workbench瞬态动力分析

合集下载

AnsysWorkbench动力学分析幻灯片

AnsysWorkbench动力学分析幻灯片

A(i) 描述了系统做第 i 阶主振动时具有的振动形态,称为第 i 阶主振型,或第 i 阶模态。
系统在各个坐标上都将以第 i 阶模态频率 ? 0i 做简谐振动,并且同时通过静平衡位置。
28
? 第三节 模态分析步骤
实例 – 目标: 在这个练习,我们的目标是研究在一定
的约束条件下如图所示的机架的模态,得到其振动特性。
26
? ? ? 2n 0
?
a1
2( n?1) 0
?
?
? an?1
2 0
?
an
?
0
频率方程或特征多项式
解出 n 个值,按升序排列为:
? ? ? 0 ?
2 01
?
2 02
?
?
?
2 0n
? 0i :第 i 阶固有频率
? 01 :基频。
仅取决于系统本身的刚度、质量等物理参数。
? ? ? ? ? 将每一个? 0i 代入方程 ([K] ? 02[M ]) x ? 0
x2 ? x1) (x2 ? x1
)
? ? ?
m1?x?1 m2 ?x?2
? (k1 ? ? k2 x1
k2 )x1 ? (k2
? ?
k2 x2 k3 ) x2
?0 ?0
方程组用矩阵表达为:
?m1
? ?
0
0 m2
?? ?? ??
?x?1 ?x?2
? ? ?
?
?k1 ? k2
? ?
?
k2
? k2
k2 ? k3
50
100
150
200
250
300
Acceleration (cm 2 400

Workbench瞬态热分析

Workbench瞬态热分析

Workbench瞬态热分析问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。

分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。

传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。

传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。

热分析类型主要有稳态热分析和瞬态热分析。

稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。

在稳态热分析中,任意节点的温度不随时间的变化而变化。

一般来说,在稳态热分析中所需要的唯一材料属性是热导率。

在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。

在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。

在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。

接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。

由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。

二、分析思路及流程在分析中,我们忽略空气的流动。

先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。

分析流程如下图所示:三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。

由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。

ansys_workbench瞬态动力分析(4)分析

ansys_workbench瞬态动力分析(4)分析

积分时间步长
Training Manual
• AUTOTS对于全瞬态分析缺省是打开的. 对于缩 减法和模态叠加法,是不可用的. • AUTOTS 会减小ITS (直到 Dtmin) 在下列情况:
– – – – – – 在响应频率处,小于20个点 求解发散 求解需要大量的平衡迭代(收敛很慢) 塑性应变在一个时间步内累积超过15% 蠕变率超过0.1 如果接触状态要发生变化 ( 决大多数接触单元可由 KEYOPT(7) 控制)
缩减/完整结构矩阵
Training Manual
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。
Training Manual
DYNAMICS 11.0
• 求解方法
– 完整矩阵方法为缺省方法。允许下列非 线性选项:
• 大变形 • 应力硬化 • Newton-Raphson 解法
• 集中质量矩阵
– 主要用于细长梁和薄壁壳或波的传播
• 方程求解器
– 由程序自行选择
分析选项
• 求解选项 • 选择大位移瞬态分析 或小变形瞬态分析 .
DYNAMICS 11.0
• 完整矩阵:
– 不进行自由度缩减,采用完整的[K]、[C]和[M]矩阵; – 下面的讨论都是基于此种方法。
积分时间步长
Training Manual
• 积分时间步长(亦称为ITS 或 Dt )是时间积 分法中的一个重要概念
– ITS = 两个时刻点间的时间增量 Dt ; – 积分时间步长决定求解的精确度,因而其数值应仔 细选取。 – 对于缩减矩阵法与模态叠加法瞬态分析ANSYS 只 允许ITS常值. – 完全法瞬态分析, ANSYS 可以自动调整时间步大 小在用户指定的范围内

ansysworkbench瞬态动力学实例

ansysworkbench瞬态动力学实例

在本文中,我将为您撰写一篇关于ANSYS Workbench瞬态动力学实例的文章。

我们将深入探讨ANSYS Workbench在瞬态动力学仿真方面的应用,从简单到复杂、由浅入深地讨论其原理和实践操作,并共享个人观点和理解。

第一部分:介绍ANSYS Workbench瞬态动力学仿真ANSYS Workbench是一种用于工程仿真的全面评台,包含了结构、流体、热传递、多物理场等多种仿真工具。

瞬态动力学仿真是ANSYS Workbench的重要应用之一,它能够模拟在时间和空间上随机变化的动力学过程,并对结构在外部力作用下的动力响应进行分析。

在瞬态动力学仿真中,ANSYS Workbench可以模拟诸如碰撞、冲击、振动等动态载荷下的结构响应,用于评估零部件的耐久性、振动特性、动态稳定性等重要工程问题。

通过对这些现象的模拟和分析,工程师可以更好地了解结构在实际工况下的性能,进而进行有效的设计优化和改进。

第二部分:实例分析为了更直观地展示ANSYS Workbench瞬态动力学仿真的应用,我们以汽车碰撞仿真为例进行分析。

假设我们需要评估汽车前部结构在碰撞事故中的动态响应,我们可以通过ANSYS Workbench建立汽车前部结构的有限元模型,并对其进行碰撞载荷下的瞬态动力学仿真。

我们需要构建汽车前部结构的有限元模型,包括车身、前保险杠、引擎盖等部件,并设定材料属性、连接方式等。

接下来,我们可以在仿真中引入具体的碰撞载荷,如40km/h车速下的正面碰撞载荷,并进行瞬态动力学仿真分析。

通过仿真结果,我们可以获取汽车前部结构在碰撞中的应力、应变分布,以及变形情况,从而评估其在碰撞事故中的性能表现。

第三部分:个人观点与总结通过以上实例分析,我们可以看到ANSYS Workbench瞬态动力学仿真在工程实践中的重要应用价值。

瞬态动力学仿真不仅能够帮助工程师分析结构在动态载荷下的响应,还可以为设计优化、安全评估等工程问题提供重要参考。

workbench瞬态动力分析

workbench瞬态动力分析

Dx IT20 L 波长方向的长度 c 弹性波速 E 杨氏模量 E

质量密度
非线性响应
• 非线性响应
–全瞬态分析可包括任何非线性类型. – 更小的 ITS 通常有助于平衡迭代收敛. – 塑性、蠕变及摩擦等非线性本质上是非保守的,需 要精确地遵循载荷加载历程.小的 ITS 通常有助于精 确跟踪载荷历程. – 小的ITS可跟踪接触状态的变化.
– 模态叠加法 – 直接积分法
• 运动方程可以直接对时间按步积分。在每个时间点(time = 0, Dt , 2Dt, 3Dt,….) ,需求解一组联立的静态平衡方程 (F=ma);
– 需假定位移、速度和加速度是如何随时间而变化的, (积分方案选择) – 有多种不同的积分方案,如中心差分法,平均加速度 法, Houbolt, WilsonQ, Newmark 等.
积分时间步长
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置 初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
缩减/完整结构矩阵
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。

ANSYS workbench齿轮啮合瞬态动力学分析

ANSYS workbench齿轮啮合瞬态动力学分析

ANSYS workbench齿轮啮合瞬态动力学分析齿轮传动是机械系统传动方式中应用最为广泛的一种,今天给介绍一下如何利用workbench实现齿轮啮合的瞬态动力学分析。

有限元分析流程分为3大步、3小步,如下图所示。

今天将以这种方式介绍使用workbench实现齿轮啮合的分析流程。

图1 有限元分析流程一、前处理1.1 几何模型的构建本文几何模型在SolidWorks中创建,并导入workbench中,如图所示图2 齿轮对几何模型1.2 材料定义材料选用结构钢:密度:7850kg/m3,杨氏模量:2.1e11Pa,泊松比:0.31.3 有限元模型的构建有限元模型的构建包括材料赋予、网格划分以及连接关系的构建1.3.1 材料赋予双击瞬态动力学分析流程中的Model,进入Mechanical界面,单击项目树Geometry 下的两个零件,左下角细节框中,Material处指派steel材料1.3.2 网格划分为便于分析及收敛,对网格进行一个简单的控制:首先在左侧项目树Mesh处插入一个method,选中两个齿轮,划分方法为MultiZone;然后插入两个Size,对几个参与啮合的齿面进行尺寸控制,得到了如图所示的网格模型。

图3 网格模型1.3.3 连接关系的构建连接关系包括两部分:接触和运动副,运动副可以实现齿轮的转动,接触可以实现齿轮的传力。

由于workbench会自动创建向邻近位置之间的接触,但默认接触为绑定接触,不符合实际情况,故直接删除,后续手动创建相应接触。

首先在左侧项目树Connections下插入一个Frictional contact,接触面选择其中一个齿轮参与接触的几个齿面,目标面选择另一个齿轮参与接触的几个齿面。

摩擦系数为0.15,Normal Stiffness为1,Update Stiffness为Each iteration,Time Step Controls为Automatic Bisection。

第9章 WORKBENCH中的动力学分析简介课堂

第9章 WORKBENCH中的动力学分析简介课堂
第9章
WORKBENCH 中的 动力学分析简介
第九章
WORKBENCH 中的动力学分析简介
第一节 ANSYS WorkBench 概述 第二节 WorkBench 中的模态分行 第三节 WorkBench 中的谐响应分析
Training Manual
DYN
WORKBENCH 中的动力学分析
第一节 ANSYS WORKBENCH 概述
Availability x x x x x
… 接触域
Training Manual
? 在模态分析中,接触对是可能出现的 . 但是,由于模态分析是纯粹的线 性分析,所以接触对不同于非线性分析中的接触类型 , 如下所示:
Contact Type
Static Analysis
Initially Touching
DYN
– 或者,用户也可以直接从 CAD 系统中进入
WORKBENCH 中的动力学分析
… ANSYS WORKBENCH 概述
Training Manual
ANSYS Workbench 起始界面
? 进入ANSYS Workbench 以后,出现起始页面,用户可以使用上面的选项 : DYN
尽管运行 DS 需要LICENSE ,启 动开始页面却不需要
– 线性应力: ? 误差估计、应力、安全系数 等,基于承受静力载荷下的 材料强度理论
– 模态: ? 计算包括预应力结构在内的 系统固有频率(自由振动)
– 热传递: ? 求解温度场和热流场的稳态 热分析,允许与温度相关的 热传导和对流,支持热应力 分析
Training Manual
DYN
WORKBENCH 中的动力学分析
– DS是用ANSYS的求解器,做结构或热分析。 – DM用来建立CAD几何模型,为分析作准备 – DX和DXVT用于研究变量的输入(如几何、载荷)对响应(如应力、频

WORKBENCH中的动力学分析简介

WORKBENCH中的动力学分析简介

…求解结果
• 对应于Frequency Finder 分支得ANSYS 命令如下:
– 假如Frequency Finder 分支被选上, 对应于ANTYPE,MODAL 命令 – 定义模态得阶数使用 nmodes 命令, 定义“搜索频率”得最小和最大范围使
用MODOPT,,nmodes,freqb,freqe 命令得freqb 和 freqe,振型被放大通过 MXPAND 命令、 为了节省磁盘空间和计算时间,单元求解选项不能打开,除 非需要得到应力或者应变结果、
影响。 – FE Modeler 用来把Nastran得网格转化到ANSYS中使用。
WORKBENCH中得动力学分析
… ANSYS WORKBENCH概述
Design Simulation ANSYS Workbench
DesignXplorer
DesignModeler
FE Modeler
WORKBENCH中得动力学分析
– 边界条件对于模态分析来说,就是很重要得。因为她们能影响部件得振型和固 有频率、 因此需要仔细考虑模型就是如何被约束得、
– 压缩约束就是非线性得,因此在此分析中将不能被使用、 • 如果存在得话, 压缩约束通常会表现出与无摩擦约束相似、
ANSYS License DesignSpace Entra DesignSpace Professional Structural Mechanical/Multiphysics
们会转化为绑定或者无间隙接触方式来替代并产生作用、
– 假如有间隙存在, 非线性得接触行为将就是自由无约束得(也就就是说, 好像 就是没有接触一样)、 绑定得和无间隙得接触将取决于pinball 区域得大小、
• pinball 区域由缺省值自动产生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 模态叠加法 – 直接积分法
• 运动方程可以直接对时间按步积分。在每个时间点 (time = 0, Dt , 2Dt, 3Dt,….) ,需求解一组联 立的静态平衡方程(F=ma);
– 需假定位移、速度和加速度是如何随时间而变 化的, (积分方案选择)
– 有多种不同的积分方案,如中心差分法,平均 加速度法, Houbolt, WilsonQ, Newmark 等.
积分时间步长
• 积分时间步长(亦称为ITS 或 Dt )是时 间积分法中的一个重要概念
– ITS = 两个时刻点间的时间增量 Dt ; – 积分时间步长决定求解的精确度,因而其数
值应仔细选取。
– 对于缩减矩阵法与模态叠加法瞬态分析 ANSYS 只允许ITS常值.
– 完全法瞬态分析, ANSYS 可以自动调整时 间步大小在用户指定的范围内
求解方法
• 时间积分方案 – 两种积分方案 Newmark 和 HHT. 缺省为 Newmark
• 不同的a 和d 造成积分方案的变化 (隐式 / 显式 / 平均加速度 ).
• Newmark 是隐式积分方案. • ANSYS/LS-DYNA 利用显式积分方案.
求解方法
• 时间积分方案 - HHT 方法 :
fc 接触频率 k 间隙刚度 m 有效质量
并且冲击可能不是完全弹性的。
波传播
• 波传播
– 由冲击引起。在细长结 构中更为显著(如下落
ITS Dx 3c
Dx 单元尺寸 L / 20
时以一端着地的细棒) L 波长方向的长度
– 需要很小的ITS ,并且 在波传播方向需要精细
c 弹性波速 E
Newmark 方法是求解 t n+1时刻的运动方 程
HHT 方法 –求解中间时间点的运动 方程然后外推到 t n+1.
(Note: 缺省HHT方法 am = 0 )
求解方法
• 时间积分方案 - 时间积分参数, γ, a, d, af, am, 通过求解控制选项输入
– TRNOPT, FULL ,,, ,, NMK|HHT Newmark
HHT法可以通过简单指定GAMMA值或指定ALPHAF与 ALPHAM可以得到其他的方法
Hilber, Hughes and
Taylor
(HHT)
Wood, Bossack and Zienkiewicz
Chung and Hulbert
缩减/完整结构矩阵
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
积分时间步长
• ITS 小到足够获取下列动力学现象:
– 响应频率 – 载荷突变 – 接触频率 – 波传播效应
响应频率
• 响应频率
– 不同类型载荷激发系统不同的响 应频率;
– ITS小到足够获取所关心的最高 响应频率(最低响应周期);
– 每个循环中有20个时刻点应是足 够的,即:
Dt = 1/20f
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度
的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。
• 完整矩阵:
– 不进行自由度缩减,采用完整的[K]、[C]和[M]矩阵; – 下面的讨论都是基于此种方法。
• 这是动力学最通常的方程形式, 载荷可以是任意随时间变化的.
• 按照求解方法, ANSYS 允许在 瞬态动力分析中包括各种类型的 非线性 —— 大变形、接触、塑性 等等.
求解方法
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法 缩减矩阵法
完整矩阵法 缩减矩阵法
求解方法
• 两种求解运动学方程方法:
积分时间步长ቤተ መጻሕፍቲ ባይዱ
• AUTOTS对于全瞬态分析缺省是打开的. 对于缩 减法和模态叠加法,是不可用的.
• AUTOTS 会减小ITS (直到 Dtmin) 在下列情况:
– 在响应频率处,小于20个点 – 求解发散 – 求解需要大量的平衡迭代(收敛很慢) – 塑性应变在一个时间步内累积超过15% – 蠕变率超过0.1 – 如果接触状态要发生变化 ( 决大多数接触单元可由 KEYOPT(7) 控制)
! 缺省
– [TINTP,GAMMA,ALPHA,DELTA,THETA ,,, ,,,
ALPHAF,ALPHAM]
指定 GAMMA 或 ALPHAF/ALPHAM
0 < af < 0.5 am < af
求解方法
• 时间积分方案 – 为了稳定性与精度要求,下列关系需满足. (HHT 方法退化成 Newmark 当af与am =0时)
Training Manual
第四章 瞬态动力分析
瞬态动力分析总论
• 定义:
– 确定结构在任意随时间变化载荷作用下 系统瞬态响应特性的技术。
• 输入数据:
– 最一般形式是载荷为时间的任意函数;
• 输出数据:
– 随时间变化的位移和其它的导出量,如: 应力和应变。
运动方程
• 基本运动方程
M uCuKu Ft
式中 ,f 是所关心的最高响应频率。
响应周期
载荷突变
• 载荷突变
– ITS 小到足够获取
Load
载荷突变现象
t
Load
t
接触频率
• 接触频率
– 当两个物体发生接触,间隙或 接触表面通常用刚度(间隙刚
ITS 1 30 fc

度)来描述; ITS小到足够获取间隙“弹簧”
fc
1
2
k m
频率;
– 建议每个循环三十个点,才足 以获取两物体间的动量传递。 更小的ITS 会造成能量损失,
的网格
E 杨氏模量
– 显式积分法(在
质量密度
ANSYS-LS/DYNA采用)
可能对此更为适用
非线性响应
• 非线性响应
– 全瞬态分析可包括任何非线性类型. – 更小的 ITS 通常有助于平衡迭代收敛. – 塑性、蠕变及摩擦等非线性本质上是非保守的,需要精确地遵循载荷加
载历程.小的 ITS 通常有助于精确跟踪载荷历程. – 小的ITS可跟踪接触状态的变化.
积分时间步长
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置
初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
相关文档
最新文档