各地高考磁场试题
2024高考物理磁场强度计算题及答案

2024高考物理磁场强度计算题及答案磁场强度的计算在物理学中是一个非常基础而重要的概念。
在2024年的高考物理试题中,磁场强度的计算题目无疑是考生们需要重点关注和备考的内容。
本文将为大家提供一道典型的磁场强度计算题以及详细的解答过程。
题目:一根直导线在一个匀强磁场中垂直运动,其运动速度为v = 6 m/s。
已知该导线所受到的磁场力为F = 0.3 N,导线长度为l = 0.5 m,导线与磁场的夹角为θ = 30°。
求该匀强磁场的磁场强度大小B。
解答:根据题目中所给的信息,我们可以利用洛伦兹力的公式来计算磁场强度。
洛伦兹力公式表达为F = qvBsinθ,其中F为磁场力,q为电荷数量,v为速度,B为磁场强度,θ为导线与磁场夹角。
我们已知磁场力F为0.3 N,速度v为6 m/s,导线长度l为0.5 m,角度θ为30°。
在这道题目中,由于没有给出导线电荷数量q的具体数值,所以我们可以利用导线电流I来简化计算过程。
根据电流和导线电荷的关系,我们可以得到公式I = q/t,其中I为电流强度,q为电荷数量,t为时间。
由于题目中没有给出时间t的具体数值,我们可以对公式进行变换,得到q = It。
将导线电流I代入到洛伦兹力公式中,我们可以得到F = IBlvsinθ。
由于我们已知了F、v、l和θ的数值,所以我们可以将其带入公式中计算。
将题目中给定的数值代入公式中,我们有0.3 = B × 6 × 0.5 × sin30°。
由于sin30° = 1/2,我们可以进一步简化计算,得到0.3 = B × 6 × 0.5 ×1/2。
消除分数,我们可以得到0.3 = 0.75B。
接下来,我们可以通过计算得出磁场强度B的数值。
将0.3除以0.75,我们可以得到B = 0.4 T。
因此,解答中匀强磁场的磁场强度大小B为0.4 T。
历年高考真题-磁场

磁场2.2010·全国卷Ⅰ·17某地的地磁场磁感应强度的竖直分量方向向下,大小为54.510T。
一灵敏电压表连接在当地入海河段的两岸,河宽100m ,该河段涨潮和落潮时有海水(视为导体)流过。
设落潮时,海水自西向东流,流速为2m/s。
下列说法正确的是A .河北岸的电势较高B .河南岸的电势较高C .电压表记录的电压为9mVD .电压表记录的电压为5mV3. 2010·江苏物理·9如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO ’与SS’垂直。
a、b、c 三个质子先后从S 点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b 的速度方向与SS’垂直,a、c 的速度方向与b 的速度方向间的夹角分别为 、,且 。
三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有 A .三个质子从S 运动到S’的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO ’轴上C .若撤去附加磁场,a 到达SS’连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同5.2010·安徽·20如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。
两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面。
运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。
设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2。
不计空气阻力,则A.v 1 <v 2,Q 1< Q 2 B.v 1 =v 2,Q 1= Q 2 C.v 1 <v 2,Q 1>Q 2 D.v 1 =v 2,Q 1< Q 2 6. 2010·全国卷Ⅰ·26如下图,在03x a 区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。
2022-2024全国高考真题物理汇编:磁场对通电直导线的作用力

2022-2024全国高考真题物理汇编磁场对通电直导线的作用力一、单选题1.(2022高考真题江苏高考真题)如图所示,两根固定的通电长直导线a、b相互垂直,a平行于纸面,电流方向向右,b垂直于纸面,电流方向向里,则导线a所受安培力方向()A.平行于纸面向上B.平行于纸面向下C.左半部分垂直纸面向外,右半部分垂直纸面向里D.左半部分垂直纸面向里,右半部分垂直纸面向外2.(2023高考真题江苏高考真题)如图所示,匀强磁场的磁感应强度为B.L形导线通以恒定电流I,放置在磁场中.已知ab边长为2l,与磁场方向垂直,bc边长为l,与磁场方向平行.该导线受到的安培力为()A.0B.BIl C.2BIl D3.(2024高考真题浙江高考真题)磁电式电表原理示意图如图所示,两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。
极靴与圆柱间的磁场都沿半径方向,两者之间有可转动的线圈。
a、b、c和d为磁场中的四个点。
下列说法正确的是()A.图示左侧通电导线受到安培力向下B.a、b两点的磁感应强度相同C.圆柱内的磁感应强度处处为零D.c、d两点的磁感应强度大小相等4.(2022高考真题浙江高考真题)利用如图所示装置探究匀强磁场中影响通电导线受力的因素,导线垂直匀强磁场方向放置。
先保持导线通电部分的长度L不变,改变电流I的大小,然后保持电流I不变,改变导线通电部分的长度L,得到导线受到的安培力F分别与I和L的关系图象,则正确的是()A.B.C.D.5.(2022高考真题湖南高考真题)如图(a),直导线MN被两等长且平行的绝缘轻绳悬挂于水平轴OO′上,其所在区域存在方向垂直指向OO′的磁场,与OO′距离相等位置的磁感应强度大小相等且不随时间变化,其截面图如图(b)所示。
导线通以电流I,静止后,悬线偏离竖直方向的夹角为θ。
下列说法正确的是()A.当导线静止在图(a)右侧位置时,导线中电流方向由N指向MB.电流I增大,静止后,导线对悬线的拉力不变C.tanθ与电流I成正比D.sinθ与电流I成正比二、多选题6.(2024高考真题福建高考真题)将半径为r的铜导线半圆环AB用两根不可伸长的绝缘线a、b悬挂于天花板上,AB置于垂直纸面向外的大小为B的磁场中,现给导线通以自A到B大小为I的电流,则()A.通电后两绳拉力变小B.通电后两绳拉力变大πD.安培力为2BIrC.安培力为BIr7.(2022高考真题湖北高考真题)如图所示,两平行导轨在同一水平面内。
历年高考真题分类汇编磁场部分

磁场历年高考真题汇总(解答题)1.(2022·江苏·高考真题)某装置用电场控制带电粒子运动,工作原理如图所示,矩形ABCD 区域内存在多层紧邻的匀强电场,每层的高度均为d ,电场强度大小均为E ,方向沿竖直方向交替变化,AB 边长为12d ,BC 边长为8d ,质量为m 、电荷量为q +的粒子流从装置左端中点射入电场,粒子初动能为k E ,入射角为θ,在纸面内运动,不计重力及粒子间的相互作用力。
(1)当0θθ=时,若粒子能从CD 边射出,求该粒子通过电场的时间t ;(2)当k 4E qEd =时,若粒子从CD 边射出电场时与轴线OO '的距离小于d ,求入射角θ的范围;(3)当k 83E qEd =,粒子在θ为22ππ-~范围内均匀射入电场,求从CD 边出射的粒子与入射粒子的数量之比0:N N 。
【答案】(1)0k 8cos 2d t E m θ=⋅;(2)3030θ︒︒-<<或66ππθ-<<;(3)05:0%N N = 【详解】(1)电场方向竖直向上,粒子所受电场力在竖直方向上,粒子在水平方向上做匀速直线运动,速度分解如图所示 粒子在水平方向的速度为0cos x v v θ=根据2k 12E mv =可知 k2E v m=解得0k88cos 2x d d m E t v θ==⋅(2)粒子进入电场时的初动能2k 0142E qEd mv ==粒子进入电场沿电场方向做减速运动,由牛顿第二定律可得qE ma =粒子从CD 边射出电场时与轴线OO '的距离小于d ,则要求 202(sin )ad v θ>解得 11sin 22θ-<<所以入射角的范围为3030θ︒︒-<<或66ππθ-<<(3)设粒子入射角为'θ时,粒子恰好从D 点射出,由于粒子进入电场时,在水平方向做匀速直线运动,在竖直方向反复做加速相同的减速运动,加速运动。
高中物理磁场大题(超全)

高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速度不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。
近年山东物理高考磁场真题

近年山东物理高考磁场真题近年来,物理高考一直是许多考生和家长们非常关注的话题。
而在山东地区的物理高考中,磁场是一个相对重要的知识点,也是考察学生物理素养和解决问题能力的一大难点。
下面就让我们来看一道近年山东物理高考磁场真题,帮助大家更好地理解和掌握这一知识点。
【真题】(2019年山东高考物理试题)两个细长的直立半无限长螺线管 X 和 Y 如图 1 所示。
管 X 在均匀磁场 B 0 中心区域内绕了 10 圈,而管 Y 在磁感应强度方向相同的均匀磁场 B 0 中心区域内绕了 15 圈。
管 X 和管 Y 均被匀强强度为 B 的匀强磁场所穿。
管 X 管内电阻为 R、管长为 L。
已知管 X 和管 Y 所包围的磁通量分别为ΦX 和ΦY,则下列说法正确的是( )。
A. 管 X 中电流的瞬时变化率总是比管 Y 大B. 管 Y 中感生电动势的最大值为L B ΦXC. 管 Y 中感生电动势的最大值为L B ΦYD. 管 X 中感生电动势最大值比管 Y 大【解析】首先,我们需要了解在磁场中的电磁感应规律。
磁通量的变化率决定感应电动势的大小,根据法拉第电磁感应定律,感应电动势的大小正比于磁通量的变化率。
因此,感应电动势的最大值与磁通量的变化率有关。
根据题目描述,管 X 绕了10圈,管 Y 绕了15圈,在磁场中穿过匀强磁场。
根据磁通量的计算公式Φ=B·S,其中 B 为磁感应强度,S为面积。
则管 X 所包围的磁通量为ΦX=B·10·S,管 Y 所包围的磁通量为ΦY=B·15·S。
对比选项可知,选项 B、C 中关于感应电动势最大值的描述存在错误。
根据上述推导,感应电动势的最大值应为L B Φ',其中Φ' 为磁通量的变化率。
而在匀强磁场中,管 X 和管 Y 绕线圈的匝数已经确定,因此管 X、管 Y 中感应电动势的最大值为:管 X:L B (ΦX - ΦX') = L B ΦX管 Y:L B (ΦY - ΦY') = L B ΦY因此,正确答案为选项 A,管 X 中电流的瞬时变化率总是比管 Y 大。
高考物理《磁场、磁感线、磁场的叠加》真题练习含答案

高考物理《磁场、磁感线、磁场的叠加》真题练习含答案1.[2024·浙江省湖州市月考]奥斯特通过实验证实了电流的周围存在着磁场.如图所示,闭合开关S后,位于螺线管右侧的小磁针和位于螺线管正上方的小磁针N极指向将分别是()A.向右,向左B.向左,向左C.向左,向右D.向右,向右答案:A解析:将通电螺线管等效成一条形磁铁,根据右手螺旋定则可知螺线管右侧为N极,左侧为S极,则位于螺线管右侧的小磁针N极指向右,位于螺线管正上方的小磁针N极指向左,A正确.2.安培曾经提出分子环形电流的假说来解释为什么磁体具有磁性,他认为在物质微粒的内部存在着一种环形的分子电流,分子电流会形成磁场,使分子相当于一个小磁体(如图甲所示).以下说法正确的是()A.这一假说能够说明磁可以生电B.这一假说能够说明磁现象产生的电本质C.用该假设解释地球的磁性,引起地磁场的环形电流方向如图乙所示D.用该假设解释地球的磁性,引起地磁场的环形电流方向如图丙所示答案:B解析:这一假说能够说明磁现象产生的电本质,即磁场都是由运动的电荷产生的,故B 正确,A错误;由右手螺旋定则可知,引起地磁场的环形电流方向应是与赤道平面平行的顺时针方向(俯视),C、D错误.3.[2024·江苏省无锡市、江阴市等四校联考]科考队进入某一磁矿区域后,发现指南针静止时,N 极指向为北偏东60°,如图虚线所示.设该位置地磁场磁感应强度的水平分量为B ,磁矿所产生的磁感应强度水平分量最小值为( )A .B 2 B .3B 2C .BD . 3 B 答案:B解析:磁矿所产生的磁场水平分量与地磁场水平分量垂直时,磁矿所产生的磁感应强度水平分量最小,为B′min =B cos 60°=32B ,B 正确.4.[2024·河北省邯郸市多校联考]如图所示为某磁场中部分磁感线的分布图,P 、Q 为磁场中的两点,下列说法正确的是( )A .P 点的磁感应强度小于Q 点的磁感应强度B .同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力C .同一线圈在P 点的磁通量一定大于在Q 点的磁通量D .同一线圈在P 点的磁通量一定小于在Q 点的磁通量 答案:B解析:磁感线的疏密程度表示磁感应强度的大小,由图可知,P 点的磁感应强度大于Q 点的磁感应强度,A 错误;电流元在磁场中的受力与放置方式有关,同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力,B 正确;磁通量大小不只与磁感应强度大小有关,还与线圈的放置方式有关,故同一线圈在P 、Q 两点的磁通量无法比较,C 、D 错误.5.[2024·陕西省西安市质检]在匀强磁场中,一根长为0.4 m 的通电导线中的电流为20 A ,这条导线与磁场方向垂直时,所受的磁场力为0.015 N ,则磁感应强度的大小为( )A .7.2×10-4 TB .3.75×10-3 TC .1.875×10-3 TD .1.5×10-3 T答案:C解析:根据安培力公式F =ILB ,代入数据求得B =F IL =0.0150.4×20 T =1.875×10-3 T ,C 正确.6.在磁感应强度为B 的匀强磁场中有一顺时针的环形电流,当环形电流所在平面平行于匀强磁场方向时,环心O 处的磁感应强度为B 1,如图甲所示;当环形电流所在平面垂直于匀强磁场方向时,环心O 处的磁感应强度为B 2,如图乙所示.已知B 1=22B 2,则环形电流在环心O 处产生的磁感应强度大小为( )A .12B B .BC .32 B D .2B答案:B解析:设环形电流中心轴线的磁感应强度大小为B′,根据安培定则可知其方向为垂直纸面向内,则有B 21 =B′2+B 2,B 2=B′+B ,解得环形电流在环心O 处产生的磁感应强度大小为B′=B ,B 项正确.7.如图所示,直角三角形abc 中,∠abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0.现再将一电流大小为4I 、方向垂直纸面向里的长直导线放置在顶点b 处.已知长直通电导线产生的磁场在其周围空间某点的磁感应强度大小B =k Ir ,其中I 表示电流大小,r 表示该点到导线的距离,k 为常量.则顶点c 处的磁感应强度( )A .大小为 3B 0,方向沿ac 向上 B .大小为B 0,方向垂直纸面向里C .大小为3B 0,方向沿∠abc 平分线向下D .大小为2B 0,方向垂直bc 向上 答案:A解析:令ac 间距为r ,根据几何知识可知bc 间距为2r ,由安培定则可知,a 点处电流产生的磁场在c 点处的磁感应强度方向垂直ac 向左,大小为B 0=k Ir .用安培定则判断通电直导线b 在c 点上所产生的磁场方向垂直于bc 斜向右上,大小为B b =k 4I 2r =2k Ir =2B 0.如图所示由几何知识可得θ=60°,根据矢量的合成法则,则有各通电导线在c 点的合磁感应强度,在水平方向上的分矢量B x =2B 0cos 60°-B 0=0在竖直方向上的分矢量B y =2B 0sin 60°= 3 B 0所以在c 点处的磁感应强度大小为 3 B 0,方向沿ac 向上.。
高中物理电磁场经典高考例题

1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06[重庆卷]24.(19分)有人设想用题24图所示的装置来选择密度相同、大小不同的球状纳米粒子。
粒子在电离室中电离后带正电,电量与其表面积成正比。
电离后,粒子缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域I,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B ,方向如图。
收集室的小孔O 3与O 1、O 2在同一条水平线上。
半径为r 0的粒子,其质量为m 0、电量为q 0,刚好能沿O 1O 3直线射入收集室。
不计纳米粒子重力。
(234,34r S r V ππ==球球)(1) 试求图中区域II 的电场强度;(2) 试求半径为r 的粒子通过O 2时的速率;(3) 讨论半径r ≠r 2的粒子刚进入区域II 时向哪个极板偏转。
答案:(1)E =B 00/2m U q ,方向竖直向上(2)v=r r /0v 0(3)r >r 0时,v <v 0,F 总>0,粒子会向上极板偏转;r <r 0时,v >v 0,F 总<0,粒子会向下极板偏转;06[全国卷II]25(20分)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,磁场方向均垂直于纸面向里,且B 1>B 2。
一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件答案:粒子在整个过程中的速度大小恒为V ,交替地在xy 平面内B 1与B 2磁场区域中做匀速圆周运动,轨道都是半个圆周。
设粒子的质量和电荷量的大小分别为m 和q ,圆周运动的半径分别为r 1和r 2,有r 1=m V q B 1, ①r 2=m V q B 2。
②现分析粒子运动的轨迹。
如图所示,在xy 平面内,粒子先沿半径为r 1的半圆C 1运动至y 轴上离O 点距离为2 r 1的A 点,接着沿半径为r 2的半圆D 1运动至O 1点,OO 1的距离d =2(r 2-r 1)。
③此后,粒子每经历一次“回旋”(即从y 轴出发沿半径为r 1的半圆和半径为r 2的半圆回到原点下方的y 轴),粒子的y 坐标就减小d 。
设粒子经过n 次回旋后与y 轴交于O n 点,若OO n 即nd 满足nd=2r1,④则粒子再经过半圆C n+1就能经过原点,式中r=1,2,3,……为回旋次数。
由③④式解得r1 r2=nn+1n=1,2,3,……⑤联立①②⑤式可得B1、B2应满足的条件:B1 B2=nn+1n=1,2,3,……⑥评分参考:①、②式各2分,求得⑤式12分,⑥式4分。
解法不同,最后结果得表达式不同,只要正确的,同样得分。
06[北京卷]20.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为I2若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上。
两个微粒所受重力均忽略。
新微粒运动的A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pb,至屏幕的时间将等于tD.轨迹为pa,至屏幕的时间将大于t答案:D07四川卷如图所示,长方形abcd 长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=。
一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在Oa边和ab边D。
.从aO边射入的粒子,出射点分布在ab边和be边07天津卷如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。
一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是A.3v2aB,正电荷 B.v2aB,正电荷C. 3v2aB ,负电荷 D.v2aB,负电荷海南卷粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电。
让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动。
已知磁场方向垂直纸面向里。
以下四个图中,能正确表示两粒子运动轨迹的是(A)07宁夏卷在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。
设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 211/2v m qBv d = 解得:12qBdv m=⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O /Q =R /。
由几何关系得: /OQO ϕ∠= //OO R R d =+- 由余弦定理得:2/22//()2cos OO R R RR ϕ=+- 解得:[]/(2)2(1cos )d R d R R d ϕ-=+-设入射粒子的速度为v ,由2/v m qvB R= 解出:[](2)2(1cos )qBd R d v m R d ϕ-=+-07全国卷Ⅰ两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x 和y 轴,交点O 为原点,如图所示。
在y>0,0<x<a 的区域有垂直于纸面向内的匀强磁场,在y>0,x>a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。
在O 点出有一小孔,一束质量为m 、带电量为q (q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。
入射粒子的速度可取从零到某一最大值之间的各种数值。
已知速度最大的粒子在0<x<a 的区域中运动的时间与在x>a 的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的周期。
试求两个荧光屏上亮线的范围(不计重力的影响)。
解:对于y 轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a 相切,此时r=a ,y 轴上的最高点为y=2r=2a ;对于 x 轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a 相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x 轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c 和c ’ 由对称性得到 c ’在 x 轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足1225t t = 12712t t T +=解得116t T = 2512t T =由数学关系得到:32R a = OP=2a+R代入数据得到:3OP=2(1+)3a 所以在x 轴上的范围是32a x 2(1+)3a ≤≤ 07全国卷Ⅱ如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E 。
在其他象限中存在匀强磁场,磁场方向垂直纸面向里。
A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为l 。
一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而同过C 点进入磁场区域,并在此通过A 点,此时速度与y 轴正方向成锐角。
不计重力作用。
试求:(1)粒子经过C 点是速度的大小和方向; (2)磁感应强度的大小B 。
(1)以a 表示粒子在电场作用下的加速度,有qE =ma ○1 加速度沿y 轴负方向。
设粒子从A 点进入电场时的初速度为v 0,由A 点运动到C 点经历的时间为t ,则有212h at =○2 0l v t = ○3 由○2○3式得 02av h=○4设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah = ○5 由○1○4○5式得 222201(4)2qE h l v v v mh+=+=○6设粒子经过C 点时的速度方向与x 轴夹角为α,则有1tan v v α=○7 由○4○5○7式得2arctanhlα= ○8(2)粒子从C 点进入磁场后在磁场中做速率为v 的圆周运动。
若圆周的半径为R ,则有 2v qvB m R= ○9设圆心为P ,则PC 必与过C 点的速度垂直,且有PC PA R ==。
用β表示PA 与y 轴的夹角,由几何关系得cos cos R R h βα=+ ○10 sin sin R l R βα=- ○11 由○8○10○11式解得 222242h l R h l hl+=+○12 由○6○9○12式得 222lmhEB h l q=+。
07江苏卷磁谱仪是测量α能谱的重要仪器。
磁谱仪的工作原理如图所示,放射源S发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上。
(重力影响不计)(1)若能量在E∽E+ΔE(ΔE>0,且ΔE<<E)范围内的α粒子均垂直于限束光栏的方向进入磁场。
试求这些α粒子打在胶片上的范围Δx 1 .(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场。
试求能量均为E的α粒子打到感光胶片上的范围Δx2江苏卷如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m,现有一边长l=0.2m、质量m=0.1kg、电阻R=Ω的正方形线框MNOP以v0=7m/s 的初速从左侧磁场边缘水平进入磁场,求(1)线框MN边刚进入磁场时受到安培力的大小F。
(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q。
(3)线框能穿过的完整条形磁场区域的个数n。
08.(江苏卷)14.(16分)在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O点静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到x轴距离的2倍,重力加速度为g.求:(1)小球运动到任意位置P(x,y)处的速率v.(2)小球在运动过程中第一次下降的最大距离y m.)的匀强电(3)当在上述磁场中加一竖直向上场强为E(mgEq场时,小球从O静止释放后获得的最大速率v m.14.(1)洛仑兹力不做功,由动能定理得,mv2……①mgy=12得 v=2gy ……② (2)设在最大距离y m 处的速率为v m ,根据圆周运动有,qv m B-mg =m 2m v R……③ 且由②知 2m m v gy = ……④由③④及R =2y m 得 2222m m g y q B= ……⑤ (3)小球运动如图所示,由动能定理 (qE-mg )|y m |=212m mv ……⑥由圆周运动 qv m B +mg-qE=m 2m v R ……⑦且由⑥⑦及R =2|y m |解得v m =2()qE mg qB- 08.(天津卷)23.(16分)在平面直角坐标系xOy中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。