线性代数02198自考2006年-2017真题试题与答案(新)
自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量v = (1, 2, 3),向量w = (4, 5, 6),则向量v与向量w 的点积为:A. 32B. 34C. 36D. 38答案:A3. 对于线性变换T: R^3 → R^2,如果T(x, y, z) = (x + z, y - z),那么T的秩是:A. 1B. 2C. 3D. 4答案:B4. 设A和B是两个n阶方阵,若AB = BA,则称矩阵A和B是可交换的。
若A和B是两个n阶实对称矩阵,且AB = BA,那么:A. A和B一定可交换B. A和B一定不可交换C. A和B可交换或不可交换D. 无法判断A和B是否可交换答案:A5. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. trace(A) = trace(A^T)D. A * A^T 一定是对称矩阵答案:C6. 设A是m×n矩阵,B是n×p矩阵,若AB = 0,则:A. 必有B = 0B. 必有A = 0C. 必有rank(A) + rank(B) ≤ max(m, p)D. rank(AB) ≤ rank(A)答案:D7. 对于n维向量空间V,以下哪个命题是线性代数的基本定理?A. 每个向量都可以由V的一组基唯一表示B. V中任意两个不同的向量都是线性无关的C. V中任意非零向量都是可逆的D. V中任意两个向量都线性相关答案:A8. 设λ是n阶方阵A的一个特征值,对应的特征向量为v,则:A. (A - λI)v = 0B. Av = vC. A^2v = λ^2vD. (A + I)v = λv答案:A9. 对于任意矩阵A,以下哪个选项是正确的?A. |A| = |A^2|B. det(A) = det(A^2)C. trace(A) = trace(A^2)D. A^2 一定是可逆的答案:B10. 设A是m×n矩阵,B是n×m矩阵,且AB = Im,则:A. B一定是A的逆矩阵B. A一定是B的逆矩阵C. A和B互为逆矩阵D. A和B不一定是方阵答案:C二、填空题(每题3分,共15分)11. 设矩阵A = [1, 2; 3, 4],则A的特征多项式为f(λ) = _______。
2017年10月高等教育自学考试《线性代数》试题02198

2017年10月高等教育自学考试《线性代数》试题课程代码:02198一、单项选择题1.设n 阶可逆矩阵C B A ,,满足E ABC =,则=C (D )A .AB B .BAC .A -1B -1D .B -1A -12.设A 为3阶矩阵且r(A )=1,⎪⎪⎪⎭⎫⎝⎛=100610321B ,则r(BA )=(A ) A .0 B .1 C .2 D .33.设向量组)3,2,1(1=α,)2,1,0(2=α,)1,0,0(3=α,)6,3,1(=β,则(C )A .βααα,,,321线性无关B .β不能由321,,ααα线性表示C .β可由321,,ααα线性表示,且表示法惟一D .β可由321,,ααα线性表示,且表示法不惟一4.设A 为2阶矩阵,且053=-E A T ,且A 必有一个特征值为(A )A .35B .53C .53-D .35- 5.二次型212322213212),,(x x x x x x x x f +++=的秩为(C )A .0B .1C .2D .3二、填空题6.行列式103102101100的值为 -2 。
7.设A 为3阶矩阵,1=A ,则A 2-= -8 。
8.设n 阶矩阵A 的所有元素都是1,则r(A )= 1 。
9.设A 为2阶矩阵,将A 的第1行与第2行交换得到矩阵B ,则=+B A 0 。
10.设3维向量T )2,1,3(-=α,T )4,1,3(=β,若向量γ满足βγα32=+,则=γ (3,5,8)T 。
11.设非齐次线性方程组⎪⎩⎪⎨⎧=++=--=+-321321321321x x x x x x x x x λ有惟一解,则数λ的取值范围为1-≠λ。
12.设矩阵⎪⎪⎪⎭⎫⎝⎛=32020001x A 的特征值为1,1,5,则数=x 3 。
13.已知3阶矩阵A 的特征值为1,2,3,且矩阵B 与A 相似,则=+E B 2 100 。
14.已知向量组)3,2,1(1=α,),2,2(2k =α正交,则数=k -2 。
02198自考线性代数试卷及答案

《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
全国2012年4月自考02198线性代数试题及答案

全国2012年4月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题1分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设矩阵,则A*中位于第1行第2列的元素是()A.-6 B.-3C.3 D.62.设行列式=2,则=()A.-12 B.-6C.6 D.123.设A为3阶矩阵,且|A|=3,则|(-A)-1|=()A.-3 B.C. D.34.设A为3阶矩阵,P=,则用P左乘A,相当于将A()A.第1行的2倍加到第2行 B.第1列的2倍加到第2列C.第2行的2倍加到第1行 D.第2列的2倍加到第1列5.已知4×3矩阵A的列向量组线性无关,则A T的秩等于()A.1 B.2C.3 D.46.齐次线性方程组的基础解系所含解向量的个数为()A.1 B.2C.3 D.47.设4阶矩阵A的秩为3,为非齐次线性方程组Ax=b的两个不同的解,c 为任意常数,则该方程组的通解为()A. B.C. D.8.若矩阵A与对角矩阵D=相似,则A3=()A.E B.DC.-E D.A9.设A是n阶方阵,且|5A+3E|=0,则A必有一个特征值为()A. B.C. D.10.二次型的矩阵是()A. B.C. D.二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式=________.12.设矩阵A=B=则AB=________.13.设3阶矩阵A的秩为2,矩阵P=,Q=,若矩阵B=QAP,则r(B)=________.14.已知向量组线性相关,则数k=________.15.向量组的秩为________.16.非齐次线性方程组Ax=b的增广矩阵经初等行变换化为,则方程组的通解是________.17.设是5元齐次线性方程组Ax=0的基础解系,则r(A)=________. 18.设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则A*必有一个特征值为________.19.设A为3阶矩阵,若A的三个特征值分别为1,2,3,则|A|=________.20.实二次型的规范形为________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=22.设A=,矩阵X满足关系式AX=A+X,求X.23.设均为4维列向量,为4阶方阵.若行列式|A|=4,|B|=1,求行列式|A+B|的值.24.已知向量组(其中t为参数),求向量组的秩和一个极大无关组. 25.求线性方程组的通解.(要求用它的一个特解和导出组的基础解系表示)26.设二次型,求正交变换x=Py,将二次型化为标准形.四、证明题(本大题6分)27.证明与对称矩阵合同的矩阵仍是对称矩阵.。
自考试题线性代数题库及答案

自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
以下是一套自考试题线性代数题库及答案,供学习者参考。
一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。
答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。
答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。
解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。
线性代数自考试题及答案

1.设3阶方阵A的行列式为2,则= 【 B 】A.-1 B.C. D.12.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,假设|A|≠|B|,则必有【 C 】 A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A+B|≠03.设,则方程的根的个数为【 B 】A.0 B. 1C.2 D.34. 设A为n阶方阵,则以下结论中不正确的选项是:【 C 】A.是对称矩阵 B. 是对称矩阵C.是对称矩阵 D.是对称矩阵5.设,其中,则矩阵A的秩为【 B 】A.0 B. 1C.2 D.36. 设阶方阵A的秩为4,则A的伴随矩阵的秩为【 A 】A.0 B. 2C.3 D.47.设向量a=(1,-2,3)与=(2,k,6)正交,则数k为【 D 】A.-10 B. -4C.4 D.108.设3的阶方阵A的特征多项式为,则|A|= 【 A 】A.-18 B. -6C.6 D.189.已知线性方程组无解,则数a= 【 D 】A. B.0C. D.110.设二次型正定,则数a的取值应满足【 C 】A.a>9 B.3 a9C.-3<a< 3 D.a-3二、填空题(本大题共10小题,每题2分,共20分)请在每题的空格中填上正确答案。
错填、不填均无分。
11.设行列式,其第三行各元素的代数余子式之和为 0 。
12.设则AB= 。
13.设线性无关的向量组可由向量组线性表示,则r与s的关系为14.设A是4x3的矩阵且r〔A〕=2,,则r〔AB〕= 215.已知向量组 =(1,2,-1), =(2,0,t), =(0,-4,5)的秩为2,则数t=316.设4元线性方程组Ax=b的三个解,已知,,r(A)=3.则方程组的通解是.17.设方程组有非零解,且 <0,则= -2 .18.设矩阵有一个特征值=2,对应的特征向量为,则数a= 219.设3阶方阵4的秩为2,且,则A的全部特征值为 0,-5,-5 .20.设实二次型,己知A的特征值为-1,1,2,则该二次型的标准形为。
线性代数02198自考2009年~2012年真题试题及答案(新)

2009年7月高等教育自学考试全国统一命题考试线性代数试题课程代码:02198试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A .(A +B )T =A T +B T B .|AB |=|A ||B | C .A (B +C )=BA +CA D .(AB )T =B T A T 2.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A .-24 B .-12 C .-6D .123.若矩阵A 可逆,则下列等式成立的是( )A .A =||1A A *B .|A |=0C .(A 2)-1=(A -1)2D .(3A )-1=3A -14.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎦⎤⎢⎢⎣⎡-123214,C =⎥⎦⎤⎢⎣⎡--213120,则下列矩阵运算的结果为3×2的矩阵的是( ) A .ABC B .AC T B T C .CBAD .C T B T A T5.设有向量组A :4321,,,αααα,其中α1,α2,α3线性无关,则()A .α1,α3线性无关B .α1,α2,α3,α4线性无关C .α1,α2,α3,α4线性相关D .α2,α3,α4线性无关6.若四阶方阵的秩为3,则( ) A .A 为可逆阵B .齐次方程组Ax =0有非零解C .齐次方程组Ax =0只有零解D .非齐次方程组Ax =b 必有解7.已知方阵A 与对角阵B =⎥⎥⎦⎤⎢⎢⎣⎡---200020002相似,则A 2=( )A .-64EB .-EC .4ED .64E8.下列矩阵是正交矩阵的是( ) A .⎥⎥⎦⎤⎢⎢⎣⎡--100010001B .⎪⎪⎭⎫ ⎝⎛11001110121 C .⎪⎭⎫ ⎝⎛--θθθθcos sin sin cos D .⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--336102233660336122 9.二次型f =x T Ax (A 为实对称阵)正定的充要条件是( ) A .A 可逆B .|A |>0C .A 的特征值之和大于0D .A 的特征值全部大于010.设矩阵A =⎥⎥⎦⎤⎢⎢⎣⎡--4202000k k 正定,则( )A .k >0B .k ≥0C .k >1D .k ≥1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考线性代数2022年4月真题试题及(02198)_1

自考线性代数2022年4月真题试题及(02198)自考线性代数2022年4月真题解析(02198)1.[单选题] 多项式的常数项是()A.-14B.-7C.7D.142.[单选题] 将3阶矩阵A的第3行乘以-1/2得到单位矩阵E,则|A|=()A.-2B.-1/2C.1/2D.23.[单选题] 设A为3阶矩阵,且|A|=a≠0,将A按列分块为A=(α1, α2, α3)。
若矩阵B =(α1+α2, 2α2, α3),则|B|=()A.0B.aC.2aD.3a4.[单选题] 设向量组α1, α2,…, αs(s≥2)线性相关,则α1, α2,…, αs中()A.必有一个零向量B.必有两个向量对应元素成比例C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出5.[单选题] 设3阶矩阵A的特征值为-3/2,-2/3,2/3,则下列矩阵中可逆的是()A.2E-3AB.3E-2AC.3E+2AD.2E+3A6.[案例题] 行列式________。
7.[案例题] 若行列式_________。
8.[案例题] 设矩阵,则ABT =_______。
9.[案例题] 设矩阵,则(A-E)-1 =_______。
10.[案例题] 设矩阵,则A*=________。
11.[案例题] 设向量组α1=(3,1,2)T,α2=(2,1 ,0)T,α3=(1,0, a)T线性无关,则数a的取值应满足________。
12.[案例题] 设3阶矩阵A的所有元素均为1,则3元齐次线性方程组Ax=0的基础解系中解向量的个数为_________。
13.[案例题] 设A为3阶矩阵,αi为3维非零向量,且满足Aαi=iαi,则r(A)=_________。
14.[案例题] 设λ0=-2是n阶矩阵A的一个特征值,则A2+E的一个特征值是_________。
15.[案例题] 若实对称矩阵A与矩阵合同,则二次型xTAx的规范形为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年10月高等教育自学考试课程代码:21981.设A 是4阶矩阵,则|-A|=( )A .-4|A|B .-|A|C .|A|D .4|A|2.设A 为n 阶可逆矩阵,下列运算中正确的是( )A .(2A )T =2A TB .(3A )-1=3A -1C .[(A T )T ]-1=[(A -1)-1]TD .(A T )-1=A3.设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( )A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫⎝⎛3172C .⎪⎭⎫ ⎝⎛--3172D .⎪⎭⎫⎝⎛21734.设向量组α1,α2,α3线性无关,则下列向量组线性无关的是( )A .α1,α2,α1+α2B .α1,α2,α1-α2C .α1-α2,α2-α3,α3-α1D .α1+α2,α2+α3,α3+α15.向量组α1=(1,0,0),α2=(0,0,1),下列向量中可以由α1,α2线性表出的是() A .(2,0,0) B .(-3,2,4)C .(1,1,0)D .(0,-1,0)6.设A ,B 均为3阶矩阵,若A 可逆,秩(B )=2,那么秩(AB )=( )A .0B .1C .2D .37.设A 为n 阶矩阵,若A 与n 阶单位矩阵等价,那么方程组Ax=b ( )A .无解B .有唯一解C .有无穷多解D .解的情况不能确定8.在R 3中,与向量α1=(1,1,1),α2=(1,2,1)都正交的单位向量是( )A .(-1,0,1)B .21(-1,0,1)C .(1,0,-1)D .21(1,0,1)9.下列矩阵中,为正定矩阵的是( )A .⎪⎪⎭⎫ ⎝⎛003021311B .⎪⎪⎭⎫ ⎝⎛111121111C .⎪⎪⎭⎫ ⎝⎛--100021011D .⎪⎪⎭⎫⎝⎛-10002101110.二次型f(x 1,x 2,x 3)=323121232221x x 8x x 2x x 4x 3x 4x ++-++的秩等于( )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式0004003002001000=__________. 12.设矩阵A=⎪⎭⎫ ⎝⎛b a ,则AA T =__________. 13.设矩阵A=⎪⎭⎫ ⎝⎛4321,则行列式|A 2|=__________. 14.设向量组α1=(1,-3,α),α2=(1,0,0),α3=(1,3,-2)线性相关,则a=__________.15.若3元齐次线性方程组Ax=0的基础解系含2个解向量,则矩阵A 的秩等于__________.16.矩阵⎪⎪⎭⎫ ⎝⎛-----100110111的秩等于__________. 17.设α1,α2是非齐次线性方程组Ax=b 的解,又已知k 1α1+k 2α2也是Ax=b 的解,则k 1+k 2=__________.18.已知P -1AP=⎪⎪⎭⎫ ⎝⎛-121,其中P=⎪⎪⎭⎫ ⎝⎛-210101111,则矩阵A 的属于特征值λ=-1的特征向量是__________.19.设A 为n 阶方阵,已知矩阵E-A 不可逆,那么矩阵A 必有一个特征值为__________.20.实对称矩阵A=⎪⎪⎭⎫ ⎝⎛530302021所对应的二次型x T Ax=__________. 三、计算题(本大题共6小题,每小题8分,共48分)21.计算行列式D=4003043002102001的值. 22.设矩阵A=⎪⎪⎭⎫ ⎝⎛730210005,B=⎪⎪⎭⎫ ⎝⎛12201010,求矩阵方程XA=B 的解X. 23.设t 1,t 2,t 3为互不相等的常数,讨论向量组α1=(1,t 1,21t ), α2=(1,t 2,22t ), α3=(1,t 3,23t )的线性相关性.24.求线性方程组⎪⎩⎪⎨⎧-=+---=+++=+-+4x x 2x 2x 5x x x 4x 21x 2x x 2x 432143214321的通解(要求用它的一个特解和导出组的基础解系表示).25.设矩阵A=⎪⎭⎫ ⎝⎛--4141. (1)求矩阵A 的特征值和特征向量;(2)问A 能否对角化?若能,求可逆矩阵P 及对角矩阵D ,使P -1AP=D.26.设,x x 4x x 2x ax 2x 4x 4x f 323121232221+-+++= (1)确定α的取值范围,使f 为正定二次型;(2)当a=0时,求f 的正惯性指数p 和负惯性指数q.四、证明题(本大题共2小题,每小题6分,共12分)27.设A ,B 为同阶对称矩阵,证明AB+BA 也为对称矩阵.28.若向量组α1,α2,α3可用向量组β1,β2线性表出,证明向量组α1,α2,α3线性相关.全国2008年10月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知矩阵A =⎪⎪⎭⎫ ⎝⎛-1011,B =⎪⎪⎭⎫ ⎝⎛1101,则AB -BA=( )A.⎪⎪⎭⎫ ⎝⎛--1201 B.⎪⎪⎭⎫ ⎝⎛-1011 C.⎪⎪⎭⎫ ⎝⎛1001 D.⎪⎪⎭⎫ ⎝⎛0000 2.设A 为3阶方阵,且3131=-A ,则|A |=( ) A.-9 B.-3C.-1D.93.设A 、B 为n 阶方阵,满足A 2=B 2,则必有( )A.A =BB.A =-BC.|A|=|B|D.|A|2=|B|24.设A 、B 均为n 阶可逆矩阵,且AB =BA ,则下列结论中,不正确...的是( ) A.AB -1=B -1A B.B -1A =A -1BC.A -1B -1=B -1A -1D.A -1B =BA -15.设向量α1=(a 1, b 1, c 1),α2=(a 2, b 2, c 2),β1=(a 1, b 1, c 1, d 1),β2=(a 2, b 2, c 2, d 2),下列命题中正确的是( )A.若α1,α2线性相关,则必有β1,β2线性相关B.若α1,α2线性无关,则必有β1,β2线性无关C.若β1,β2线性相关,则必有α1,α2线性无关D.若β1,β2线性无关,则必有α1,α2线性相关6.设m ×n 矩阵A 的秩r (A )=n -3(n >3),α,β,γ是齐次线性方程组Ax =0的三个线性无关的解向量,则方程组Ax =0的基础解系为( )A.α,β,α+βB.β,γ,γ-βC.α-β,β-γγ-αD.α,α+β,α+β+γ7.已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-132,121是齐次线性方程组Ax =0的两个解,则矩阵A 可为( )A.(5,-3,-1)B.⎪⎪⎭⎫ ⎝⎛-112135 C.⎪⎪⎭⎫ ⎝⎛--712321 D.⎪⎪⎪⎭⎫ ⎝⎛----135221121 8.设A 为n (n ≥2)阶矩阵,且A 2=E ,则必有( )A.A 的行列式等于1B.A 的逆矩阵等于EC.A 的秩等于nD.A 的特征值均为19.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛001010100,则A 的特征值为( )A.1,1,0B.-1,1,1C.1,1,1D.1,-1,-110.已知矩阵A 与对角矩阵D =⎪⎪⎪⎭⎫ ⎝⎛--100010001相似,则A 2=( ) A.A B.DC.ED.-E二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格上填上正确答案。
错填、不填均无分。
11.设矩阵A =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--753240,311102B ,则A T B =__________.12.已知行列式11103212-a =0,则数a =__________.13.已知向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4212,0510,2001321t ααα的秩为2,则数t =__________. 14.设向量α=(2,-1,21,1),则α的长度为__________. 15.设向量组α1=(1,2,3),α2=(4,5,6),α3=(3,3,3)与向量组β1,β2,β3等价,则向量组β1,β2,β3的秩为__________.16.设方程组⎩⎨⎧=+=+02022121kx x x x 有非零解,则数k =__________. 17.已知向量α=(1,-2,3,4)与β=(3,a ,5,-7)正交,则数a =__________.18.设3阶实对称矩阵A 的特征值为λ1=λ2=3,λ3=0,则r (A )=__________.19.已知3阶矩阵A 的3个特征值为1,2,3,则|A *|=__________.20.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--314122421对应的二次型f =__________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=5021011321014321---的值. 22.已知A =⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-1013,1102,2141C B ,矩阵X 满足AXB =C ,求解X . 23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--402000201,求可逆矩阵P 和对角矩阵Λ,使得P -1AP =Λ.24.设向量组α1,α2,α3线性无关,令β1=-α1+α3,β2=2α2-2α3,β3=2α1-5α2+3α3.试确定向量组β1,β2,β3的线性相关性.25.已知线性方程组⎪⎩⎪⎨⎧-λ=++λ-=+λ+-=λ++322321321321x x x x x x x x x ,(1)讨论λ为何值时,方程组无解、有惟一解、有无穷多个解.(2)在方程组有无穷多个解时,求出方程组的通解(要求用其一个特解和导出组的基础解系表示).26.设二次型f (x 1, x 2, x 3)=323121232221222x x x x x x ax ax ax +++++,确定常数a 的最大取值范围使该二次型正定.四、证明题(本大题6分)27.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,证明存在数k ,使A 2=k A .2009年7月高等教育自学考试全国统一命题考试线性代数试题课程代码:02198试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。