。

然后, 量阶会对本地译码的信号进行调整, 也就是编码部分″+″运算。

编码输出是将正量阶变为1,负量阶变为0。

如译码的过程实际上就是编码的本地译码的过程。

四、实验步骤 .实验项目一△ M编码规则实验概述:该项目是通过改变输入信号幅度,观测△M编译码输出波形,从而了解和验证△M增量调制编码规则。

1、关电,按图一所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【△m及cvSD编译码】→【Δm编码规则验证】。

调节信号源 W1使A-0uT的峰峰值为1V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1v,频率为400Hz;编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

对比X如j模块3的信源延时和编码输出,然后对比信源延时和本地译码。

实验项目二量化噪声观测概述:该项目是通过比较观测输入信号和△M编译码输出信号波形,记录量化噪声波形, 从而了解△M编译码性能。

1、实验连线同项目一。

2、开电,设置主控菜单,选择【主菜单】→【Δm及CVSD编译码】→【△m量化噪声观测(400Hz)】→【设置量阶1000】。

调节信号源W1使A-0UT的峰峰值为1V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1v,频率为400Hz;编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

示波器的 cH1测试“信源延时'' , cH2测试''本地译码”。

利用示波器的“减法”功能, 所观测到的波形即是量化噪声。

记录量化噪声的波形。

实验项目三不同量阶△ M编译码的性能概述: 该项目是通过改变不同△M编码量阶, 对比观测输入信号和△M编译码输出信号的波形, 记录量化噪声, 从而了解和分析不同量阶情况下△M编译码性能。

1、实验连线和菜单设置同项目二。

2、调节信号源 W1使A-0UT的峰峰值为3V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为3V,频率为400Hz,编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

示波器的 cH1测试“信源延时”, cH2测试“本地译码”。

利用示波器的“减法”功能, 所观测到的波形即是量化噪声。

记录量化噪声的波形。

(1)选择“设置量阶3000”,调节正弦波峰峰值为1v,测量并记录量化噪声的波形。

(2)保持“设置量阶3000'',调节正弦波峰峰值为3v,测量并记录量化噪声的波形。

(3)选择“设置量阶6000”,调节正弦波峰峰值为1V,测量并记录量化噪声的波形。

(4)保持“设置量阶6000”,调节正弦波峰峰值为3V,测量并记录量化噪声的波形。

实验项目四Δ M编译码语音传输系统概述:该项目是通过改变不同△M编码量阶,直观感受音乐信号的输出效果,从而体会△M编译码语音传输系统的性能。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【Δm及 CVSD编译码】→【ΔM语音信号传输】→【设置量阶1000】。

3、此时系统初始状态为:编码输入信号为音乐信号。

4、实验操作及波形观测。

调节21号模块“音量''旋钮,使音乐输出效果最好。

分别“设置量阶1000”、“设置量阶3000”、“设置量阶6000'',比较3种量阶情况下声音的效果。

(设置接量越大,声音效果越差。

)实验项目五 cvsD量阶观测概述: 该项目是通过改变输入信号的幅度, 观测 cvsD编码输出信号的量阶变化情况, 了解 cvsD量阶变化规则。

1、连线同项目一。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【△m及cvsD编译码】→【cvsD量阶观测】。

调节信号源 w1使A-0UT的峰峰值为1v。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1V,频率为400Hz。

编码时钟频率为32㎃。

4、实验操作及波形观测。

以“编码输入''为触发,观测“量阶”。

调节“A-0uT''的幅度,观测量阶的变化。

实验五、实验结果图一信源延时和编码输出图二信源延迟和本地译码图三时钟和码流信号图四输入波形和时钟图五信源延时和本地译码图六量阶3000 正弦波峰峰值1V,量化噪声波形图七量阶3000 正弦波峰峰值3V,量化噪声波形图八量阶6000正弦波峰峰值1V,量化噪声波形图九量阶6000 正弦波峰峰值3V,量化噪声波形图十语音量化1000图十一语音量化3000图十二语音量化6000下图为调节“A-0uT''的幅度,观测量阶的变化的结果图六、实验思考与分析1、ΔM的典型速率是多少?答、16Kb/s和32kb/s。

2、PCM与ΔM的比较。

PCM和△M都是模拟信号数字化的基本方法,△M实际上是DPCM的一种特例。

PCM系统的特点:多路信号统一编码,一般采用8位编码(语音信号).编码设备复杂,但质量较好。

相关文档
最新文档