初中数学数据分析经典测试题及解析
(专题精选)初中数学数据分析真题汇编及答案

方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.
13.郑州某中学在备考 2018 河南中考体育的过程中抽取该校九年级 20 名男生进行立定跳 远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50
9.一组数据 5,4,2,5,6 的中位数是( )
A.5
B.4
C.2
D.6
【答案】A
【解析】
试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是
5,故选 A.
考点:中位数;统计与概率.
10.某地区汉字听写大赛中,10 名学生得分情况如下表:
分数 50
85
90
95
人数 3
ห้องสมุดไป่ตู้
A.7,6 【答案】B 【解析】
B.7,4
C.5,4
D.以上都不对
【分析】
根据数据 a,b,c 的平均数为 5 可知 a+b+c=5×3,据此可得出 1 (-2+b-2+c-2)的值;再由 3
方差为 4 可得出数据 a-2,b-2,c-2 的方差. 【详解】
解:∵数据 a,b,c 的平均数为 5,∴a+b+c=5×3=15,
若众数为 5,则数据为 1、5、5、7,中位数为 5,符合题意,
此时平均数为 1 5 5 7 = 4.5; 4
若众数为 7,则数据为 1、5、7、7,中位数为 6,不符合题意;
故选 C.
7.甲、乙两位运动员在相同条件下各射击10 次,成绩如下: 甲: 9,10,8,5, 7,8,10,8,8, 7 ;
(必考题)初中数学八年级数学上册第六单元《数据的分析》测试题(含答案解析)(4)

一、选择题1.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12341A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.52.某篮球队5名场上队员的身高(单位:cm)分别是183、187、190、200、195,现用一名身高为210cm的队员换下场上身高为195cm的队员,与换人前相比,场上队员身高的()A.平均数变大,方差变小B.平均数变小,方差变大C.平均数变大,方差变大D.平均数变小,方差变小3.学校篮球队5名场上队员的身高分别为:170,173,175,177,180(单位:cm).增加一名身高为175cm的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定4.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.56.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分7.某学校生物兴趣小组11人到校外采集标本,其中3人每人采集4件,4人每人采集3件,4人每人采集5件,则这个兴趣小组平均每人采集标本()A.3件B.4件C.5件D.6件8.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁V cm166165166165平均数()方差22()s cm 3.5 3.515.516.5根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁9.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10,下列关于这组数据描述正确的是()A.中位数是10 B.众数是10 C.平均数是9.5 D.方差是610.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下图所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9, 9 C.9.5, 9 D.9.5,811.已知数据1x、2x、3x、、100x是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a,中位数为b,方差为c,如果再加上中国首富马化腾的年收入101x,则在这101个数据中,a一定增大,那么对b与c的判断正确的是()A.b一定增大,c可能增大B.b可能不变,c一定增大C.b一定不变,c一定增大D.b可能增大,c可能不变12.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵二、填空题13.若3,2,x,5的平均数是4,则x= _______.14.数据-3、-1、0、4、5的方差是_________.15.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234 16.已知一组数据的方差S2=15[(6﹣10)2+(9﹣10)2+(a﹣10)2+(11﹣10)2+(b﹣10)2]=6.8,则a2+b2的值为_____.17.在对一组样本数据进行分析时,小华列出了方差的计算公式:()()()()222222334x x x xSn-+-+-+-=,由公式提供的信息,①样本的容量是4,②样本的中位数是3,③样本的众数是3,④样本的平均数是3.5,则说法错误的是_______(填序号)18.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲队789710109101010乙队10879810109109已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.19.我县教师招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,周倩笔试成绩为86分,面试成绩为85分,那么周倩的总成绩为____________分.20.一组数据2,4,8,5,4的中位数是a,则a的值是____.三、解答题21.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.22.某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了______名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是______棵、中位数是______棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?23.为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:,=,d=;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数和中位数如表:10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:(2)若煤气每方3元,估计小强家一年的煤气费为多少元.25.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据 请你按如下表格分组整理、描述样本数据,并把下列表格补充完整. 成绩(个) 060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤<等级 ABC D E 人数平均数 中位数 满分率91.9 25%(1)用样本中的统计量估计全校教师的测试成绩等级为 ;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D ,E 的总人数. 26.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容 歌唱技巧 仪表形象甲 95 90 85 乙 879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5,数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5.故选:C.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.C解析:C【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为15×(183+187+190+200+195)=191(cm),方差为15×[(183-191)2+(187-191)2+(190-191)2+(200-191)2+(195-191)2]=35.6(cm2),新数据的平均数为15×(183+187+190+200+210)=194(cm),方差为15×[(183-194)2+(187-194)2+(190-194)2+(200-194)2+(210-194)2]=95.6(cm2),∴平均数变大,方差变大,故选:C.【点睛】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.3.C解析:C【分析】根据平均数和方差公式分别求出原篮球队5名队员的平均身高和方差以及增加一名身高后的平均身高和方差,然后进行比较即可得出答案.【详解】原5名场上队员的平均身高是15(170+173+175+177+180)=175(cm ), 则方差是(222221[(170175)(173175)(175175)(177175)180175)11.65⎤-+-+-+-+-=⎦, 增加一名身高为175cm 的成员后的平均身高是16(170+173+175+177+180+175)=175(cm ), 则方差是(222222129[(170175)(173175)(175175)(177175)180175)(175175)63⎤-+-+-+-+-+-=⎦,∵2911.63>, ∴现篮球队成员的身高与原来相比,方差变小; 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,12x x ,,…n x 的平均数为x ,则方差为(222212n 1[()())S x x x x x x n⎤=-+-++-⎦ ],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.A解析:A 【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.C解析:C 【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得. 【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30, 所以该组数据的众数为30、中位数为20252+=22.5, 故选C . 【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.A解析:A 【分析】按照笔试与面试所占比例求出总成绩即可. 【详解】根据题意,按照笔试与面试所占比例求出总成绩:648090841010⨯+⨯=(分) 故选A 【点睛】 本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.7.B解析:B 【分析】根据加权平均数的计算公式,先列出算式,再进行计算即可. 【详解】解:∵3人每人采集4件,4人每人采集3件,4人每人采集5件, ∴则这个兴趣小组平均每人采集标本是(4×3+3×4+5×4)÷11=4(件). 故选:B . 【点睛】本题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是找出权重,根据公式列出算式.8.A解析:A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x 甲乙丁丙>,∴从甲和丙中选择一人参加比赛, ∵22S S 甲丙<,∴选择甲参赛,故选:A.【点睛】本题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.B解析:B【分析】根据中位数,众数,平均数和方差的概念逐一判断即可.【详解】中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.这组数据中按顺序排列之后中间位置的数是9,10,所以中位数是9101922+=,故A选项错误;众数:一组数据中出现次数最多的数据为这组数据的众数.这组数据中,10出现2次,次数最多,所以众数是10,故B选项正确;平均数为10691181096x+++++==,故C选项错误;方差为()()()()()()2222222109699911989109863s-+-+-+-+-+-==,故D选项错误;故选:B.【点睛】本题主要考查中位数,众数,平均数和方差,掌握中位数,众数,平均数和方差的求法是解题的关键.10.A解析:A【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【详解】解:由表格可得,读书时间为8小时最多,故一周读书时间的众数为8,该班学生一周读书时间的第20个数9和第21个数是9,故该班学生一周读书时间的中位数为9+9=92,故选:A.【点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.11.B解析:B【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x201后,数据的变化特征,易得到答案.【详解】解:∵数据x1,x2,x3,…,x200是龙岩市某企业普通职工的2019年的年收入,而x201为中国首富马云的年收入,则x201会远大于x1,x2,x3, (x200)故这201个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x201比较大的影响,而更加离散,则方差变大故选:B.【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x201为中国首富马云的年收入,则x201会远大于x1,x2,x3,…,x200也是解答本题的关键.12.D解析:D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5109129812⨯----=(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.二、填空题13.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【详解】∵3,2,x,5的平均数是4,x=⨯---=,∴443256故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.14.2【分析】根据公式求出这组数据的平均数与方差【详解】这组数据的平均数是:方差是故答案为:92【点睛】本题考查了求数据的平均数与方差的问题解题时利用平均数与方差的公式进行计算即可解析:2.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:(3)(1)04515x -+-+++== 方差是2222221[(31)(11)(01)(41)(51)]9.25s =--+--+-+-+-=.故答案为:9.2.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可. 15.9【分析】将数据由小排到大再找到中间的数值即可求得中位数奇数个数中位数是中间一个数偶数个数中位数是中间两个数的平均数【详解】解:将10个数据由小到大排序:78899910101010处于这组数据中间解析:9【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。
(典型题)初中数学八年级数学上册第六单元《数据的分析》检测卷(答案解析)(1)

一、选择题1.若样本1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为10,方差为4,则对于样本13x -,23x -,33x -,⋅⋅⋅,3n x -,下列结论正确的是( )A .平均数为10,方差为2B .众数不变,方差为4C .平均数为7,方差为2D .中位数变小,方差不变2.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表: 尺码(cm ) 23.5 24 24.5 25 25.5 销售量(双)12341A .25,25B .24.5,25C .25,24.5D .24.5,24.53.利用计算器求一组数据的平均数.其按键顺序如下:,则输出的结果为( )A .1B .3.5C .4D .94.“按情就是命令,防控就是责任!”在去年新冠肺炎疫情爆发期间,我区教师发扬不畏艰险、无私奉献的精神,挺身而出,协助社区做好疫情监测、排查、防控等工作.现将50名教师参加社区工作时间t (单位:天)的情况统计如下: 时间t (天) 15 25 35 45 50t ≥教师人数4671320①平均数一定在40~50之间; ②平均数可能在40~50之间; ③中位数一定是45; ④众数一定是50. 其中正确的推断是( ) A .①④ B .②③C .③④D .②③④5.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:①2019年10月至2020年3月通话时长统计表 时间10月11月 12月 1月 2月 3月 时长(单位:分钟) 520530550610650660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( ) A .550B .580C .610D .6306.已知一组数据x 1,x 2,x 3,把每个数据都减去2,得到一组新数据x 1-2,x 2-2,x 3-2,对比这两组数据的统计量不变的是( ) A .平均数B .方差C .中位数D .众数7.在一次数学竞赛后,学校随机抽取了八年级某班5名学生的成绩如下:92,79,99,86,99.关于这组数据说法错误的是( ) A .中位数是92 B .方差是20 C .平均数是91 D .众数是998.某地某月中午12时的气温(单位:℃)如下:气温x 1216x ≤< 1620x ≤< 2024x ≤< 2428x ≤< 2832x ≤<合计 天数10738230根据上表计算得该地本月中午12时的平均气温是( ) A .18℃B .20℃C .22℃D .24℃9.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是( ) A .80分 B .99分 C .100分 D .110分 10.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( )A .2B .5C .6D .711.2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .中位数是6C .平均数是6D .方差是0.512.在实验一中举行新冠肺炎疫情防控知识竞赛中,八年级(1)班全体学生成绩统计如下表: 成绩/分 45 49 52 54 55 58 60 人数2566876根据上表中信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次竞赛成绩的众数是55分C .该班学生这次竞赛成绩的中位数是55分D .该班学生这次竞赛成绩的平均数是55分二、填空题13.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.14.某校七年级统计30名学生的身高情况(单位cm ),其中身高最大值为172,最小值为149,且组距为3,则组数为________组.15.设甲组数据:6,6,6,6,的方差为2,S 甲乙组数据:1,1,2的方差为2S 乙,则2S 甲与2S 乙的大小关系是________.16.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.17.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S 2甲=1.25和S 2乙=3,则成绩比较稳定的是__________(填甲或乙). 18.一组数据2,3-,0,3,6,4的方差是_________. 19.若一组数据12,,,n x x x 的平均数为5,方差为9,则数据123x +,223x +,…,23n x +的平均数为___________,方差为___________.20.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制): 甲队 7 8 9 7 10 10 9 10 10 10 乙队10879810109109已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.三、解答题21.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A ,B 两个代表队的竞赛成绩分布图及统计表展示如下:组别 平均分 中位数 方差 合格率 优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?22.为了宣传垃圾分类从我做起活动,我校举行了垃圾分类相关知识竞赛.为了了解初一、初二两个年级学生的掌握情况.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,将成绩分为以下4组,A组:90≤x≤100,B组:80≤x≤89,C组:70≤x≤79,D组:60≤x≤69.现将数据整数分析如下:收集数据:初一年级:79,85,72,80,75,76,87, 70,75,93,75,79,81,71,75,80,86,61,83,77.初二年级20名学生中80≤x≤89的分数分别是:84,87,82,81,83,83,80,8l,81,82,80.整理数据:分析数据:平均数众数中位数初一年级78c78初二年级7881d(1)由上表填空:a=_____,b=_____,c=_____,d=_____.(2)根据以上数据,你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由(一条理由即可).(3)该校初一有1500名学生和初二有2000名学生参加了此活动,请估计两个年级成绩达到90分及以上的学生共有多少人?23.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:日期6月17月18月19月110月111月112月1日日日日日日日使用量9.5110.129.479.6310.1210.1211.03(方)(2)若煤气每方3元,估计小强家一年的煤气费为多少元.24.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9.(1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.25.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫:现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如上面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年7月开始,以后每月家庭人均月纯收入都将比上一个月增加20元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在2020年实现全面脱贫.26.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP ”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据 请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.(1)用样本中的统计量估计全校教师的测试成绩等级为 ;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D ,E 的总人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用平均数、中位数、众数和方差的意义进行判断. 【详解】解:∵样本x 1,x 2,x 3,…,x n 的平均数为10,方差为4, ∴样本x 1﹣3,x 2﹣3,x 3﹣3,…,x n ﹣3 的平均数为12312333333nn x x x x x n x n n x x n+++⋯+⋯+++=-﹣﹣+﹣﹣ =7,原众数和中位数减小了3,方差为各数据偏离平均数的平方,各数都减小了3,平均数也减小了3,但偏离平均数的程度不变,故方差不变.故选:D . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.2.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5, 数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5. 故选:C . 【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.C解析:C 【分析】根据题意,求的是1、4、3、8的平均数是多少,用1、4、3、8的和除以4即可. 【详解】解:143844+++= ∴输出结果为4. 故选:C . 【点睛】此题主要考查了计算器的使用方法,以及平均数的含义和求法,解题关键是理解按键的意义,是求哪些数的平均数.4.B解析:B 【分析】先按平均数公式列出代数式,50t ≥取最小值40.8x =,当73t >天时平均数大于50天,按中位数定义将数据排序,第25与26的平均数在45天,众数定义是t 即可判断. 【详解】1542563574513201040205050l lx ⨯+⨯+⨯+⨯++==,4220+5l x +=, 50t ≥, 4220+20+20.8=40.85tx +=≥, 4220+505tx +=>, 73t >,当73t >天时平均数大于50天,中位数:按表知数据已经排序,第25与26的平均数在45天, 众数:t(50t ≥),②平均数可能在40~50之间正确,③中位数一定是45正确.①平均数一定在40~50之间不正确,④众数一定是50不正确. 其中正确的推断是②,③ 故选择:B . 【点睛】本题考查平均数,中位数,众数,掌握平均数,中位数,众数的定义,会根据具体内容确定平均数,中位数,以及众数是解题关键.5.B解析:B 【分析】设2020年4月的通话时长为x 分钟,则2020年5月的通话时长为(1100-x )分钟,根据x 的取值范围分类讨论,然后根据中位数的定义、一次函数的增减性求最值即可. 【详解】解:设2020年4月的通话时长为x 分钟,则2020年5月的通话时长为(1100-x )分钟 当x <490时,则1100-x >610张老师这八个月的通话时长的中位数为(550+610)÷2=580; 当490≤x≤550时,则550≤1100-x≤610张老师这八个月的通话时长的中位数为(550+1100-x )÷2=18252x -+ ∵102-< ∴中位数随x 的增大而减小∴当x=490时,中位数最大,最大为14908255802-⨯+=; 当550<x≤610时,则490≤1100-x <550张老师这八个月的通话时长的中位数为(550+x )÷2=12752x + ∵102> ∴中位数随x 的增大而增大 ∴当x=610时,中位数最大,最大为16102755802⨯+=; 当x >610时,则1100-x <490张老师这八个月的通话时长的中位数为(550+610)÷2=580; 综上:张老师这八个月的通话时长的中位数的最大值为580 故选B . 【点睛】此题考查的是求一组数据的中位数和利用一次函数求最值,掌握中位数的定义、利用一次函数的增减性求最值和分类讨论的数学思想是解决此题的关键.6.B解析:B 【分析】根据平均数与方差的计算公式、中位数与众数的定义即可得. 【详解】由中位数与众数的定义得:中位数和众数均会变化 原来一组数据的平均数为1233x x x x ++= 新的一组数据的平均数为1231232222233x x x x x x x -+-+-++=-=-则这两组数据的平均数发生变化原来一组数据的方差为22221231()()()3S x x x x x x ⎡⎤=-+-+-⎣⎦新的一组数据的方差为2221231(22)(22)(22)3x x x x x x ⎡⎤--++--++--+⎣⎦2221231()()()3x x x x x x ⎡⎤=-+-+-⎣⎦ 2=S则这两组数据的方差不变 故选:B . 【点睛】本题考查了平均数与方差的计算公式、中位数与众数的定义,熟记掌握数据整理中的相关概念和公式是解题关键.7.B解析:B【分析】根据各数据特征指标的意义求出其值,即可对各选项的正误作出判断. 【详解】解:把5名学生的成绩从小到大排序可得:79、86、92、99、99,所以中位数是92,A 正确;众数是99,D 正确;由7986929999915++++=知平均数是91,C 正确;由()()()()222279918691929129991559.6⎡⎤-+-+-+⨯-÷=⎣⎦得方差是59.6,B 错误 . 故选B . 【点睛】本题考查数据特征指标,根据各数据特征指标的意义求出其值是解题关键.8.B解析:B 【分析】气温x 取各组组中值,利用加权平均数的定义列式计算可得. 【详解】解:该地本月中午12时的平均气温是141018722326830230⨯+⨯+⨯+⨯+⨯=20(℃), 故选:B . 【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.9.B解析:B 【分析】设一班总人数为m ,二班总人数为n ,总成绩为y ,根据已知条件列式即可; 【详解】设一班总人数为m ,二班总人数为n ,总成绩为y , 则110y m =,90y n =, ∴11090m n =,得到911m n =, ∴两个班的平均分9110901109018011999201111n n m nn m nn n n ⨯++====++. 故答案是B . 【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.10.D解析:D【分析】根据众数的定义可得x的值.【详解】解:∵数据2,3,x,5,7的众数为7,∴x=7,故选:D.【点睛】本题考查众数的意义,掌握众数是数据中出现最多的一个数是解题的关键.11.D解析:D【分析】众数是一组数据中出现次数最多的数,据中位数的确定方法,将一组数据按大小顺序排列,位于最中间的两个的平均数或最中间一个数据是中位数,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,中位数和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【详解】A、这组数据6出现了6次,出现的次数最多,所以这组数据的众数为6吨;这组数据的中位数是:6;这组数据的平均数是110(5×2+6×6+7×2)=6(吨);这组数据的方差是:110[2×(5−6)2+6×(6−6)2+2×(7−6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选:D.【点睛】本题考查的是方差的计算,平均数和众数以及中位数的概念,掌握方差的计算公式S2=1 n[(x1−x)2+(x2−x)2+…+(x n−x)2]是解题的关键.12.D解析:D【分析】根据众数、中位数、平均数的定义解答.【详解】该班共有2+5+6+6+8+7+6=40(人),故A选项正确;成绩55分的有8人,人数最多,众数为55,故B选项正确;该班学生这次考试成绩的中位数是第20名和第21名的成绩都是55分,所以其平均数为55分,故C选项正确;该班学生这次考试成绩的平均数是:140x=(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425(分),故D选项错误;故选:D.【点睛】本题考查了众数、中位数、平均数的定义,熟悉定义并能分析表格是解题的关键.二、填空题13.5【分析】将数据重新排列再根据中位数的定义求解可得【详解】解:将这组数据重新排列为1122234456所以这组数据的中位数为=25故答案为:25【点睛】本题主要考查中位数将一组数据按照从小到大(或从解析:5【分析】将数据重新排列,再根据中位数的定义求解可得.【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、5、6,所以这组数据的中位数为232+=2.5,故答案为:2.5.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.8【分析】根据题意可以求得极差然后根据组距即可求得组数【详解】解:极差为:172-149=2323÷3=7则组数为8组故答案为:8【点睛】本题考查频数分布表解答本题的关键是明确分组的方法解析:8【分析】根据题意可以求得极差,然后根据组距即可求得组数.【详解】解:极差为:172-149=23,23÷3=723,则组数为8组,故答案为:8.【点睛】本题考查频数分布表,解答本题的关键是明确分组的方法.15.【分析】根据方差的意义进行判断即可【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为:s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大 解析:22S S 乙甲【分析】根据方差的意义进行判断即可. 【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动, 所以s 甲2<s 乙2. 故答案为:s 甲2<s 乙2. 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16.11【分析】根据中位数和众数的定义分析可得答案【详解】解:因为五个整数从小到大排列后其中位数是2这组数据的唯一众数是4所以这5个数据分别是xy244且x <y <2当这5个数的和最大时整数xy 取最大值此解析:11 【分析】根据中位数和众数的定义分析可得答案. 【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2, 当这5个数的和最大时,整数x ,y 取最大值,此时x=0,y=1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故答案为:11. 【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.甲【分析】根据方差的意义即可求得答案【详解】∵S 甲2=125S 乙2=3∴S 甲2<S 乙2∴甲的成绩比较稳定故答案为:甲【点睛】此题考查方差的意义掌握方差的意义是解题的关键即方差越大其数据波动越大即成绩解析:甲 【分析】根据方差的意义即可求得答案. 【详解】∵S 甲2=1.25,S 乙2=3, ∴S 甲2<S 乙2,∴甲的成绩比较稳定, 故答案为:甲. 【点睛】此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.18.【分析】先求得数据的平均数然后代入方差公式计算即可【详解】解:数据的平均数=(2-3+3+6+4)=2方差故答案为【点睛】本题考查方差的定义牢记方差公式是解答本题的关键 解析:253【分析】先求得数据的平均数,然后代入方差公式计算即可. 【详解】 解:数据的平均数=16(2-3+3+6+4)=2, 方差2222222125(22)(32)(02)(32)(62)(42)63s ⎡⎤=-+--+-+-+-+-=⎣⎦. 故答案为253. 【点睛】本题考查方差的定义,牢记方差公式是解答本题的关键.19.36【分析】根据平均数和方差的变化规律即可得出答案【详解】解:∵数据x1x2x3…xn 的平均数是5∴数2x1+32x2+32x3+3…2xn+3的平均数是25+3=13;∵数据x1x2x3…xn 的方解析:36 【分析】根据平均数和方差的变化规律,即可得出答案. 【详解】解:∵数据x 1,x 2,x 3,…x n 的平均数是5,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的平均数是2⨯5+3=13; ∵数据x 1,x 2,x 3,…x n 的方差是9,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的方差是4⨯9=36; 故答案为:13,36. 【点睛】此题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.20.乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差根据甲队与乙队的方差进行比较即可得答案【详解】甲队的平均数=(7+8+9+7+10+10+9+10+10+10)=9甲队的方差S 甲2=解析:乙 【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差,根据甲队与乙队的方差进行比较即可得答案. 【详解】 甲队的平均数=110(7+8+9+7+10+10+9+10+10+10)=9, 甲队的方差S 甲2=110[(7-9)2+(8-9)2+(9-9)2+……+(10-9)2]=1.4, 乙队的平均数=110(10+8+7+9+8+10+10+9+10+9)=9, 乙队的方差S 乙2=110[(10-9)2+(8-9)2+(7-9)2+……+(9-9)2]=1, ∵甲队的平均数=乙队的平均数,S 甲2>S 乙2, ∴成绩较为整齐的是乙队, 故答案为:乙 【点睛】此题主要考查平均数与方差,方差是刻画波动大小的重要数据,方差越小,波动越小,稳定性也越好,反之也成立;熟知平均数与方差的求解公式及方差的性质是解题关键.三、解答题21.(1)87a =,85b =;(2)B 队;(3)A 队 【分析】(1)结合条形图中的数据,再根据平均数和中位数的概念求解即可(2)由A 队的中位数为90分高于平均分88分,B 队的中位数85分低于平均数87分可得答案(3)从平均分,合格率,优秀率及方差的意义即可解答 【详解】(1)B 对成绩的平均分702803856904952100387236423a ⨯+⨯+⨯+⨯+⨯+⨯==+++++中位数8585852b +== (2)A 队的中位数为90分高于平均分88,B 队的中位数为85分低于平均分87,∴小明应属于B 队.(3)应该颁给A 队. 理由如下:①A 组的平均分和中位数高于B 队,优秀率也高于B 队,说明A 队的总体平均水平高于B 队;②A队的中位数高于B队,说明A队高分段学生较多;③虽然B队合格率高于A队,但A队方差低于B队,即A队的成绩比B队的成绩整齐.所以集体奖应该颁给A队.【点睛】本题考查了条形统计图,中位数,平均数,以及方差,读懂题意,熟练掌握平均数,中位数的概念以及方差的意义是解题关键.22.(1)35,6,75,81;(2)初二年级,因为从中位数看,初二学生的成绩高于初一学生的成绩(言之有理即可);(3)275人.【分析】(1)根据数据求得初一B组的人数,即可求得其百分比,从而得出a,根据众数和中位数的定义可求得c和d,初二用20减去其他组的人数即可求得b;(2)可从中位数的高低分析(也可根据众数的高低分析);(3)根据初一和初二90分及以上占各自的百分比即可算出总人数.【详解】解:由数据可知,初一年级:B组共有7人,则7%100%35%20a=⨯=,故a=35,75出现的次数最多,故众数为c=75,初二年级:B组共有11人,C组有20-11-2-1=6人,即b=6,中位数为从小到大排列第10个数和第11个数的平均数,B组第3个数和第4个数的平均数,B组从小到大排列如下:80,80,81,8l,81,82,82,83,83,84,87.中位数为:8181812d+==,故答案为:35,6,75,81;(2)初二年级,因为从中位数看,初二学生的成绩高于初一学生的成绩(言之有理即可);(3)抽查结果中,初一90分往上的只有1人,初二90分往上的只有2人,故该校两年及达到90分及以上的有:12150********2020⨯+⨯=(人).【点睛】本题考查扇形统计图,条形统计图、众数、中位数和用样本估计总体等.掌握众数、中位数的定义是解题的关键.23.(1)这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为10方;(2)估计小强家一年的煤气费为360元.【分析】(1)将数据重新排列,再根据众数、中位数和平均数的定义求解即可;(2)用每方的费用乘以12个月,再乘以平均每月的使用量,据此可得答案.【详解】解:(1)将这7个数据重新排列为:9.47,9.51,9.63,10.12,10.12,10.12,11.03,则这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为9.479.519.6310.1210.1210.1211.037++++++=10(方);(2)估计小强家一年的煤气费为3×12×10=360(元). 【点睛】本题考查了众数、中位数、平均数、用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的.24.(1)5件;(2)31,32,33,34,35,36,37,38,39 【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解. 【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件);(2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39. 【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.25.(1)120;(2)2.4千元;(3)可以预测该地区所有贫家庭能在2020年实现今面脱贫 【分析】(1)用该地区尚未脱贫的家庭1000户乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可; (2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可. 【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为:6100012050⨯=(户); (2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为1(1.56 2.08 2.210 2.512 3.09 3.25) 2.450⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元); (3)依题意:2020年该地区农民家庭人均月纯收入的最低值如下:50030015020030045047049051053055057050204000 +++++++++++=>,所以可以预测该地区所有贫家庭能在2020年实现今面脱贫.【点睛】本小题考查频数和频数的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计思想,利用样本中百分比估计总体的数量,以及利用统计表统计2020年该地区农民家庭人均月纯收入的最低值是解题关键.26.整理数据:见解析;分析数据:见解析;(1)E;(2)189人【分析】(1)先将数据排序,求出中位数,再完成表格,根据平均数与中位数作决策即可;(2)利用样本中D级以上人数所占比例乘以该校教师人数计算即可.【详解】解:将数据排序得71,76,81,82,83,86,86,88,89,90,90,92,93,95,96,100,100,100,100,100,根据中位数定义第10与11两数据都是90,为此中位数是90分,整理数据,补充表格如下:为E,故答案为:E.(2)该校共有教师210人,抽样20人中D级以上的人数为18人,估计该校教师的测试成绩等级为D级以上的人数为1821018920⨯=人.【点睛】本题考查数据统计,中位数,平均数,利用样本估计总体,掌握数据统计方法,中位数计算方法,平均数公式,会利用样本估计总体是解题关键.。
数据分析经典测试题附解析

数据分析经典测试题附解析一、选择题1.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是( ) A .中位数是1 B .众数是1 C .平均数是1.5D .方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.7.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.14.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.15.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.17.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C .【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s <D .1x x =,221s s = 【答案】B【解析】【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,第i 个同学没登录,第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n -+=x , 方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故221s s >,故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s =.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
八下数学单元训练【数据分析】详解

试题篮子(详解)2.A.B.C.D.【答案】【解析】山茶花是温州市的市花、品种多样,“金心大红”是其中的一种,某兴趣小组对株“金心大红”的花径进行测量、记录,统计如表:株数(株)花径()这批“金心大红”花径的众数为( ).C解:由表格中的数据可得,这批“金心大红”花径的众数为,故选:C .1.A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大【答案】【解析】某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( ).A原数据的平均数为,则原数据的方差为,新数据的平均数为,则新数据的方差为,∴平均数变小,方差变小.3.A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】【解析】某班有人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他人的平均分为分,方差.后来小亮进行了补测,成绩为分,关于该班人的测试成绩,下列说法正确的是( )B解:小亮的成绩和其他人的平均分相同,都是分,该班人的测试成绩的平均分为分,方差变小,故选:B .4.A.B.C.或D.或【答案】【解析】一组从小到大排列的数据:,,,,(为正整数),唯一的众数是,则数据是( )D解:一组从小到大排列的数据:,,,,(为正整数),唯一的众数是,数据是或.故选:D .5.A.B. C. D.【答案】【解析】学校抽查了名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则名学生参加活动的平均次数是( ).人数次数C.故名学生参加活动的平均次数是.故选.6.A.零件长度的全体B.C.个零件D.每个零件的长度【答案】【解析】为了检查一批零件的长度,从中抽取个进行检测,在这个问题中个体是( ).D为了检查一批零件的长度,从中取个进行检测,在这个问题中个体是每个零件的长度.故选.7.A.平均数B.中位数C.众数D.方差【答案】【解析】有位同学参加歌咏比赛,所得的分数互不相同,取得前的同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学成绩的( )B 位同学参加歌咏比赛,所得的分数互不相同,取得前的同学进入决赛,中位数就是第位,因而要判断自己能否进入决赛,他只需知道这位同学成绩的中位数就可以.故选B .8.A.B.C.D.【答案】【解析】某篮球队队员共人,每人投篮次,下表为其投进球数的次数分配表.若此队投进球数的中位数是,则众数为( ).投进球数次数(人)A解:众数是一组数据中出现次数最多的数据,先将数据从小到大进行排列,得、、、、、、…、、(一共个)、、、…、、(一共个)、、、、、、,中位数是,可见排在中间的两个数是与,即第个数是,第个数是,因为右边的数多于左边的数,故出现的次数多于出现的次数,是众数.故选A .9.A.众数为B.中位数为C.平均数为D.方差为【答案】【解析】如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是( )D解:A 、众数是,命题正确;B 、中位数是:,命题正确;C 、平均数是:,则命题正确;D 、方差是:,故命题错误.故选:D .10.A.分B.分C.分D.分【答案】【解析】小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为分、分、分,若依次按照的比例确定成绩,则小王的成绩是( )D解:根据题意得:(分).故选D .11.如图是某市年四月份每日的最低气温()的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是( )A.,B.,C.,D.,【答案】【解析】A解:由条形统计图中出现频数最大条形最高的数据是在第三组,,故众数是;因图中是按从小到大的顺序排列的,最中间的两个数是、,故中位数是.故选:A .12.A.方差B.平均数C.众数D.中位数【答案】【解析】某次器乐比赛设置了个获奖名额,共有名选手参加,他们的比赛得分均不相同.若知道某位选手的得分.要判断他能否获奖,在下列名选手成绩的统计量中,只需知道( ).D 13.A.甲同学的成绩更稳定B.乙同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定【答案】【解析】王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为分,方差,,则下列说法正确的是( )A 解:、,,甲比乙的成绩稳定.甲乙甲乙甲乙故选:A .14.A.B.C.D.【答案】【解析】一组数据、、、的极差是( )A .故选:A .考点:极差.15.A.B.C.D.【答案】【解析】下列说法正确的是( )了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查甲乙两人跳绳各次,其成绩的平均数相等,,则甲的成绩比乙稳定三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是“任意画一个三角形,其内角和是”这一事件是不可能事件D解:A 、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B 、甲乙两人跳绳各次,其成绩的平均数相等,,则乙的成绩比甲稳定,此选项错误;C 、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D 、“任意画一个三角形,其内角和是”这一事件是不可能事件,此选项正确;故选:D .甲乙甲乙16.一个民营企业名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )(工资单位:万元)A.平均数B.中位数C.众数D.标准差【答案】【解析】B解:平均数为:(万元),中位数是:(万元),众数是:万元,标准差反映的是数据的波动大小,无法反映这些员工月平均工资水平,只有中位数万元,能够较好反映这些员工月平均工资水平.故选:B .17.A.该班一共有名同学B.该班学生这次考试成绩的众数是分C.该班学生这次考试成绩的中位数是分D.该班学生这次考试成绩的平均数是分【答案】【解析】某校九年级班全体学生年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( )D解:A 、该班人数为:,故选项A 正确,不符合题意要求.B 、得分的人数最多,众数为,故选项B 正确,不符合题意要求;C 、第和名同学的成绩的平均值为中位数,中位数为:,故选项C 正确,不符合题意要求.D 、平均数为:.故选项D 错误,符合题意要求.故选:D .18.某市五月份连续五天的日最高气温分别为、、、、(单位:),这组数据的中位数和众A.,B.,C.,D.,【答案】【解析】数分别是( )D根据这组数据可得中位数为,众数为.考点:、中位数的求法;、众数的求法.()()19.A.甲B.乙C.丙D.丁【答案】【解析】甲、乙、丙、丁四人进行射击测试,每人测试次,平均成绩均为环,方差如下表所示,则在这四个选手中,成绩最稳定的是( )D 解:,丁的方差最小,成绩最稳定的是丁,故选:D .20.A.平均数B.方差C.中位数D.众数【答案】【解析】已知样本的数据如下:样本的数据恰好是样本数据每个都加,则、两个样本的下列统计量对应相同的是( )B解:设样本中的数据为,则样本中的数据为,则样本数据中的众数和平均数以及中位数和中的众数,平均数,中位数均相差,只有方差没有发生变化.故选:B .21.已知一组从小到大排列的数据:、、、、、的平均数与中位数都是,则这组数据的众数是 .【答案】【解析】【踩分点】5解:一组从小到大排列的数据:、、、、、的平均数与中位数都是,,解得,,这组数据的众数是.故答案为.22.【答案】【解析】【踩分点】在从小到大排列的五个数,,,,中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则的值为 .1解:从小到大排列的五个数,,,,的中位数是,再加入一个数,这六个数的中位数与原来五个数的中位数相等,加入的一个数是,这六个数的平均数与原来五个数的平均数相等,,解得.故答案为:.23.【答案】【解析】【踩分点】一次数学测验中,某小组七位同学的成绩分别是:,,,,,,.则这七个数据的众数是 .90解:依题意得出现了次,次数最多,故这组数据的众数是.故答案为.24.【答案】【解析】【踩分点】已知数据,,,的方差是,则,,,的方差为 .18解:数据,,,的方差是,,,,的方差是,,,,的方差为;故答案为:.25.【答案】【解析】【踩分点】一组数据,,,,,,若这组数据的中位数是,则这组数据的方差是 .解:按从小到大的顺序排列为,,,,,,若这组数据的中位数为,,这组数据的平均数是,这组数据的方差是:,故答案为:.26.【答案】【解析】为迎接五月份全县中考体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是,平均数是,那么这组数据的方差是 .解:平均数是,这组数据的和,【踩分点】被墨汁覆盖三天的数的和,这组数据唯一众数是,被墨汁覆盖的三个数为:,,,,故答案为:.27.【答案】【解析】【踩分点】已知一组数据:,,,,,.则这组数据的中位数是 ..解:将数据从小到大重新排列为:、、、、、,所以这组数据的中位数为,故答案为:.28.分数初中部高中部选手编号(1)(2)(3)(1)【答案】我市某中学举行“中国梦•校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的名选手的决赛成绩如图所示.根据图示填写下表.平均数(分)中位数(分)众数(分)初中部高中部结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好.计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.;;(2)(3)(1)(2)(3)【解析】【踩分点】初中部成绩好些,因为两个队的平均数相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.初中代表队选手成绩较为稳定.初中部平均数为:(分),众数为(分),高中部中位数为(分).初中部成绩好些,因为两个队的平均数相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.∵,,∴,因此,初中代表队选手成绩较为稳定.初高初高29.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第次第次第次第次第次甲成绩乙成绩甲、乙两人射箭成绩折线图小宇的作业:解:,甲(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】. ,.请完成图中表示乙成绩变化情况的折线.①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中. ;画图见解析.①乙;②乙将被选中.由题意得:甲的总成绩是:,则,,如图:甲、乙两人射箭成绩折线图①观察图,可看出乙的成绩比较稳定,故答案为:乙;,由于,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.甲乙乙乙乙甲【踩分点】30.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题.补全图一和图二.请计算每名候选人的得票数.若每名候选人得一票记分,投票、笔试、面试三项得分按照的比例确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?见解析见解析见解析解:如图:(2)(3)【踩分点】解:甲的票数是:(票),乙的票数是:(票),丙的票数是:(票).解:甲的平均成绩:(分),乙的平均成绩:(分),丙的平均成绩:(分),乙的平均成绩最高,应该录取乙.31.(1)(2)(3)(1)(2)(3)【答案】为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有、两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检查人员从两家分别抽取个鸡腿,然后再从中随机各抽取个,记录它们的质量(单位:克)如表:加工厂加工厂根据表中数据,求加工厂的个鸡腿质量的中位数、众数、平均数;估计加工厂这个鸡腿中,质量为克的鸡腿有多少个?根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?中位数是克,众数是克,平均数是克.个.加工厂.(1)(2)(3)【解析】【踩分点】把这些数从小到大排列,中位数是第和第个数的平均数,则中位数是(克),因为出现了次,出现的次数最多,所以众数是克,平均数是:(克).根据题意得:(个),答:估计质量为克的鸡腿有个.选加工厂的鸡腿.的方差是:,的平均数是:,的方差是:,∵、平均值一样,的方差比的方差小,更稳定,∴选加工厂的鸡腿.32.(1)(2)(3)(1)(2)(3)【答案】李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,(单位:元):到这个周末,李强有多少结余?照这个情况估计,李强一个月(按天计算)能有多少结余?按以上的支出水平,李强一个月(按天计算)至少有多少收入才能维持正常开支?元元元(1)(2)(3)【解析】【踩分点】用正数表示收入,负数表示支出,则这七天的收入为:元,支出为:元,元,所以到这个周末,李强结余元.由(1)可知其每天能结余(元),(元),即照这个情况估计,李强一个月(按天计算)能有元的结余.(元),(元),即按以上的支出水平,李强一个月(按天计算)至少有元收入才能维持正常开支.33.(1)(2)(1)(2)【答案】(1)(2)【解析】有甲、乙、丙三种糖果混合而成的什锦糖千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.求该什锦糖的单价.为了使什锦糖的单价每千克至少降低元,商家计划在什锦糖中加入甲、丙两种糖果共千克,问其中最多可加入丙种糖果多少千克?元/千克见解析解:根据题意得:(元/千克).答:该什锦糖的单价是元/千克;设加入丙种糖果x 千克,则加入甲种糖果千克,根据题意得:,解得:.答:最多加入丙种糖果千克.[考点]一元一次不等式的应用;加权平均数.【踩分点】34.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.该公司规定:笔试,面试、体能得分分别不得低于分,分,分,并按的比例计入总分.根据规定,请你说明谁将被录用.见解析见解析解:,,.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;该公司规定:笔试,面试、体能得分分别不得低于分,分,分,甲淘汰;乙成绩分,丙成绩分,故乙将被录用.甲乙丙35.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,“摩拜单车”等租车服务进入市民的生活.某部门对今年月份某一周中的连续天进行了公共自行车日租车量的统计,并绘制了如下条形图:(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】求这天日租车量的众数与中位数.求这天日租车量的平均数,并用这个平均数估计月份(天)共租车多少万车次?见解析见解析解:这个数据按从小到大的顺序排列为:,, ,,,,,因为出现了三次,次数最多,所以众数是;因为第四个数为,所以中位数是.解;这天日租车量的平均数为:(万车次),(万车次).故这天日租车量的平均数为万车次,用这个平均数估计月份(天)共租车万车次.36.小欢同学学完统计知识后,随机调查了她家所在社区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以下不完整的统计图提供的信息,解答下列问题:(1)(2)(3)(1)(2)(3)【答案】(1)(2)【解析】扇形统计图中 , ;并补全条形统计图.小欢为了解社区中岁以上老人的业余爱好,从调查的社区居民中获悉,岁以上老人参加门球运动的人最多,但参加门球运动的人数不超过参加其他各项爱好人数和的倍,求参加门球运动的老人最多为多少人?若该社区共有居民人,请你用所学的数学知识,估计岁以上老人中参加门球运动的人数.见解析见解析见解析解:由图可得,,,故答案为:,,总人数:(人),所以岁的有:(人).解:设参加门球运动的老人为人,则参加其他各项爱好的老人的人数和为人,(3)【踩分点】于是得:,解得:,答:参加门球运动的老人最多为人.解:由题意可得,社区参加门球运动的岁以上老人有:(人),答:社区参加门球运动的岁以上老人约有人.37.(1)(2)(1)(2)【答案】(1)(2)【解析】甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击次,射击的成绩如图所示.根据图中信息,回答下列问题:甲的平均数是 ,乙的中位数是 .分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?;见解析解:甲的平均数,乙的射击成绩由小到大排列为:,,,,,,,,,,位于第、第位的数分别是,,所以乙的中位数是;故答案为:;.解:乙的平均数,,甲【踩分点】,,乙运动员的射击成绩更稳定.乙乙甲38.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】某种水果第一天以元的价格卖出斤,第二天以元的价格卖出斤,第三天以元的价格卖出斤,求:这三天共卖出水果多少斤?这三天共卖得多少元?这三天平均售价是多少?并计算当,,时,平均售价是多少?见解析见解析见解析解:三天共卖出水果:斤.解:三天共卖得:元解:平均售价:元;当,,时,平均售价(元).39.(1)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图和图,请根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 人,图中的值是 .(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】求本次调查获取的样本数据的平均数、众数和中位数.根据样本数据,估计该校本次活动捐款金额为元的学生人数.见解析见解析见解析解:由统计图可得,本次接受随机抽样调查的学生人数为:(人),.故答案为:,.解:本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元.解:该校本次活动捐款金额为元的学生人数为:(人).即该校本次活动捐款金额为元的学生有人.40.(1)(2)(3)(1)(2)(3)【答案】九(II )班组织了一次经典诵读比赛,甲、乙两队各人的比赛成绩如下表(分制):甲队成绩的中位数是 分,乙队成绩的众数是 分.计算乙队的平均成绩和方差;已知甲队成绩的方差是1.4分,若想从两队中选一个成绩较为稳定的队参加比赛,那么你认为该选哪个队参赛?为什么?9.5 ; 10乙队的平均成绩是9分,乙队的方差是1;若想从两队中选一个成绩较为稳定的队参加比赛,该选乙队参赛.(1)(2)(3)【解析】【踩分点】把甲队的成绩从小到大排列为:,,,,,,,,,,最中间两个数的平均数是(分),则中位数是分;乙队成绩中分出现了次,出现的次数最多,则乙队成绩的众数是分;故答案为:,.考点:方差;加权平均数;中位数;众数.乙队的平均成绩是:(分),则乙队的方差是:;考点:方差;加权平均数;中位数;众数.∵甲队成绩的方差是1.4分,乙队成绩的方差是1分,甲队成绩的方差乙队成绩的方差,∴若想从两队中选一个成绩较为稳定的队参加比赛,该选乙队参赛.考点:方差;加权平均数;中位数;众数.41.(1)(2)(3)备战中考,初三的学子们感觉到严重的睡眠不足,经抽样调查了同学们的睡眠时间,制成了如图两幅统计图:请根据两幅图形解决下列问题:将条形统计图补充完整;求扇形统计图中代表的扇形的圆心角是 .睡眠时间的中位数是 .如果把睡眠时间低于小时称为严重睡眠不足,请估算全校个初三同学中睡眠严重不足的人数.(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】见解析见解析见解析解:调查的总人数为,及以下的人数为(人),的人数为(人),将条形统计图补充完整如下:求扇形统计图中代表的扇形的圆心角是,故答案为:;解:中位数是,故答案为:;解:人,答:初三同学中睡眠不足的人数为人.42.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】本次调查共抽取了多少名学生?求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图.若海静中学共有名学生,请你估计该中学最喜爱律师职业的学生有多少名?见解析见解析见解析解:(名),答:共调查了名学生.解:(人),则最喜爱教师职业人数为人,补全条形统计图如图所示:解:(名)答:该中学最喜爱律师职业的学生有名.【踩分点】。
初中数学数据分析基础练习题及参考答案

初中数学数据分析基础练习题及参考答案1. 问题描述:有一个小组,其中2人比例是男生,3人比例是女生,4人比例是男生和女生的比例为1:2,问这个小组一共有多少人?解答:设该小组一共有x人,则男生人数为2x/9,女生人数为3x/9,男生和女生的比例为(2x/9)/(3x/9) = 1/2。
根据比例分配的特性,可得到方程2x/9 = x/3,解得x = 9。
所以该小组一共有9人。
2. 问题描述:某网球俱乐部的会员有男生和女生,其中80%的男生会打网球,75%的女生会打网球,而已知该俱乐部总人数的70%会打网球,求该俱乐部男女会员比例。
解答:设男生人数为x,女生人数为y,则男生会打网球的人数为0.8x,女生会打网球的人数为0.75y。
根据已知,该俱乐部总人数中会打网球的人数为70%,即(0.8x + 0.75y)/(x + y) = 70% = 0.7。
化简方程得到8x + 7.5y = 7(x + y),进一步化简得到x = 2.5y。
所以男女会员比例为2.5:1。
3. 问题描述:有一批学生成绩,其中80%的学生数学成绩优秀,60%的学生英语成绩优秀,已知有70%的学生至少一门科目为优秀,求这批学生中数学和英语都优秀的比例。
解答:设该批学生总人数为x,数学成绩优秀的学生人数为0.8x,英语成绩优秀的学生人数为0.6x。
根据已知,至少一门科目为优秀的学生人数为70%,即(0.8x + 0.6x - k)/(x - k) = 70% = 0.7,其中k为数学和英语都不优秀的学生人数。
化简方程得到14x - 10k = 7x - 7k,进一步化简得到k = 2x。
所以数学和英语都优秀的比例为(0.8x - 2x)/x = 0.6。
即60%的学生数学和英语都优秀。
4. 问题描述:一家餐厅推出了套餐A和套餐B,其中套餐A的价格为30元,套餐B的价格为50元。
经过一段时间的销售后,总销售额为3000元,总销售套餐数为80。
初中数学 数据的分析(共51题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)专题28数据的分析(共51题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.2.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∴甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.4.(2021·四川南充市·中考真题)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7,下列说法错误的是()A.该组数据的中位数是6B.该组数据的众数是6C.该组数据的平均数是6D.该组数据的方差是6【答案】D【分析】根据众数、平均数、中位数、方差的定义和公式分别进行计算即可.【详解】解:A、把这些数从小到大排列为:5,5,6,6,6,7,7,则中位数是6,故本选项说法正确,不符合题意;B、∴6出现了3次,出现的次数最多,∴众数是6,故本选项说法正确,不符合题意;C、平均数是(5+5+6+6+6+7+7)÷7=6,故本选项说法正确,不符合题意;D、方差=17×[2×(5−6)2+3×(6−6)2+2×(7−6)2]=47,故本选项说法错误,符合题意;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.6.(2021·四川凉山彝族自治州·中考真题)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:则这个班学生成绩的众数、中位数分别是()A.90,80B.16,85C.16,24.5D.90,85【答案】D【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:90分的有16人,人数最多,故众数为90分;处于中间位置的数为第25、26两个数,为80和90,∴中位数为80902=85分.故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(2021·四川自贡市·中考真题)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A.16,15B.11,15C.8,8.5D.8,9【答案】C【分析】根据众数和中位数的意义与表格直接求解即可.【详解】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C.【点睛】本题考查了众数和中位数的意义,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(2021·四川遂宁市·中考真题)下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,xπ,42ba+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,42ba+是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.9.(2021·山东枣庄市·中考真题)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.4【答案】B【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可. 【详解】 解:根据题目给出的数据,可得: 平均数为:14151442145114621435212x ,故A 选项错误; 众数是:141,故B 选项正确;中位数是:141144142.52,故C 选项错误; 方差是:222221141143514414321451431146143210S 4.4,故D 选项错误;故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.10.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( )A .8,15B .8,14C .15,14D .15,15【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.(2021·四川达州市·中考真题)以下命题是假命题的是()A的算术平方根是2B.有两边相等的三角形是等腰三角形C.一组数据:3,1-,1,1,2,4的中位数是1.5D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据所学知识对命题进行判断,得出真假即可.【详解】解:A,命题为假命题,符合题意;B,有两边相等的三角形是等腰三角形,命题为真命题,不符合题意;C,一组数据:3,1-,1,1,2,4的中位数是121.52+=,命题为真命题,不符合题意;D,过直线外一点有且只有一条直线与已知直线平行,命题为真命题,不符合题意,故选:A.【点睛】本题考查了命题的真假,解题的关键是:要结合所学知识对选项逐一判断,需要对基本知识点掌握牢固. 12.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm )分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A .24,25B .23,23C .23,24D .24,24 【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C .【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖南岳阳市·中考真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是( )A .9.0,8.9B .8.9,8.9C .9.0,9.0D .8.9,9.0 【答案】C【分析】 根据众数的概念和运用求平均数的公式12n x x x x n +++=即可得出答案.【详解】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故选:C .【点睛】考查了众数和均数的求法.本题所描述的计分方法,是经常用到的方法,是数学在现实生活中的一个应用,熟记平均数的公式是解决本题的关键.14.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是()A.80,90B.90,90C.86,90D.90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数.【详解】解:将这组数据按照从小到大排列:80,86,90,90,94;位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B.【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·湖南衡阳市·中考真题)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是85【答案】C【分析】根据该组数据结合众数、中位数的定义和平均数、方差的计算公式,求出众数、中位数、平均数和方差即可选择.【详解】根据该组数据可知82出现了2次最多,故众数为82,选项A正确,不符合题意;根据中位数的定义可知该组数据的中位数为8385842+=,选项B正确,不符合题意;根据平均数的计算公式可求出858286828392856x +++++==,选项D 正确,不符合题意; 根据方差的计算公式可求出2222222(8585)(8285)(8685)(8285)(8385)(9285)126s -+-+-+-+-+-==,选项C 错误,符合题意.故选C .【点睛】本题考查求众数、中位数、平均数和方差.掌握众数、中位数的定义,平均数、方差的计算公式是解答本题的关键.16.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( )A .5kgB .4.8kgC .4.6kgD .4.5kg 【答案】C【分析】根据平均数的定义求解即可.【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.7 4.65kg =. 故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.17.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21 sD .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∴顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s <s 2,x 和x 1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.18.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A .中位数是33C ︒B .众数是33C ︒C .平均数是197C 7︒D .4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7,故选项C不符合题意;从统计图可看出4日气温为33∴,5日气温为23∴,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.19.(2021·福建中考真题)某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁【答案】B【分析】利用加权平均数计算总成绩,比较判断即可【详解】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故选B【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.20.(2021·广西柳州市·中考真题)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为S如右表所示,那么这三名同学数学成绩最稳定的是()及方差2A.甲B.乙C.丙D.无法确定【答案】A【分析】先比较平均成绩,当平均成绩一致时,比较方差,方差小的波动小,成绩更稳定.【详解】甲、乙、丙的成绩的平均分x都是91,故比较它们的方差,甲、乙、丙三名同学的方差分别为6,24,54;故甲的方差是最小的,则甲的成绩是最稳定的.故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.21.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】 解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=, 解得:7x =;故选B .【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.22.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=, 添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.23.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5 C .4 D .4.5【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4,4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查了求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序.24.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30,根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点,根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C.本题考查中位数与众数,掌握中位数与众数定义是解题关键.25.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1∴,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.26.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( )A .中位数是10.5B .平均数是10.3C .众数是10D .方差是0.81 【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12;位于最中间的两个数是10,10,它们的平均数是10,所以该组数据中位数是10,故A 选项不正确;该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确;该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.二、填空题27.(2021·湖南株洲市·中考真题)中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如下表:则在这个时间段,该中药房的这三种中药的平均销售量为___________千克.【答案】2.5【分析】由销售额和销售单价可以求出每种中药的销售量,再根据平均数的求法,即可求解平均销售量.【详解】解:由题意得黄芪销售量:12080 1.5÷=(千克);焦山楂的销售量:120602÷=(千克);当归的销售量:360904÷=(千克); 所以平均销售量为:1.5242.53++=(千克). 故答案是:2.5.【点睛】本题考察平均数的定义,属于基础题型,难度不大.解题的关键是掌握平均数的定义.平均数:用一组数据的综合除以数据个数得到的数.28.(2021·浙江杭州市·中考真题)现有甲、乙两种糖果的单价与千克数如下表所示.将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为______元/千克.【答案】24【分析】根据题意及加权平均数的求法可直接进行求解.【详解】解:由题意得:3022032423⨯+⨯=+(元/千克); 故答案为24.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.29.(2021·山东临沂市·中考真题)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是___.【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:3852905951010032510⨯+⨯+⨯+⨯+++=95.5, 故答案为:95.5.【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.30.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x=(5+9+6+7+8)÷5=7(环),乙2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∴1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.A B C D E F六省60岁及以上人口31.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.32.(2021·江苏扬州市·中考真题)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.【答案】5【分析】根据平均数的定义先算出a的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∴这组数据的平均数为5,则456755a++++=,解得:a=3,。
新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;7.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A .平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.13.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.18.一组数据-2,3,0,2,3的中位数和众数分别是()A.0,3 B.2,2 C.3,3 D.2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可.【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.故选D.【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学数据分析经典测试题及解析一、选择题1.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本)89101112学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C、众数是11,此选项不符合题意;D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键. 4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.6.2018年国务院机构改革不再保留国家卫生和计划生育委员会,组建国家卫生健康委员会,在修正人口普查数据中的低龄人口漏登后,我们估计了1982-2030年育龄妇女情况.1982年中国15-49岁育龄妇女规模为2.5亿,到2011年达3.8亿人的峰值,2017年降至3.5亿,预计到2030年将降至3.0亿.则数据2.5亿、3.8亿、3.5亿、3.0亿的中位数、平均数、方差分别是( ) A .3.25亿、3.2亿、0.245 B .3.65亿、3.2亿、0.98 C .3.25亿、3.2亿、0.98 D .3.65亿、3亿、0.245【答案】A 【解析】 【分析】根据中位数、平均数的定义和方差公式分别进行解答即可. 【详解】把数据2.5亿、3.8亿、3.5亿、3.0亿按从小到大的顺序排列为:2.5亿,3.亿,3.5亿,3.8亿,最中间的两个数是3.0亿和3.5亿,所以,这组数据的中位数为:3.0+3.5=3.252亿 平均数为:2.5+3.8+3.5+3.0=3.24亿;方差为:S 2=14×[(2.5-3.2)2+(3.8-3.2)2+(3.5-3.2)2+(3.0-3.2)2]= 14×(0.49+0.36+0.09+0.04)=0.245 故选A. 【点睛】本题考查了中位数、平均数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦.7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:则这15运动员的成绩的众数和中位数分别为( ) A .1.75,1.70 B .1.75,1.65C .1.80,1.70D .1.80,1.65【答案】A 【解析】 【分析】8.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8【答案】C 【解析】 【分析】分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:8+8=82; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8=82,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:5+72+84+9+102=810⨯⨯⨯;乙的平均数:5+73+82+92+102=810⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题意;甲组数据的方差为:2222221=[(58)2(78)4(88)(98)2(108)]10S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:2222221=[(58)3(78)2(88)2(98)2(108)]10S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.一组数据3、2、1、2、2的众数,中位数,方差分别是:( ) A .2,1,2 B .3,2,0.2C .2,1,0.4D .2,2,0.4【答案】D 【解析】【分析】根据众数,中位数,方差的定义计算即可. 【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2 中位数为:2方差为:()()()()()22222212222222320.45s -+-+-+-=+-=故选:D 【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确; C .∵众数是2,故正确; D .4121205x -++-+==,故正确;故选B.11.下列说法正确的是( ) A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 【答案】D 【解析】 【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.13.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:成绩(m) 2.3 2.4 2.5 2.4 2.4则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.01【答案】B【解析】【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.14.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.100【答案】A【解析】【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B 、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B 符合题意;C 、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D 说法错误; 故选B . 【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.17.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.18.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.。