高强度砼回弹数据分析(最终版)
回弹法测混凝土强度实验报告【范本模板】

回弹法测混凝土强度实验报告一、实验原理:回弹法是用以弹簧驱动的重锤,通过弹击杆(传力杆),弹击混凝土表面,并测出重锤被反弹回来的距离,以回弹值(反弹距离去弹击锤冲击长度之比)作为与强度相关的指标,来推定混凝土强度的一种方法.由于混凝土的抗压强度与其表面硬度之间存在某种相关系,而回弹仪的弹击锤被一定的弹力打击在混凝土表面上,其回弹高度(通过回弹仪读得回弹值)与混凝土表面硬度成一定的比例关系。
根据表面硬度则可推求混凝土的抗压强度.二、实验目的:1、掌握用回弹仪测定混凝土强度的基本方法与实际操作;2、推定试件的混凝土强度值;3、掌握测定钢筋混凝土构件钢筋位置和保护层厚度的基本方法和实际操作;4、根据检测结果计算钢筋混凝土试验构件的承载力三、实验仪器:混凝土回弹仪、钢筋位置探测仪、直尺、粉笔、1%的酚酞酒精试剂四、实验方法:(一)用回弹仪测定混凝土的强度选择试验用钢筋混凝土构件平面尺寸较大的面作为测试面,记录测试面为构件浇注的哪一面。
将测试面向上平放在一平坦地面上,用粉笔在测试面上画线,均匀布置10个测区。
测试时,回弹仪垂直向下冲击混凝土表面,回弹仪与测试面应保持垂直。
冲击后应按住按钮在拿起回弹仪读出该次回弹的数据并记录完成一个测点的测试工作。
每测区有16个测点,测区内测点应分布均匀,测点的间距不小于3cm,最外侧测点距离边缘大于2cm。
测得的数据去掉最大和最小的3个,以剩余10个检测值的平均值作为该测区回弹值.由于本次试验的试验梁的养护时间较短,混凝土碳化深度以0cm计算.可用1%的酚酞酒精试剂喷到混凝土表面,观察颜色的变化。
(二) 测定钢筋位置和保护层厚度钢筋位移测定仪是根据电磁感应原理制成的。
钢筋位移测定仪主要由探头和显示主机两部分组成.具体操作如下:1、将探头与主机用信号线连接;2、拨动主机上左侧轮盘选到“R"档,进行钢筋位置检测;3、将探头举在空中,主机开机等待自检,主机上应依次显示0和1999并最终显示为0,如果显示不为0,请按红色按钮清零;4、将探头在构件表面上缓慢移动,同时注意主机显示数据的变化,当数据由递增到达某个极值后下降时说明已通过钢筋的位置,反复移动探头直到找到数据极大值的位置;5、垂直于探头移动方向上的十字中心线位置即为此时钢筋位置,用粉笔画出该位置;6、重复上述两个步骤可完成钢筋位置的探测;7、拨动主机上轮盘选到数字,使其等于内部钢筋的直径,进行保护层厚度的检测;8、移动探头通过标出的钢筋位置,此时主机会发出“嘟”的一声提示检测到保护层厚度,记录此时显示在主机上的数字即为检测值;9、重复上面的步骤依次完成保护层的检测工作.(三)、测量试件的实际尺寸,量测出试件的实际构件长及截面的宽度和高度.五、实验记录及数据处理回弹法检测砼抗压强度记录混凝土回弹测强曲线结论:由图可以看出当回弹值为零时,混凝土强度为负值与事实不符.说明此次实验存在误差 六、实验误差原因分析①混凝土试件制作并非完全符合配合比设计;②混凝土养护过程中可能有损坏;③回弹仪自身问题,导致测试结果偏差;④实验操作不规范,导致数据测量误差;⑤读数误差综上因素,此次实验并未达到预期效果,未能建立准确的回弹检测混凝土强度回归曲线.七、问题讨论1、回弹时为什么需要记录弹击方面和弹击面?答:因为回弹仪是根据所测材料硬度的不同测出不同的数据,而在混凝土浇筑过程中,不可能做到内部各处材料的均匀和各处硬度一样,导致在不同表面进行弹击所取得的结果必将不同,所以要记录弹击面.另外是回弹仪本身原理是利用回弹的高度从而得出硬度,所以水平和垂直测得的结果是不一样的。
回弹法检测混凝土抗压强度精确度分析

回弹法检测混凝土抗压强度精确度分析回弹法是一种常用的混凝土抗压强度非破坏检测方法。
该方法的主要原理是通过钢珠或压力机撞击样品使其产生弹性变形,然后测量样品弹性恢复速度或回弹高度,从而推算出样品的抗压强度。
与其他非破坏检测方法相比,回弹法具有成本低、效率高、操作简单等优点,因此广泛应用于混凝土结构质量检测和施工现场质量控制。
然而,回弹法也存在一定的精确度问题,本文将从以下三个方面分析回弹法检测混凝土抗压强度的精确度。
一、回弹系数的影响回弹系数是回弹法中的一个重要参量,它表示混凝土样品回弹高度与撞击前高度之比。
根据经验公式,可将回弹系数与混凝土抗压强度之间建立关系式,进而测量混凝土抗压强度。
然而,回弹系数的实际值受多种因素影响,如样品表面质量、样品直径、撞击方向等。
尤其是在施工现场等环境复杂的场合,更容易受到外界干扰,导致回弹系数误差较大,从而影响检测结果的精度。
二、混凝土力学性能的不确定性混凝土的力学性能与其材料成分、配合比、龄期等因素密切相关。
因此,不同混凝土样品的抗压强度常常存在差异,从而导致回弹法检测结果存在一定误差。
另外,混凝土样品中常常存在裂缝、孔洞等缺陷,对回弹法的检测结果也有一定影响。
在此情况下,需要采取合适的纠偏措施,以提高测量精度。
三、人为因素的干扰回弹法是一种人工检测方法,其检测结果可能会受到人为误操作、不确定因素等因素的干扰。
例如,操作人员在撞击时的力度、方向、位置等都可能影响回弹系数的测量,进而影响检测结果的准确性。
此外,操作人员的经验水平、认知能力等也会影响检测结果的精确度。
因此,在使用回弹法进行混凝土抗压强度检测时,需要注意操作规范,最好由有丰富实践经验的专业人员进行操作和解释。
综上所述,回弹法虽然是一种简便、有效的混凝土抗压强度检测方法,但由于其本身存在精确度问题,需谨慎使用。
尤其是在要求较高的工程质量检测中,应采用多种检测方法相结合,提高检测结果的可靠性。
回弹法检测混凝土强度实验报告

回弹法检测混凝土强度实验报告回弹法检测混凝土强度实验报告引言:混凝土是建筑工程中最常用的材料之一,其强度是决定结构安全性的重要因素。
为了确保混凝土的质量,我们需要进行强度检测。
本实验使用回弹法对混凝土强度进行了检测,并得出了相应的实验结果。
实验目的:本实验的目的是通过回弹法检测混凝土的强度,了解混凝土的质量,并对实验结果进行分析和讨论。
实验材料和仪器:1. 混凝土样品:我们选取了几块混凝土样品,保证其质量符合相关标准。
2. 回弹仪:回弹仪是一种用于测量混凝土强度的仪器,通过测量回弹的距离来推断混凝土的强度。
实验步骤:1. 准备工作:将混凝土样品从实验室中取出,并进行标记,以便后续的测量和分析。
2. 测量回弹距离:将回弹仪的测量头紧贴在混凝土表面上,然后按下仪器上的触发按钮,记录回弹的距离。
3. 重复测量:对每个混凝土样品进行多次测量,以获得更加准确的结果。
4. 数据处理:将测量得到的回弹距离数据进行整理和分析,得出混凝土的强度。
实验结果:根据实验数据的统计和分析,我们得到了混凝土样品的回弹距离和相应的强度值。
通过对这些数据的观察和比较,我们可以得出以下结论:1. 回弹距离和混凝土强度之间存在一定的相关性。
通常情况下,回弹距离越大,混凝土的强度越高。
2. 不同混凝土样品之间的强度存在差异。
这可能是由于原材料、配比和施工工艺等因素的影响。
3. 实验中的测量误差对结果的影响较大。
由于混凝土表面的不均匀性和仪器本身的误差,测量结果可能存在一定的误差。
讨论与分析:回弹法是一种简便、快速的混凝土强度检测方法,但其结果受到多种因素的影响。
在实际工程中,我们需要综合考虑回弹法的结果与其他检测方法的结果,以获得更加准确的混凝土强度评估。
此外,混凝土的强度与其它性能指标如耐久性、抗渗性等也密切相关。
因此,在进行混凝土质量检测时,我们应该综合考虑这些指标,以确保结构的安全性和耐久性。
结论:通过回弹法检测混凝土强度,我们可以初步了解混凝土的质量。
混凝土回弹检测报告

混凝土回弹检测报告混凝土的回弹检测是一种常用的非破坏性检测方法,可以评估混凝土的强度和质量。
在本次回弹检测中,我们选择了几个具代表性的场地,分别对其混凝土进行回弹检测,并将测试结果整理如下。
第一场地:A区在A区,我们随机选择了10个不同位置的混凝土进行回弹检测。
通过检测仪器回弹值和预测强度之间的关系曲线,我们计算出了每个位置的混凝土强度。
经过统计分析,平均强度为35MPa,最低强度为30MPa,最高强度为40MPa。
第二场地:B区在B区,我们也随机选择了10个不同位置的混凝土进行回弹检测,并计算了每个位置的混凝土强度。
经过统计分析,平均强度为45MPa,最低强度为40MPa,最高强度为50MPa。
与A区相比,B区的混凝土强度更高,表明其质量更好。
第三场地:C区在C区,我们同样随机选择了10个不同位置的混凝土进行回弹检测。
经过计算,平均强度为38MPa,最低强度为35MPa,最高强度为42MPa。
与A区和B区相比,C区的混凝土强度处于中等水平。
通过对以上三个场地的回弹检测结果进行分析,我们可以得到以下结论:1.A区的混凝土质量一般,处于较低的强度水平。
2.B区的混凝土质量较好,强度相对较高。
3.C区的混凝土质量一般,与A区相比没有明显的差异。
需要注意的是,回弹检测结果只能作为估计混凝土强度的参考值,并不能完全代表其真实强度。
除了混凝土的强度,还需要考虑其他因素,如配合比、抗渗性、抗冻性等。
因此,在实际工程中,我们建议结合其他检测方法和实测数据,综合评估混凝土的质量和强度。
综上所述,本次混凝土回弹检测结果显示不同场地的混凝土质量和强度存在一定的差异。
我们将根据检测结果在后续工程中进行相应的质量控制和强化措施,以确保混凝土结构的安全性和耐久性。
同时,也将进一步改进回弹检测方法,提高测试精度和准确性。
回弹法评定混凝土强度

回弹法评定混凝土强度混凝土是建筑工程中常用的材料之一,其强度是衡量其质量和耐久性的重要指标。
而回弹法是一种简单、快速、非破坏性的测试方法,被广泛用于评定混凝土的强度。
本文将介绍回弹法的原理、测试步骤、数据分析以及应注意的事项,旨在增加读者对回弹法评定混凝土强度的理解。
一、回弹法的原理回弹法是通过测量混凝土在受力后反弹的程度来评定其强度。
它基于弹性原理,即混凝土在受力后会发生弹性变形,回弹的程度与混凝土的强度有一定的关系。
回弹锤通过对混凝土表面敲击,然后测量回弹锤反弹高度的差异来评定混凝土的强度。
一般来说,回弹锤回弹高度越大,混凝土的强度越高。
二、回弹法的测试步骤回弹法的测试步骤相对简单,主要包括以下几个步骤:1. 准备工作:清理混凝土表面,确保测试点平整且干净。
2. 标定回弹锤:在标定钢板上进行回弹锤的标定,使回弹锤的回弹高度达到标定值。
3. 测量回弹高度:将回弹锤垂直对准测试点,用力敲击混凝土表面,使回弹锤在表面弹跳,然后读取回弹高度。
4. 重复测试:在同一测试点进行多次测试,并记录每次的回弹高度。
5. 数据处理:根据多次测试的回弹高度,计算平均值作为该测试点的回弹高度。
三、回弹法的数据分析回弹法得到的数据是回弹高度,根据回弹高度可以推算混凝土的强度。
需要注意的是,回弹高度与混凝土的强度并非直接成比例关系,而是经验公式得出的近似值。
通常,回弹法可以用来评定混凝土的相对强度,可以与其他测试方法(如压力试验)相结合,以获取更准确的结果。
四、回弹法的注意事项在使用回弹法评定混凝土强度时,需要注意以下几点:1. 测试点选择:应选择代表性的测试点,避免混凝土表面有明显的砂浆层或空洞。
2. 测试环境:测试应在适宜的环境条件下进行,避免受到温度、湿度等因素的影响。
3. 回弹锤使用:应按照标定要求使用回弹锤,并定期检查回弹锤的状态,确保测试结果的准确性。
4. 多次测试:为了提高测试结果的可靠性,应在同一测试点进行多次测试,并计算平均值。
回弹法检测混凝土强度报告

回弹法检测混凝土强度报告1. 背景在建筑工程中,混凝土是一种常用的材料。
混凝土的强度是决定结构安全性的重要因素之一。
然而,直接测量混凝土的强度需要取样并进行试验,这是一项费时费力的工作。
为了方便、快速地评估混凝土的强度,回弹法被广泛应用。
回弹法是一种非破坏性的检测方法,通过将回弹锤以一定速度投射到混凝土表面,并测量回弹锤的反弹高度,从而推测出混凝土的强度。
本报告旨在通过回弹法对混凝土强度进行评估,并提供相关的分析、结果和建议。
2. 分析2.1 实验设计为了进行混凝土强度的回弹法检测,我们选取了一些混凝土样本,并在不同浇筑时间、配合比和养护时间条件下进行了回弹测试。
在每个条件下,我们选择了至少10个位置进行回弹测试,以保证结果的可靠性。
在测试过程中,我们注意到每个位置至少进行三次回弹测试,并计算平均值作为该位置的回弹指数。
2.2 数据处理通过回弹测试获得的数据是回弹指数(R)和等效强度(fc)之间的关系。
根据经验公式,可以使用下面的公式将回弹指数转换为等效强度:fc = aR^b其中,a和b是由实验得到的常数。
为了确定适用于我们测试样本的a和b的值,我们分析了回弹测试数据和相应的混凝土强度试验数据。
通过拟合曲线,我们得到了最佳拟合参数。
2.3 结果分析通过回弹测试和数据处理,我们得到了每个位置的回弹指数和相应的等效强度。
通过对所有位置的数据进行统计,我们可以获得不同条件下的混凝土强度分布。
我们发现,不同浇筑时间、配合比和养护时间对混凝土强度有显著影响。
较长的浇筑时间和养护时间以及合适的配合比可以提高混凝土的强度。
3. 结果根据回弹测试和数据处理的结果,我们得到了以下结论:•根据经验公式 fc = aR^b,我们得到了最佳拟合参数a和b。
•不同条件下的混凝土强度分布呈现出差异,较长的浇筑时间和养护时间以及合适的配合比可以提高混凝土的强度。
通过将回弹测试的结果与实际混凝土强度试验的结果进行对比,我们验证了回弹法的有效性,并得出了适用于我们测试样本的经验公式。
混凝土回弹值的应用与分析

混凝土回弹值的应用与分析在建筑工程领域,混凝土作为一种广泛应用的材料,其质量的检测与评估至关重要。
混凝土回弹值作为一种常用的非破损检测方法,具有操作简便、快速、成本低等优点,在工程实践中得到了广泛的应用。
一、混凝土回弹值的基本原理混凝土回弹值检测是通过回弹仪撞击混凝土表面,测量回弹的能量,并以此来推算混凝土的抗压强度。
其原理基于混凝土的表面硬度与抗压强度之间存在一定的相关性。
当回弹仪的弹击锤撞击混凝土表面时,混凝土表面会产生一定的弹性变形和塑性变形,弹击锤回弹的距离反映了混凝土表面的硬度。
一般来说,混凝土的抗压强度越高,其表面硬度越大,回弹值也越高。
二、混凝土回弹值的检测方法1、检测前的准备工作在进行混凝土回弹值检测之前,需要对回弹仪进行校准和检查,确保其性能良好。
同时,需要选择合适的检测区域,检测区域应平整、清洁,避开蜂窝、麻面、裂缝等缺陷。
2、检测过程将回弹仪垂直对准检测区域,缓慢施压,使弹击杆伸出,然后突然释放压力,使弹击锤撞击混凝土表面,并读取回弹值。
在每个检测区域内,应均匀分布检测点,每个检测点的间距不宜小于 20mm,每个检测区域内的检测点不应少于 16 个。
3、数据记录与处理检测完成后,应及时记录回弹值,并对数据进行处理。
一般采用平均值或中位数来代表该检测区域的回弹值。
三、混凝土回弹值的影响因素1、混凝土原材料水泥品种、骨料种类和级配、外加剂等原材料的差异会影响混凝土的抗压强度和表面硬度,从而影响回弹值。
2、混凝土配合比水灰比、砂率、水泥用量等配合比参数的变化会导致混凝土的强度和性能发生改变,进而影响回弹值。
3、施工工艺混凝土的搅拌、浇筑、振捣、养护等施工工艺的质量直接关系到混凝土的强度和均匀性,从而对回弹值产生影响。
4、检测环境检测时的温度、湿度等环境条件会对混凝土的性能和回弹值产生一定的影响。
在温度较低或湿度较大的情况下,混凝土的强度发展较慢,回弹值可能会偏低。
5、混凝土龄期混凝土的强度随龄期的增长而逐渐提高,因此在不同龄期进行检测,回弹值也会有所不同。
回弹法检测混凝土强度试验情况和数据分析

回弹法检测混凝土强度试验情况和数据分析回弹法是一种用来检测混凝土强度的非破坏性试验方法,可以利用回弹锤在混凝土表面的反弹程度来评估混凝土的强度。
本文将介绍回弹法检测混凝土强度试验的情况和数据分析,重点介绍试验步骤、数据处理方法及分析结果。
一、试验步骤1.准备工作:准备好回弹仪、标尺、试验样品等工具和材料,并将回弹仪校准到合适的刻度。
2.样品准备:从混凝土结构中取样品,并进行表面清理,确保样品表面光滑平整。
3.回弹仪操作:将回弹仪垂直放置在样品表面,用手握住回弹仪,使回弹锤与样品表面紧密接触。
4.进行试验:用适当的力量将回弹锤击打在样品表面,记录回弹仪显示的反弹值。
5.重复测试:在同一样品上进行多次试验,至少进行3次,取平均值。
二、数据处理方法1.数据记录:将每次试验的反弹值记录下来。
2.数据修正:由于回弹锤的重量、摩擦等原因,不同位置的反弹值可能不一样,因此需要进行修正。
3.修正方法:选择一个标准位置的反弹值作为参考,将其他位置的反弹值与参考位置的反弹值进行比较,计算修正系数。
4.修正系数计算公式:修正系数=参考位置的反弹值/测试位置的反弹值。
5.强度计算:根据回弹值与混凝土强度之间的经验关系,计算混凝土的强度。
三、数据分析1.强度与回弹值的关系:根据试验数据可以绘制出强度与回弹值之间的关系曲线,通常为强度反映曲线。
2.强度的预测:通过使用强度反映曲线,可以预测未知混凝土样品的强度。
3.数据统计:对试验数据进行统计分析,计算均值、标准差等统计指标,评估试验结果的可靠性。
4.结果的应用:将试验结果与设计要求或规范标准进行比较,评估混凝土强度是否符合要求。
综上所述,回弹法是一种用来检测混凝土强度的非破坏性试验方法。
通过回弹仪对混凝土样品进行试验,并对试验数据进行修正和分析,可以得到混凝土强度的评估结果。
这种方法简便、经济且不破坏样品,因此在工程实践中得到了广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一、总述 (2)
二、回弹样本概况 (2)
三、数据情况 (3)
四、回弹分析 (8)
五、总结 (10)
附件:高强度混凝土增长曲线 (12)
一、总述
鉴于规范对同条件养护的混凝土强度要求在等效龄期可取日平
均气温逐日达600℃·d时对应的龄期(0℃及以下龄期不计在内),等效龄期不应小于14d,也不宜大于60d时送检,并应达到设计强度要求。
而混凝土市场不同厂家不同强度(配合比也不同)混凝土的同条件下的强度增长不一,特别是高强度混凝土(大于C50以上)同条件下后期强度增长较缓慢。
对此,在富饶中心A楼、B楼高强度混凝土施工中,对C50以上混凝土同条件下的强度增长情况进行跟踪,采用回弹方式进行数据采集、积累,根据国家《回弹法检测混凝土抗压强度技术规程》JGJ/T23—2011中附表B进行强度换算,最后对数据进行统计、分析,总结出本《高强度混凝土回弹数据分析》技术成果。
因本地区暂无高强度砼同条件下的强度变化曲线规定或成果,希望在今后的施工中能起到基本的指导作用。
同时,希望对该技术成果不足之处提出宝贵的意见和建议。
二、回弹样本概况
回弹部位为墙柱构件全数回弹,提前绘制平面图,对回弹构件进行编号,确保同一编号每次回弹数据与构件一一对应。
选择在A楼
1F~12F进行C60数据采集;13F~18F进行C55数据采集,墙柱24个构件编号为1-24。
B楼1F~5F进行C50数据采集,楼一区、二区分别选择30个构件,编号为1-30。
回弹数据为混凝土浇筑7天、14天、28天、45天、60天、90天的强度;其中,C60砼回弹继续延长至120天、150天强度,即达到或接近设计强度为止。
B楼C50为腾泰混凝土有限公司提供,混凝土配合比分别为:
A楼C55为高见泽混凝土有限公司提供,混凝土配合比分别为:
A楼C60为高见泽混凝土有限公司提供,混凝土配合比分别为:
现场养护采用浇水、淋水养护方式,养护7天时间,每天养护四次,即每天的8:00、11:00、13:00、16:00。
三、数据情况
B楼C50砼
第一次回弹自6月30日开始;最后一次回弹时间在9月14日,回弹34次,共采集1020个测区数据。
数据采集开始时间相对较晚,故该标号的混凝土数据数量相对较少,下表中红色代表采集数据日期。
富饶中心B楼混凝土强度回弹时间明细
自B楼二区五层第14天开始统计强度数据,选择二区五层各个时间段的十组采集数据一一列出,如下表:
回弹数据分析
表中红数据表示比前次数据值小,按正常增长曲线确定有规律的2组,无规律的8组,绘制曲线如下:
两组有规律数据曲线图
无规律选择第3组和第8组进行分析,绘图如下:
两组无规律数据曲线图
A楼C55砼
第一次回弹自10月5日开始;最后一次回弹时间在12月26日,回弹26次,共采集624个测区数据。
下表中红色代表采集数据日期:
选择各个时间段的十组采集数据一一列出,如下表:
回弹数据分析
表中红数据表示比前次数据值小,按正常曲线确定有规律的3组,无规律的8组,绘制曲线如下:
两组有规律数据曲线图
无规律选择第2组和第9组进行分析,绘图如下:
两组无规律数据曲线图
A楼C60砼
第一次回弹自6月14日开始;最后一次回弹时间在11月14日,回弹33次,共采集990个测区数据。
下表中红色代表采集数据日期:
选择各个时间段的十组采集数据一一列出,如下表:
以上数据来看,在60天时没有达到设计强度,平均为90.8%。
到90天时才有3个构件已经达到强度,但构件平均值为91.3%,第三个月时强度增长相对很慢。
第四个月(120天强度)增长同样较慢,平均达到93.2%。
第五个月(150天时强度)平均达到97.7%,已经接近设计强度。
另外,A楼负二层、负一层混凝土强度增长更慢,一层以上调整一次混凝土配合比后增长相对较快,现将负一、二层数据列出如下:
增长曲线图如下:
经分析,该配合比下,在第四个月(120天强度)混凝土强度已经达到92%,同调整后的强度93%几乎相当,但后期强度确未有增长,在碳化深度持续的同时,强度变得递减,查阅资料分析与水泥品种、强度,粉煤灰掺和量,水灰比等有关。
四、回弹分析
6 从混凝土回弹数据中不难看出:在该配合比及环境下,C50、C55同条件养护的混凝土需要90天时间方能达到设计值,这与规范要求推迟30天。
C60混凝土同条件养护的混凝土五个月强度接近设计强度。
由此可见,随着混凝土标号的增加,同条件养护的下达到设计强度的时间越来越长。
7 多组数据出现先测值高于后测值,从无规律曲线图中分析,与碳化深度及不同的回弹部分总结原因:a、两次回弹强度值大小相当,但碳化深度加大,换算后数据比前一次小。
b、同一构件的不同测区数据存在差异,分析原因与混凝土振捣及养护有关。
例如,同一柱子不同侧面振捣密实度不同,强度不同,碳化深度也不同。
c、数据在碳化深度测量为平均值,而非每个构件实测实量,因此产生误差在所难免。
8 从C60混凝土两种配合比来看,混凝土后期强度增长或是否强度能达到设计值与混凝土的配合比有直接的关系。
混凝土站本着商业秘密拒绝透露两次配合比内容,从而暂无法分析配合比中的水灰比的情况。
9 混凝土的碳化深度与混凝土强度成反比,强度越高碳化深度越
小;同时,也与混凝土振捣密实度有关,振捣充分碳化深度就小。
10 混凝土强度与养护条件及温度也有关。
采用浇水养护对混凝土的水化热。
数据采集期间为夏、秋季节,温度相对较高,下平均25℃以上,标准养护温度为20±2℃,所以也是混凝土强度增长的最佳时期。
11 本回弹数据分析略显粗犷,因同标号的混凝土在各个楼层施工的时间不同,导致每个时间节点所取数据存在差异,加之施工原因及环境原因,不能精确地反映出混凝土的变化规律。
根据相关文献资料查阅来看,惹要提高回弹数据精度,采用试件由4家商用混凝土公司制作,设计强度C20、C25、C30、C40、C50、C60,制作了14、28、60、90、180、360d共6个龄期,各龄期制作至少6个标准试件,试件尺寸为150mm×150mm×150mm。
混凝土满足泵送混凝土塌落度要求,每一强度等级所有试块采用同日、同盘、同环境浇筑而成,试件成型24小时脱模并采用自然养护。
结果精确至0.1MPa。
试件抗压试验破坏后,随即在试块断裂面边缘滴入2%酚酞酒精溶液,用碳化深度测定仪测量已碳化与未碳化混凝土交界面到混凝土表面的垂直距离,即碳化深度d,每个回弹面至少测试2个并取平均碳化深度值,计算精确至0.5mm。
12 本次回弹数据另一方面误差与回弹仪精度有关。
回弹仪要求定期率定,半月或一月率定一次;若频繁使用,则应在每次测试前后皆进行率定。
但现场未按此要求做,一直使用一个回弹仪,对回弹结果影响程度尚不知晓。
五、总结
13 高强度混凝土在同普通混凝土一样,在前7天强度增长最快,达70%以上。
这也是规范要求混凝土养护不得少于7天的原因。
同时还影响碳化深度,养护充分碳化深度小。
14 混凝土配合比直接影响混凝土强度,特别是后期强度增长,如:A楼C60混凝土,前后两次配合比不同,调整后的混凝土强度最终接近C60,但地下部分混凝土仅达到C55强度,因配合比无法得到真实数据,对此无法分析。
15 高强度混凝土不但达到强度的时间较长,且一般接近强度为止。
而低标号的混凝土强度往往超过强度。
例如:C60混凝土在第五个月末强度达到98%;而C35混凝土45天强度已达114%,C30混凝土45天强度达106%。
16 混凝土的振捣充分与否,直接影响混凝土的强度。
振捣越密实,强度越高。
振捣要控制好时间,过振也对混凝土强度增长不利,混凝土坍落度过大时,墙柱表面均是水泥浆,回弹数据偏小。
17 潮湿环境对回弹强度有影响,在回弹过程中发现,当下过雨后回弹时,强度偏低。
分析原因是空气中含水率过大,混凝土表面硬度降低。
18 对于混凝土强度增长曲线呈下降的回弹数据,分析原因是混凝土在该时间段增长较慢或不明显,但碳化深度增加,换算后的强度就比前一次小。
表面强度减小,而实际上墙柱内部强度不受影响,进而推断墙柱整体强度不会减小。
19 本全部数据综合平均换算得到的曲线来看,混凝土强度增长是逐渐递增的,只是随着时间的增加,强度增长较慢而已。
附件:高强度混凝土增长曲线一、C50混凝土回弹强度增长曲线。