24.圆周角(二)

合集下载

人教版数学九年级上册24.1.4圆周角(第2课时)优秀教学案例

人教版数学九年级上册24.1.4圆周角(第2课时)优秀教学案例
3.小组合作:我将学生分成小组,让他们在团队合作中完成圆周角定理的证明和实际问题的解决,这样不仅提高了他们的团队协作能力,还培养了他们的沟通能力。
4.反思与评价:我引导学生进行课堂反思,帮助他们发现自己的学习优点和不足,从而提高他们的自我认知和自我调整能力,为他们的持续进步提供了动力。
5.作业小结:我布置了一道具有挑战性的作业,让学生在课后运用所学知识解决实际问题,这样不仅巩固了他们的课堂所学,还提高了他们的解决问题能力。同时,我在下一节课的开始部分让学生分享他们的解题过程和心得,这样既为下一节课的教学做好了铺垫,又让他们从他人的经验中学习到了新的解题策略。
针对这一情况,我设计了本节课的教学案例,以帮助学生更好地理解和运用圆周角定理。在教学过程中,我注重启发学生思考,引导学生通过观察、操作、归纳等方法发现圆周角定理,并与实际问题相结合,让学生在解决实际问题的过程中体会圆周角定理的应用价值。同时,我还注重培养学生的团队协作能力和语言表达能力,使学生在互动交流中不断提高自己的数学素养。
二、教学目标
(一)知识与技能
1.理解圆周角定理,掌握圆周角定理的证明过程,能够运用圆周角定理解决实际问题。
2.学会使用圆规和直尺画圆周角,能够准确地找出圆周角所对的两条弧的圆心角。
3.掌握圆周角定理在圆的切割、镶嵌等实际问题中的应用,提高学生的解决问题的能力。
(二)过程与方法
1.观察与操作:通过观察实物和模型,引导学生发现圆周角定理,培养学生的观察能力和操作能力。
五、例亮点
1.情境创设:通过实物和模型展示,以及多媒体动画演示,我成功地激发了学生的学习兴趣,让他们在直观的情境中感受到圆周角定理的实际应用,从而提高了他们的学习积极性。
2.问题导向:我在教学中提出了具有针对性的问题,引导学生进行深入思考,使他们在解决问题的过程中理解和掌握圆周角定理,培养了他们的逻辑思维能力。

圆周角_第二课时- 课件

圆周角_第二课时- 课件

知识回顾 问题探究 课堂小结
探究二: 圆的内接多边形
重点、难点知识★▲
活动2 探索圆的内接四边形四个角之间的关系。
∠A和∠C是四边形ABCD的一组对角,也是⊙O的圆 周角,它们在⊙O中所对的分别是哪两条弧?
这两条弧有什么关系? 从而∠A和∠C具有怎样的数量关系? ∠B和∠D也具有这样的关系吗?
这两条弧的度数之和为360°,从而∠A和∠C之和等 于360°的一半,也就是180°,∠B和∠D之和也为180°。
1 2
OA,根据含30°的
直角三角形三边的关系得到∠OAD=30°,接着根据
三角形内角和定理可计算出∠AOB=120°,然后根据圆周
角定理计算∠APB的度数。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动2 提升型例题
【解题过程】 解:作半径OC⊥AB于D,连结OA、OB,如图, ∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,
1 ∴∠AOB=90°,∴∠ADB= 2 ∠AOB=45°, ∴∠AEB=180°﹣∠ADB=135°。 ∴此弦所对的圆周角等于45°或135°。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动3 探究型例题
例5.已知弦AB、CD相交于E,»AC 的度数为90°,B»D 的度数为30°,则∠AEC=_6__0_°___。
∴弦AB所对的圆周角的度数为: 1 ∠AOB=20°或180°﹣20°=160°。 2
【思路点拨】由⊙O的弦AB所对的圆心角为40°,根据 圆周角定理与圆的内接四边形的性质,即可求得弦AB 所对的圆周角的度数。
知识回顾 问题探究 课堂小结
探究三 例题分析
活动2 提升型例题
练习4:在⊙O中,若弦AB长2 2 cm,弦心距为 2 cm,则此弦所对的圆周角等于______。

圆周角二-圆内接四边形

圆周角二-圆内接四边形
通过圆内接四边形的性质,可以确定四边形的形 状。
计算四边形的面积
利用圆内接四边形的面积公式,可以计算出四边 形的面积。
3
判断四边形的对角线性质
通过圆内接四边形的对角线性质,可以判断四边 形的对角线性质。
圆周角与圆内接四边形在几何图形中的综合应用
利用圆周角和圆内接四边形的关系,可以解决一些复杂的几何问题。 通过综合应用圆周角和圆内接四边形的性质,可以推导出一些重要的几何定理。
边与角的关系
在一个圆内接四边形中, 相对的两边之和大于另外 两边之和,且相对的两边 之差小于另外两边之差。
圆周角与圆内接四边形性质的关联
圆周角与圆心角的关系
在一个圆内接四边形中,相对的两条 边所对的圆周角等于其相对的两条边 所对的圆心角的一半。
圆周角与外角的关系
在一个圆内接四边形中,相对的两条 边所对的圆周角等于其相对的外角的 补角。
边形。
圆内接四边形的性质
02
其对角互补,即两个对角和为180度。
圆内接四边形的证明方法
03
通过构造辅助线,利用三角形全等或相似性质,以及圆的性质
进行证明。
圆周角与圆内接四边形证明的关联
关联点
在证明过程中,常常需要利用圆 周角和圆内接四边形的性质进行 相互转化,以简化证明过程。
应用场景
在解决一些涉及圆和四边形的几 何问题时,利用圆周角和圆内接 四边形的性质可以提供有效的解 题思路和方法。
04
圆周角二与圆内接四边形 的应用
圆周角在几何图形中的应用
确定圆的位置
通过圆周角的大小和位置 关系,可以确定圆的位置。
计算圆心角
利用圆周角和圆心角的关 系,可以计算出圆心角的 大小。
ቤተ መጻሕፍቲ ባይዱ

数学人教九年级上册(2014年新编)24-1-4 圆周角(第二课时)(教学设计)

数学人教九年级上册(2014年新编)24-1-4 圆周角(第二课时)(教学设计)

24.1.4 圆周角(第二课时)教授新课师:在同圆或等圆中,同弧所对应的圆周角有什么关系?[多媒体展示]【探索与思考】∠BAC与∠BDC同BC,∠BAC与∠BDC有什么关系?尝试给出证明过程?生:根据圆周角定理可知,∠BAC=12∠BOC, ∠BDC=12∠BOC∴∠BAC=∠BDC师:由此可知:同弧所对的圆周角相等。

师:在同圆或等圆中,两条弧相等,则他们所对应的圆周角有什么关系?[多媒体展示]【探索与思考】弧BC=弧CE,∠BDC与∠CAE有什么关系?尝试给出证明过程?生:连接BO、CO、OE根据圆周角定理可知,∠BDC=12∠BOC,∠CAE=12∠COE 又由弧BC=弧CE可知,∠BOC=∠COE.师:由此可知:等弧所对的圆周角相等。

师:推论1:同弧或等弧所对的圆周角相等。

师:尝试运用圆周角推论进行计算。

[多媒体展示]典例1 如图,⊙O中,弦AB、CD相交于点P,若∠A=20°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°变式1-1 如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15° B.25° C.30° D.50°变式1-2 如图,A,B,C,D是⊙O上的四个点,弧AB=弧BC,若∠AOB=58°,则∠BDC=____度让学生经历猜想-探究-证明的过程,从而掌握圆周角定理推论的内容。

通过配套例题,举一反三,进而消化本节课所学内容。

【师生互动】鼓励学生积极发言,教师通过引导纠正,最后给出解题过程和答案。

师:根据所学知识回答下面问题。

[多媒体展示]【问题一】如图1,AB为⊙O的直径,它所对的圆周角是多少?【问题二】如图2 ,AB为⊙O的直径,改变C点的位置,它所对的圆周角度数会改变吗?【问题三】如图1,圆周角∠C=90°,连接AB,弦AB经过圆心吗?为什么?生1:90°生2:不变生3:∵∠ACB=90°∴∠AOB=180°∴弦AB过圆心。

2.4圆周角(第2课时)(同步课件)-九年级数学上册同步精品课堂(苏科版)

2.4圆周角(第2课时)(同步课件)-九年级数学上册同步精品课堂(苏科版)

෽ ,BE分别交AD

(2)若=
、 AC于点F、G,判断△FAB的形状.
解:(2)△FAB是等腰三角形,理由是:

෽ ,
∵ =
∴∠ABE=∠ACB (等弧所对的圆周角相等).
由(1)得∠ACB=∠BAD,
∴∠ABE=∠BAD,
∴AF=BF,
∴△FAB是等腰三角形.
A
E
F
B

D O
G
=180°-90°-50°
=40°.
例题讲解
例2
如图,AB是⊙O的直径,弦CD与AB相交于点E.
(1) 已知∠ADC=50°,求∠CAB的度数.
解法2:连结BD.
C
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角).
A
O E
B
∵∠ADC=50°,
∴∠CDB=∠ADB-∠ ADC=90°-50°=40°.
则∠ =( B )
A.°
B.°
C.°
D.°
当堂检测
基础过关
3.(2024·安徽宿州·三模)如图,⊙ 是△ 的外接圆, ⊥ .
若 = ,∠ = °,则⊙ 的半径为(
A.4
B.
C.
D.8
A)
当堂检测
基础过关
4.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截
面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以
得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是
90°的圆周角所对的弦是直径
___________________________.
当堂检测
基础过关
5.如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、

圆周角第二课时

圆周角第二课时

DC
或△ACE∽ △ADB E
题后思:1、证明题的思路寻找方法; 2、等积式的证明方法; 3、辅助线的思考方法。
练是习CO:如的图中,点圆,OD中E ,/A/ ABB是, 直径,半径CO AB,D
求证:EC=2EA.
C
ED
A
O
B
1 如图,以⊙O的半径OA为直径作⊙O1, ⊙O的弦AD交⊙O1于C,则OC与AD的 位置关系是________。
圆周角定理
驶向胜利 的彼岸
圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半.
即 ∠ABC = 1∠AOC.
2
A
A
A
C
C
C
●O
●O
●O
B
B B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
课前测验
1、100º的弧所对的圆心角等于__1_0_0_º__,所对的圆周角等于 ___5_0_º__。
C
同理,∵∠BAC和∠CPB都是B⌒C所对的圆周角, ∴∠BAC=∠CPB=60°。
∴△ABC等边三角形。
例题精解
例2、如图,AD是△ABC的高,AE是△ABC的外接圆
直径。求证:AB ·AC = AE ·AD
分析:要证AB ·AC = AE ·AD
A
AC AD AE AB
O
△ADC∽ △ABE B
九年级数学(下)第三章 圆
3. 圆周角和圆心角的关系(2)圆周角定理的推论
一、旧知回放:
1、圆周角定义: 顶点在圆上,
并且两边都和圆相交的角 A 叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交.
4
一、旧知回放:

2022年精品 《圆周角2》名师优秀教案

圆周角〔第二课时〕〔张丹丹〕一、教学目标〔一〕学习目标1探索同圆或等圆中,相等的圆周角所对的弧和弦的关系2探索同弦所对圆周角的关系3记住圆周角定理的推论并能运用其解决实际问题4知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔二〕学习重点1探索同圆或等圆中,相等的圆周角所对的弧的关系2知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔三〕学习难点1探索同弦所对圆周角的关系2圆的内接四边形中对角的关系二、教学设计〔一〕课前设计1预习任务〔1〕在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧和弦也相等.〔2〕在同圆或等圆中,同弦所对的圆周角相等或互补.〔3〕圆内接四边形的对角互补.2预习自测〔1〕如图,A,B,C是⊙O上三点,∠ACB=25°,那么∠BAO的度数是〔〕A.55°B.60°C.65°D.70°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=〔180°﹣50°〕=65°.应选C.【思路点拨】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【答案】C.〔2〕如图,AB是⊙O的直径,BC是⊙O的弦.假设∠OBC=60°,那么∠BAC的度数是〔〕A.75°B.60°C.45°D.30°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.应选D.【思路点拨】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【答案】D.〔3〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,那么∠OAD∠OCD=度.【知识点】圆周角定理;平行四边形的性质【数学思想】数形结合【解题过程】解:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵四边形ABCD为圆的内接四边形∴∠DAB∠DCB=180°∴∠OAD∠OCD=180°﹣60°﹣60°=60°【思路点拨】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B∠ADC=180°,即可求得∠B=∠AOC=12021∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD∠OCD的度数.【答案】60°〔4〕如图,AB为⊙O的直径,AB=AC,AC交于⊙O点E,∠BAC=45°.假设AE=1,那么BC=.【知识点】圆周角定理;等腰直角三角形【数学思想】数形结合【解题过程】解:∵AB是圆的直径,∴∠AEB=90°,又∵∠BAC=45°,∴△ABE是等腰直角三角形,那么AB=,BE=AE=1,那么EC=AC﹣AE=AB﹣AE=﹣1,在直角△BCE中,BC=.故答案是:.【思路点拨】首先利用圆周角定理证明△ABE是等腰直角三角形,那么求得AB、BE的长度,那么EC即可求得,然后再在直角△BCE中,利用勾股定理即可求解.【答案】二课堂设计1知识回忆〔1〕把顶点在圆上,并且两边都与圆相交的角叫做圆周角。

圆周角2


又∵∠OAC+∠OBC+∠ACB=180°
∴∠ACB=∠OCA+∠OCB=180°÷2=90°
半圆或直径所对的圆周角都相等,都等于90°
90°的圆周角所对的弦是圆的直径
探索2:
画一个圆心角,然后再画同弧所对的圆周角. 1.同一条弧你能画多少个圆周角?多少个圆
心角?用量角器量一量这些
圆周角你有何发现?
(2x+100)°和(5x-30)°,则x=_20°_;
1.AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° ,
求∠BOC的度数。 ∠BOC =140° 2、如图,在⊙O中,B⌒C=2D⌒E, ∠BOC=84°, 求∠ A的度数。 ∠A=21°
小结:
1.圆周角定义:顶点在圆上,并且两边都和圆相 交的角叫圆周角.
欢,蚰蜒蝎子赶上山!这句俗语寓意着,三月三是一个万象更新的好日子!这一日的到来,预示着整整一个严冬已经过 去,新的一年从此开始了!那一日,故乡的天空湛蓝湛蓝的,不时有成群的鸽子飞过。金色的阳光暖暖地普照着大地。 大路边上一排排的杨树和柳树,已经冒出了碧绿的新芽,漂亮的大喜鹊成双成对地雀跃在枝头上欢唱着。远处的几棵杏 子树,已经穿上了淡粉色的盛装;更远处的一大片桃树,似乎都在含苞待放了……随着阵阵微风轻柔地拂面而来,让人 能够闻得到漫山遍野上飘逸着的那复苏泥土沁人心肺的清香。路旁田埂上齐刷刷新出土的小草在微风中轻轻地摆动着, 一丛丛一片片迎春的二月兰已经绽放开了她们那淡紫色的笑脸,黄澄澄的蒲公英花儿安逸地点缀在绿茸茸的草地间…… 这一切,曾经是耿正兄妹三人最喜欢的乡野风景啊!但今天,他们却无心欣赏……日头即将到半上午时,骡车终于慢慢 悠悠地走到了右转弯路口。只要转过这个路口,就走上五道庙前的那条西行大道了!“喔—”耿正轻抖缰绳吆喝一声, 大白骡驾着骡车转上宽阔的东西向大道,依然还是慢慢地向东走去……骡车走得太慢了,徒步跟在车后的一高一中一矮 三个中年男人只能慢慢地走着才不至于超过去。事实上,今儿一早耿正兄妹三人乘坐大骡车离开客栈之后仅走了几十步 远时,这三个人就从后面左侧的岔道上追上来了。不过,要说“追”也并不恰当,只是他们三个人走路的速度比大白骡 还要快很多,所以,他们与骡车之间相隔的距离就越来越近了而已。到相隔仅有十多步远的时候,其中的那个矮个子说: “真晦气,怎么是挂送灵车。咱们快些走,超过去!”说着,就甩膀子迈大步要快走的样子。那个高个子赶快伸手拉住 他,并且低声说:“嘘,小声点儿说话!你们看,这挂车看上去不轻,后面还装了两袋草料,还有那把铁锹,看起来是 赶远路的呢!”矮个子也放低了声音说:“管他是赶近路的还是赶远路的,反正是一挂晦气的送灵车……”不等他继续 说下去,高个子就皱起眉头有些不耐烦地瞪了他一眼,低声说:“你怎么就不用脑子想一想啊,这天气已经热起来了, 拉个死人,还不早臭了!”听他这么说,一直没有开口说话的那个中个子男人就伸长脖子张大鼻孔用劲吸了几下,然后 放低嗓音对高个子说:“是啊,大哥,怎么一点儿味儿也没有啊?”矮个子也赶快用劲吸几下,恍然大悟一般悄声说: “真是没有臭味儿,难道说他们拉的不是死人!”高个子摇摇手不让他们继续说下去,小声说:“咱们就跟在后面,看 他们去哪里。等晚上住进了客栈以后,咱再想办法看个究竟。依我看,说不准儿是一桩大买卖呢!”三个家伙会心地相 互眨眨眼轻轻地窃笑了一下,就放慢脚步跟在骡车的后面,看似很轻松地溜

最新人教版九年级上册数学同步作业课件第二十四章圆第37课时圆周角(二)

∵四边形ABCD内接于⊙O,
∴∠CDE=∠ABC=60°.
又∵∠ACB=∠ADB=∠EDF=60°,
∴△ABC是等边三角形.
(2)解:DA+DC=DB. 理由如下. 如答图KH24-37-1,连接OA.
∵∠ADO=60°,OA=OD,∴△AOD是等边三角形.
∴AD=AO=OD,∠AOD=60°.∴∠AOB=120°.
7. 如图KH24-37-5,已知四边形ABCD内接于⊙O,AB=AC,
∠ADC=120°,求证:△ABC是等边三角形.
证明:∵四边形ABCD内接于⊙O,
∴∠ABC+∠ADC=180°.
∴∠ABC=180°-∠ADC=180°-120°=60°.

∴AB=AC.
又∵∠ABC=60°,
∴△ABC是等边三角形.
第二十四章
第37课时

圆周角(二)
【A组】
1. 如图KH24-37-1,四边形ABCD内接于⊙O,若∠A=
110°,则∠C的度数为
A. 70°
B. 100°
C. 110°
D. 120°
(
A )
2. 如图KH24-37-2,点A,B,C,D在⊙O上,∠AOC=112°,
点B是弧AC的中点,则∠D的度数是
100°
线上一点,若∠B=100°,则∠ADE=____________.
5. 圆内接四边形ABCD中,∠A∶∠B∶∠C=2∶3∶7,则
∠D=________.
120°
6. 在⊙O中,若半径为10,弦AB与半径相等,则弦AB所
对的圆周角是_________________.
30°或150°
【B组】
∵OB=OA,∠ABO=15°,

初中数学人教版九年级上册《24142圆周角(2)》教案

人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。

圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。

学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。

学生小组2回答:这个四边形的对角和是180°。

学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。

这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档