数据结构上机试题
数据结构上机题

数据结构上机题正文:一、题目描述根据给定的需求,设计并实现一个数据结构,用于解决特定的问题。
二、问题分析1、输入:a) 数据规模:给定的数据规模(例如.10^5)b) 输入格式:输入的数据格式(例如:一行一个整数)c) 输入限制:输入数据的限制条件(例如:输入整数范围在0到100之间)2、需求:a) 需求描述:具体要求及其功能(例如:实现一个栈数据结构,并完成push、pop、top等操作)b) 需求分析:对需求进行分析、理解,确定实现思路3、思路:a) 思路描述:实现的思路(例如:使用数组实现一个栈,利用栈的特点进行push、pop等操作)b) 算法分析:分析算法的时间复杂度、空间复杂度(例如:push操作的时间复杂度是O(1))三、数据结构设计1、数据结构描述:对设计的数据结构进行详细的描述、定义(例如:栈是一种先进后出的数据结构,提供push、pop等操作)2、数据结构实现:具体实现细节(例如:使用数组实现栈,使用指针实现链表等)四、主要函数设计1、函数1:函数描述、输入参数、返回值(例如:push函数用于将元素压入栈中,输入参数是要入栈的元素,返回值是操作是否成功)2、函数2:函数描述、输入参数、返回值(例如:pop函数用于将栈顶元素弹出,输入参数为空,返回值是弹出的元素)五、实验步骤1、步骤1:描述具体实验步骤、流程(例如:首先创建一个空栈)2、步骤2:描述具体实验步骤、流程(例如:依次进行push、pop等操作)3、:::六、实验结果与分析1、结果描述:实验结果(例如:对于给定的数据规模,push、pop等操作的效率)2、结果分析:对实验结果进行分析和讨论(例如:通过比较不同数据规模下的性能表现,得出结论:在较大数据规模下,该数据结构的性能较优)七、总结与展望1、总结:总结本次实验的目的、内容、方法和结果(例如:本次实验主要实现了一个栈数据结构,并验证了其性能优势)2、展望:对进一步的研究和改进提供展望(例如:可以进一步探索不同数据结构的实现方式,比较其性能差异)附件:1、附件1:示例代码实现2、附件2:示例数据集法律名词及注释:1、法律名词1:注释说明(例如:该法律名词的定义和含义)2、法律名词2:注释说明(例如:该法律名词的定义和含义)。
数据结构上机考试题目

选择题在数据结构中,栈(Stack)是一种什么类型的数据结构?A. 线性B. 树形C. 图形D. 非线性但非树形答案:A在二叉树中,每个节点最多有几个子节点?A. 1B. 2C. 3D. 取决于树的层次答案:B以下哪项是哈希表(Hash Table)的主要优点?A. 存储密度大B. 插入和删除元素快C. 支持随机存取D. 存储空间利用率高答案:B哪种数据结构适用于需要频繁插入和删除操作的场景?A. 数组B. 链表C. 栈D. 队列答案:B在图的表示中,什么用于表示节点之间的关系?A. 节点B. 边C. 顶点D. 权重答案:B以下哪种排序算法的时间复杂度是O(n log n)?A. 冒泡排序B. 选择排序C. 插入排序D. 快速排序答案:D填空题在数据结构中,________是一种特殊的线性数据结构,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。
答案:队列(Queue)在树形结构中,除了根节点外,每个节点都有________个父节点。
答案:一________是一种基于比较的排序算法,通过不断将待排序的序列分割成独立的子序列,并对子序列进行排序,最后将有序子序列合并得到完全有序的序列。
答案:归并排序(Merge Sort)在图的遍历中,________遍历是一种深度优先的遍历算法,它沿着树的深度遍历树的节点,尽可能深地搜索树的分支。
答案:深度优先(Depth-First Search)哈希表是通过________函数将关键字映射到表中的位置来存储数据的。
答案:哈希(Hash)在链表中,________用于指向链表中的下一个节点。
答案:指针(Pointer)简答题简述数据结构的定义及其重要性。
答案:数据结构是计算机存储、组织数据的方式。
它指相互之间存在一种或多种特定关系的数据元素的集合。
数据结构的重要性体现在它是计算机程序设计中不可或缺的一部分,它直接影响到程序的运行效率、数据存储的合理性以及数据操作的便捷性。
数据结构上机例题及答案

习题二⒉1描述以下四个概念的区别:头指针变量,头指针,头结点,首结点(第一个结点)。
解:头指针变量和头指针是指向链表中第一个结点(头结点或首结点)的指针;在首结点之前附设一个结点称为头结点;首结点是指链表中存储线性表中第一个数据元素的结点。
若单链表中附设头结点,则不管线性表是否为空,头指针均不为空,否则表示空表的链表的头指针为空。
2.2简述线性表的两种存储结构有哪些主要优缺点及各自使用的场合。
解:顺序存储是按索引直接存储数据元素,方便灵活,效率高,但插入、删除操作将引起元素移动,降低了效率;而链式存储的元素存储采用动态分配,利用率高,但须增设表示结点之间有序关系的指针域,存取数据元素不如顺序存储方便,但结点的插入和删除十分简单。
顺序存储适用于线性表中元素数量基本稳定,且很少进行插入和删除,但要求以最快的速度存取线性表中的元素的情况;而链式存储适用于频繁进行元素动态插入或删除操作的场合。
2.3 在头结点为h的单链表中,把值为b的结点s插入到值为a的结点之前,若不存在a,就把结点s插入到表尾。
Void insert(Lnode *h,int a,int b){Lnode *p,*q,*s;s=(Lnode*)malloc(sizeof(Lnode));s->data=b;p=h->next;while(p->data!=a&&p->next!=NULL){q=p;p=p->next;}if (p->data==a){q->next=s;s->next=p;}else{p->next=s;s->next=NULL;}}2.4 设计一个算法将一个带头结点的单链表A分解成两个带头结点的单链表A和B,使A 中含有原链表中序号为奇数的元素,而B中含有原链表中序号为偶数的元素,并且保持元素原有的相对顺序。
Lnode *cf(Lnode *ha){Lnode *p,*q,*s,*hb;int t;p=ha->next;q=ha;t=0;hb=(Lnode*)malloc(sizeof(Lnode));s=hb;while(p->next!=NULL){if (t==0){q=p;p=p->next;t=1;}else{q->next=p->next;p->next=s->next; s->next=p; s=p;p=p->next; t=0;}}s->next=NULL;return (hb);}2.5设线性表中的数据元素是按值非递减有序排列的,试以不同的存储结构,编写一算法,将x插入到线性表的适当位置上,以保持线性表的有序性。
数据结构上机考试题目及要求

数据结构上机实验考试标准一、评分标准:1.根据考试完成情况,参考平时上机情况评定优、良、中、及格、不及格5个档。
2.成绩分布比例近似为:优15%、良30%、中30%、及格20%、不及格<10%二、评分原则:1.充分参考平时实验完成情况,结合如下原则给出成绩;2.只完成第一题,成绩为良以下成绩(中、及格),若平时上机情况很好,可以考虑良好;3.两道题都完成,成绩为良及以上(优、良),根据完成质量和完成时间给成绩;4.如未完成任何程序,则不及格(根据平时成绩将不及格率控制在10%以下);三、监考要求:1.考试前,要求学生检查电脑是否工作正常,如果不正常及时解决,待所有考生均可正常考试后再发布试题。
2.平时上机完成的程序可以在考试过程直接调用,在考试开始前复制到硬盘当中,考试过程中可以看教材。
3.考试开始后向学生分发考题的电子文档,同时宣读试题,学生可以通过网络或磁盘拷贝试题。
4.考试开始十五分钟之后把网络断开,学生不得再使用任何形式的磁盘。
5.程序检查时,记录其完成时间和完成情况。
除检查执行情况外,还要求学生对代码进行简要讲解,核实其对代码的理解情况和设计思想,两项均合格方视为试题完成。
6.完成考试的学生须关闭电脑立刻离开考场,考试成绩由教务办统一公布,负责教师不在考试现场公布成绩。
数据结构上机实验考试题目(2011年12月23日)题目1.设C={a1,b1,a2,b2,…,a n,b n}为一线性表,采用带头结点的单链表hc(hc为C链表的头指针)存放,设计一个算法,将其拆分为两个线性表(它们都用带头结点的单链表存放),使得:A={a1,a2,…,a n},B={b n,b n-1,…,b1}。
[例] C链表为:C={1,2,3,4,5,6,7,8,9,10}拆分后的A、B链表如下:A={1,3,5,7,9},B={10,8,6,4,2}。
要求:算法的空间复杂度为O(1)。
即利用C链表原来的空间。
数据结构上机答案(c语言版)

数据结构上机答案(c语言版)实习一:1、编写一个读入一个字符串,把它存入一个链表,并按相反的次序打印的程序。
2、设有一个单位的人员工资有如下信息:name、department、base pay、allowance、total。
现从键盘输入一组人员工资数据并将它们存储到名为paydata的文件中;再从paydata取出工资数据并给每个人的base pay增加100元,增加后将工资数据显示于屏幕(每行1人)。
请编写能够完成上述工作的程序。
代码如下:1.#include#include#includevoid main(){char x;struct node //定义个结构node{char c;struct node *next;};struct node *head,*pb,*pf,*p,*s,*t; //定义指针printf("请输入字符串,按Enter结束!\n");for(int i=0;x!='\n';i++){pb=(struct node *)malloc(sizeof(struct node));//动态分配n字节的内存空间scanf("%c",&pb->c); //输入字符x=pb->c;if(i==0){ //输入的首个字符作为头结点pfhead=pb;pf=head;}else if(pb->c!='\n'){ //如果输入的是Enter,输入终止,否则把字符依次存入链表pf->next=pb; //把输入的字符pb存在pf后,pb后为空pb->next=NULL;pf=pb;//pb赋给pf,重复上述操作p=head;}}for(;p!=NULL;p=p->next)s=p; //把指向链表的最后一个字符的指针赋给sprintf("输出结果为:\n");printf("%c",s->c);//输出链表的最后一个字符for(p=head;s!=head;)//若s==head,该链表只有一个字符。
数据结构上机考题

05信管《数据结构》上机考题(A卷)
学号:姓名:成绩:
试题:建立一个数据为整型的单链表L,然后将该链表中数据域值最小的那个结点移到链表的最前端。
要求与评分标准:
第一步:建立单链表(30分)
第二步:显示该单链表(10分)
第三步:查找链表中数据域值最小的结点,并将它移到链表的最前端(50分)第四步:显示该单链表,检查上述操作是否成功(10分)
05信管《数据结构》上机考题(B卷)
学号:姓名:成绩:
试题:在一个递增有序的顺序表中插入一个元素,使插入之后仍有序。
要求与评分标准:
第一步:建立一个递增有序的顺序表,注:可以在输入数据时按递增的顺序输入(30分)
第二步:显示该顺序表(10分)
第三步:在顺序表中找到合适的位置插入指定的元素,使插入之后仍有序(50分)第四步:显示该顺序表,检查上述操作是否成功(10分)
05信管《数据结构》上机考题(C卷)
学号:姓名:成绩:
试题:已知单链表L中的元素递增有序,请用高效的办法删除L中元素值大于mink且小于maxk的所有结点(注:mink和maxk由形参给出,它们与链表的数据域同类型且mink且小于maxk)
要求与评分标准:
第一步:建立递增有序的单链表L(30分)
第二步:显示该单链表(10分)
第三步:用高效的办法删除L中元素值大于mink且小于maxk的所有结点(50分)
第四步:显示该单链表,检查上述操作是否成功(10分)。
数据结构机考题库汇总

数据结构机考题库汇总1、在下列对顺序表进行的操作中,算法时间复杂度为O(1)的是(A)。
选项A)访问第i个元素的前驱(1i=n)选项B)在第i个元素之后插入一个新元素(1=i=n)选项C)删除第i个元素(1=i=n)选项D)对顺序表中元素进行排序顺序表是随机存取结构,选项A中实质是查找第i个结点和第i一1个结点,因此时间复杂度为O(1);选项B和C插入和删除都需要移动元素,时间复杂度为O(n);选项D是排序问题,时间复杂度是O(n)~O(n2)。
2、不带头结点的单链表head为空的判定条件是(A)。
选项A)head==NULL选项B)head-next==NULL选项C)head-next==head选项D)head!=NULL在不带头结点的单链表head中,head指向第一个元素结点,head=NULL表示该链表为空。
3、在一个长度为n的顺序表中,在第i个元素之前插入一个新元素时,需向后移动(B)个元素。
选项A)n-i选项B)n-i+1选项C)n-i-1选项D)ii之前共有(i-1)个元素,所以,需移动(n-(i-1))个元素。
4、某程序的时间复杂度为(3n+nlog2n+n2+8),其数量级表示为(C)。
选项A)O(n)选项B)O(nlog2n)选项C)O(n2)选项D)O(log2n)5、在以下的叙述中,正确的是(C)。
选项A)线性表的顺序存储结构优于链表存储结构选项B)线性表的顺序存储结构适用于频繁插入删除数据元素的情况选项C)线性表的链表存储结构适用于频繁插入删除数据元素的情况选项D)线性表的链表存储结构优于顺序存储结构6、对一个具有n个元素的线性表,建立其单链表的时间复杂性为(A)。
选项A)O(n)选项B)O(1)选项C)O(n2)选项D)O(log2n)7、线性表链式存储结构的特点,哪个是错误的(C)。
选项A)逻辑上相邻的元素,其物理位置不一定相邻,元素之间的邻接关系由指针域指示选项B)链表是非随机存取存储结构,对链表的存取必须从头指针开始选项C)链表是一种动态存储结构,链表的结点可用free()申请和用malloc()释放。
数据结构上机实验

目录第1章绪论——上机实验题1解析实验题1.1求素数实验题1.2求一个正整数的各位数字之和实验题1.3求一个字符串是否为回文第2章线性表——上机实验题2解析实验题2.1实现顺序表各种基本运算的算法/*文件名:algo2-1.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 50typedef char ElemType;typedef struct{ElemType elem[MaxSize];int length;} SqList;void InitList(SqList *&L){L=(SqList *)malloc(sizeof(SqList));L->length=0;}void DestroyList(SqList *L){free(L);}int ListEmpty(SqList *L){return(L->length==0);}int ListLength(SqList *L){return(L->length);}void DispList(SqList *L){int i;if (ListEmpty(L)) return;for (i=0;i<L->length;i++)printf("%c",L->elem[i]);printf("\n");}int GetElem(SqList *L,int i,ElemType &e){if (i<1 || i>L->length)return 0;e=L->elem[i-1];return 1;}int LocateElem(SqList *L, ElemType e){int i=0;while (i<L->length && L->elem[i]!=e) i++;if (i>=L->length)return 0;elsereturn i+1;}int ListInsert(SqList *&L,int i,ElemType e){int j;if (i<1 || i>L->length+1)return 0;i--; /*将顺序表位序转化为elem下标*/for (j=L->length;j>i;j--) /*将elem[i]及后面元素后移一个位置*/L->elem[j]=L->elem[j-1];L->elem[i]=e;L->length++; /*顺序表长度增1*/return 1;}int ListDelete(SqList *&L,int i,ElemType &e){int j;if (i<1 || i>L->length)return 0;i--; /*将顺序表位序转化为elem下标*/e=L->elem[i];for (j=i;j<L->length-1;j++)L->elem[j]=L->elem[j+1];L->length--;return 1;}实验题2.2实现单链表各种基本运算的算法*文件名:algo2-2.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct LNode /*定义单链表结点类型*/{ElemType data;struct LNode *next;} LinkList;void InitList(LinkList *&L){L=(LinkList *)malloc(sizeof(LinkList)); /*创建头结点*/L->next=NULL;}void DestroyList(LinkList *&L){LinkList *p=L,*q=p->next;while (q!=NULL){free(p);p=q;q=p->next;}free(p);}int ListEmpty(LinkList *L){return(L->next==NULL);}int ListLength(LinkList *L){LinkList *p=L;int i=0;while (p->next!=NULL){i++;p=p->next;}return(i);}void DispList(LinkList *L){LinkList *p=L->next;while (p!=NULL){printf("%c",p->data);p=p->next;}printf("\n");}int GetElem(LinkList *L,int i,ElemType &e) {int j=0;LinkList *p=L;while (j<i && p!=NULL){j++;p=p->next;}if (p==NULL)return 0;else{e=p->data;return 1;}}int LocateElem(LinkList *L,ElemType e){LinkList *p=L->next;int n=1;while (p!=NULL && p->data!=e){p=p->next;n++;}if (p==NULL)return(0);elsereturn(n);}int ListInsert(LinkList *&L,int i,ElemType e)int j=0;LinkList *p=L,*s;while (j<i-1 && p!=NULL){j++;p=p->next;}if (p==NULL) /*未找到第i-1个结点*/return 0;else /*找到第i-1个结点*p*/{s=(LinkList *)malloc(sizeof(LinkList)); /*创建新结点*s*/s->data=e;s->next=p->next; /*将*s插p->next=s;return 1;}}int ListDelete(LinkList *&L,int i,ElemType &e){int j=0;LinkList *p=L,*q;while (j<i-1 && p!=NULL){j++;p=p->next;}if (p==NULL) /*未找到第i-1个结点*/return 0;else /*找到第i-1个结点*p*/{q=p->next; /*q指向要删除的结点*/p->next=q->next; /*从单链表中删除*q结点*/free(q); /*释放*q结点*/return 1;}}第3章栈和队列——上机实验题3解析实验题3.1实现顺序栈各种基本运算的算法*文件名:algo3-1.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct{ElemType elem[MaxSize];int top; /*栈指针*/} SqStack;void InitStack(SqStack *&s){s=(SqStack *)malloc(sizeof(SqStack));s->top=-1;}void ClearStack(SqStack *&s){free(s);}int StackLength(SqStack *s){return(s->top+1);}int StackEmpty(SqStack *s){return(s->top==-1);}int Push(SqStack *&s,ElemType e){if (s->top==MaxSize-1)return 0;s->top++;s->elem[s->top]=e;return 1;}int Pop(SqStack *&s,ElemType &e){if (s->top==-1)return 0;e=s->elem[s->top];s->top--;return 1;int GetTop(SqStack *s,ElemType &e){if (s->top==-1)return 0;e=s->elem[s->top];return 1;}void DispStack(SqStack *s){int i;for (i=s->top;i>=0;i--)printf("%c ",s->elem[i]);printf("\n");}实验题3.2实现链栈各种基本运算的算法/*文件名:algo3-2.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct linknode{ElemType data; /*数据域*/struct linknode *next; /*指针域*/} LiStack;void InitStack(LiStack *&s){s=(LiStack *)malloc(sizeof(LiStack));s->next=NULL;}void ClearStack(LiStack *&s){LiStack *p=s->next;while (p!=NULL){free(s);s=p;p=p->next;}}int StackLength(LiStack *s){int i=0;LiStack *p;p=s->next;while (p!=NULL){i++;p=p->next;}return(i);}int StackEmpty(LiStack *s){return(s->next==NULL);}void Push(LiStack *&s,ElemType e){LiStack *p;p=(LiStack *)malloc(sizeof(LiStack));p->data=e;p->next=s->next; /*插入*p结点作为第一个数据结点*/s->next=p;}int Pop(LiStack *&s,ElemType &e){LiStack *p;if (s->next==NULL) /*栈空的情况*/return 0;p=s->next; /*p指向第一个数据结点*/e=p->data;s->next=p->next;free(p);return 1;}int GetTop(LiStack *s,ElemType &e){if (s->next==NULL) /*栈空的情况*/return 0;e=s->next->data;return 1;}void DispStack(LiStack *s){LiStack *p=s->next;while (p!=NULL){printf("%c ",p->data);p=p->next;}printf("\n");}实验题3.3实现顺序队列各种基本运算的算法/*文件名:algo3-3.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 5typedef char ElemType;typedef struct{ElemType elem[MaxSize];int front,rear; /*队首和队尾指针*/} SqQueue;void InitQueue(SqQueue *&q){q=(SqQueue *)malloc (sizeof(SqQueue));q->front=q->rear=0;}void ClearQueue(SqQueue *&q){free(q);}int QueueEmpty(SqQueue *q){return(q->front==q->rear);}int QueueLength(SqQueue *q){return (q->rear-q->front+MaxSize)%MaxSize; }int enQueue(SqQueue *&q,ElemType e){if ((q->rear+1)%MaxSize==q->front) /*队满*/return 0;q->rear=(q->rear+1)%MaxSize;q->elem[q->rear]=e;return 1;}int deQueue(SqQueue *&q,ElemType &e){if (q->front==q->rear) /*队空*/return 0;q->front=(q->front+1)%MaxSize;e=q->elem[q->front];return 1;}实验题3.4实现链队各种基本运算的算法/*文件名:algo3-4.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct qnode{ElemType data;struct qnode *next;} QNode;typedef struct{QNode *front;QNode *rear;} LiQueue;void InitQueue(LiQueue *&q){q=(LiQueue *)malloc(sizeof(LiQueue));q->front=q->rear=NULL;}void ClearQueue(LiQueue *&q){QNode *p=q->front,*r;if (p!=NULL) /*释放数据结点占用空间*/{r=p->next;while (r!=NULL){free(p);p=r;r=p->next;}}free(q); /*释放头结点占用空间*/ }int QueueLength(LiQueue *q){int n=0;QNode *p=q->front;while (p!=NULL){n++;p=p->next;}return(n);}int QueueEmpty(LiQueue *q){if (q->rear==NULL)return 1;elsereturn 0;}void enQueue(LiQueue *&q,ElemType e){QNode *s;s=(QNode *)malloc(sizeof(QNode));s->data=e;s->next=NULL;if (q->rear==NULL) /*若链队为空,则新结点是队首结点又是队尾结点*/q->front=q->rear=s;else{q->rear->next=s; /*将*s结点链到队尾,rear指向它*/q->rear=s;}}int deQueue(LiQueue *&q,ElemType &e){QNode *t;if (q->rear==NULL) /*队列为空*/return 0;if (q->front==q->rear) /*队列中只有一个结点时*/{t=q->front;q->front=q->rear=NULL;}else /*队列中有多个结点时*/{t=q->front;q->front=q->front->next;}e=t->data;free(t);return 1;}第4章串——上机实验题4解析实验题4.1实现顺序串各种基本运算的算法/*文件名:algo4-1.cpp*/#include <stdio.h>#define MaxSize 100 /*最多的字符个数*/typedef struct{ char ch[MaxSize]; /*定义可容纳MaxSize个字符的空间*/ int len; /*标记当前实际串长*/} SqString;void StrAssign(SqString &str,char cstr[]) /*str为引用型参数*/ {int i;for (i=0;cstr[i]!='\0';i++)str.ch[i]=cstr[i];str.len=i;}void StrCopy(SqString &s,SqString t) /*s为引用型参数*/ {int i;for (i=0;i<t.len;i++)s.ch[i]=t.ch[i];s.len=t.len;}int StrEqual(SqString s,SqString t){int same=1,i;if (s.len!=t.len) /*长度不相等时返回0*/same=0;else{for (i=0;i<s.len;i++)if (s.ch[i]!=t.ch[i]) /*有一个对应字符不相同时返回0*/same=0;}return same;}int StrLength(SqString s){return s.len;}SqString Concat(SqString s,SqString t){SqString str;int i;str.len=s.len+t.len;for (i=0;i<s.len;i++) /*将s.ch[0]~s.ch[s.len-1]复制到str*/ str.ch[i]=s.ch[i];for (i=0;i<t.len;i++) /*将t.ch[0]~t.ch[t.len-1]复制到str*/ str.ch[s.len+i]=t.ch[i];return str;}SqString SubStr(SqString s,int i,int j){SqString str;int k;str.len=0;if (i<=0 || i>s.len || j<0 || i+j-1>s.len){printf("参数不正确\n");return str; /*参数不正确时返回空串*/}for (k=i-1;k<i+j-1;k++) /*将s.ch[i]~s.ch[i+j]复制到str*/str.ch[k-i+1]=s.ch[k];str.len=j;return str;}SqString InsStr(SqString s1,int i,SqString s2){int j;SqString str;str.len=0;if (i<=0 || i>s1.len+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return s1;}for (j=0;j<i-1;j++) /*将s1.ch[0]~s1.ch[i-2]复制到str*/str.ch[j]=s1.ch[j];for (j=0;j<s2.len;j++) /*将s2.ch[0]~s2.ch[s2.len-1]复制到str*/str.ch[i+j-1]=s2.ch[j];for (j=i-1;j<s1.len;j++) /*将s1.ch[i-1]~s.ch[s1.len-1]复制到str*/str.ch[s2.len+j]=s1.ch[j];str.len=s1.len+s2.len;return str;}SqString DelStr(SqString s,int i,int j){int k;SqString str;str.len=0;if (i<=0 || i>s.len || i+j>s.len+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return str;}for (k=0;k<i-1;k++) /*将s.ch[0]~s.ch[i-2]复制到str*/str.ch[k]=s.ch[k];for (k=i+j-1;k<s.len;k++)/*将s.ch[i+j-1]~ch[s.len-1]复制到str*/ str.ch[k-j]=s.ch[k];str.len=s.len-j;return str;}SqString RepStr(SqString s,int i,int j,SqString t){int k;SqString str;str.len=0;if (i<=0 || i>s.len || i+j-1>s.len) /*参数不正确时返回空串*/ {printf("参数不正确\n");return str;}for (k=0;k<i-1;k++) /*将s.ch[0]~s.ch[i-2]复制到str*/str.ch[k]=s.ch[k];for (k=0;k<t.len;k++) /*将t.ch[0]~t.ch[t.len-1]复制到str*/str.ch[i+k-1]=t.ch[k];for (k=i+j-1;k<s.len;k++) /*将s.ch[i+j-1]~ch[s.len-1]复制到str*/str.ch[t.len+k-j]=s.ch[k];str.len=s.len-j+t.len;return str;}void DispStr(SqString str){int i;if (str.len>0){for (i=0;i<str.len;i++)printf("%c",str.ch[i]);printf("\n");}}实验题4.2实现链串各种基本运算的算法*文件名:algo4-2.cpp*/#include <stdio.h>#include <malloc.h>typedef struct snode{char data;struct snode *next;} LiString;void StrAssign(LiString *&s,char t[]){int i;LiString *r,*p;s=(LiString *)malloc(sizeof(LiString));s->next=NULL;r=s;for (i=0;t[i]!='\0';i++){p=(LiString *)malloc(sizeof(LiString));p->data=t[i];p->next=NULL;r->next=p;r=p;}}void StrCopy(LiString *&s,LiString *t){LiString *p=t->next,*q,*r;s=(LiString *)malloc(sizeof(LiString));s->next=NULL;s->next=NULL;r=s;while (p!=NULL) /*将t的所有结点复制到s*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}}int StrEqual(LiString *s,LiString *t){LiString *p=s->next,*q=t->next;while (p!=NULL && q!=NULL && p->data==q->data){p=p->next;q=q->next;}if (p==NULL && q==NULL)return 1;elsereturn 0;}int StrLength(LiString *s){int i=0;LiString *p=s->next;while (p!=NULL){i++;p=p->next;}return i;}LiString *Concat(LiString *s,LiString *t){LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;while (p!=NULL) /*将s的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}p=t->next;while (p!=NULL) /*将t的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *SubStr(LiString *s,int i,int j){int k;LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++)p=p->next;for (k=1;k<=j;k++) /*将s的第i个结点开始的j个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *InsStr(LiString *s,int i,LiString *t){int k;LiString *str,*p=s->next,*p1=t->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s)+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return str;}for (k=1;k<i;k++) /*将s的前i个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}while (p1!=NULL) /*将t的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p1->data;q->next=NULL;r->next=q;r=q;p1=p1->next;}while (p!=NULL) /*将*p及其后的结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *DelStr(LiString *s,int i,int j){int k;LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++) /*将s的前i-1个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}for (k=0;k<j;k++) /*让p沿next跳j个结点*/p=p->next;while (p!=NULL) /*将*p及其后的结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *RepStr(LiString *s,int i,int j,LiString *t){int k;LiString *str,*p=s->next,*p1=t->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++) /*将s的前i-1个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}for (k=0;k<j;k++) /*让p沿next跳j个结点*/p=p->next;while (p1!=NULL) /*将t的所有结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p1->data;q->next=NULL;r->next=q;r=q;p1=p1->next;}while (p!=NULL) /*将*p及其后的结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}void DispStr(LiString *s){LiString *p=s->next;while (p!=NULL){printf("%c",p->data);p=p->next;}printf("\n");}第5章数组和稀疏矩阵——上机实验题5解析实验题5.1求5×5阶螺旋方阵/*文件名:exp5-1.cpp*/#include <stdio.h>#define MaxLen 10void fun(int a[MaxLen][MaxLen],int n){int i,j,k=0,m;if (n%2==0) //m=én/2ùm=n/2;elsem=n/2+1;for (i=0;i<m;i++){for (j=i;j<n-i;j++){k++;a[i][j]=k;}for (j=i+1;j<n-i;j++){k++;a[j][n-i-1]=k;}for (j=n-i-2;j>=i;j--){k++;a[n-i-1][j]=k;}for (j=n-i-2;j>=i+1;j--){k++;a[j][i]=k;}}}void main(){int n,i,j;int a[MaxLen][MaxLen];printf("\n");printf("输入n(n<10):");scanf("%d",&n);fun(a,n);printf("%d阶数字方阵如下:\n",n);for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",a[i][j]);printf("\n");}printf("\n");}实验题5.2求一个矩阵的马鞍点/*文件名:exp5-2.cpp*/#include <stdio.h>#define M 4#define N 4void MinMax(int A[M][N]){int i,j,have=0;int min[M],max[N];for (i=0;i<M;i++) /*计算出每行的最小值元素,放入min[0..M-1]之中*/{min[i]=A[i][0];for (j=1;j<N;j++)if (A[i][j]<min[i])min[i]=A[i][j];}for (j=0;j<N;j++) /*计算出每列的最大值元素,放入max[0..N-1]之中*/{max[j]=A[0][j];for (i=1;i<M;i++)if (A[i][j]>max[j])max[j]=A[i][j];}for (i=0;i<M;i++)for (j=0;j<N;j++)if (min[i]==max[j]){printf(" A[%d,%d]=%d\n",i,j,A[i][j]); /*显示马鞍点*/have=1;}if (!have)printf("没有鞍点\n");}void main(){int i,j;int A[M][N]={{9, 7, 6, 8},{20,26,22,25},{28,36,25,30},{12,4, 2, 6}};printf("A矩阵:\n");for (i=0;i<M;i++){for (j=0;j<N;j++)printf("%4d",A[i][j]);printf("\n");}printf("A矩阵中的马鞍点:\n");MinMax(A); /*调用MinMax()找马鞍点*/}实验题5.3求两个对称矩阵之和与乘积/*文件名:exp5-3.cpp*/#include <stdio.h>#define n 4#define m 10int value(int a[],int i,int j){if (i>=j)return a[(i*(i-1))/2+j];elsereturn a[(j*(j-1))/2+i];}void madd(int a[],int b[],int c[n][n]){int i,j;for (i=0;i<n;i++)for (j=0;j<n;j++)c[i][j]=value(a,i,j)+value(b,i,j);}void mult(int a[],int b[],int c[n][n]){int i,j,k,s;for (i=0;i<n;i++)for (j=0;j<n;j++){s=0;for (k=0;k<n;k++)s=s+value(a,i,k)*value(b,k,j); c[i][j]=s;}}void disp1(int a[]){int i,j;for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",value(a,i,j));printf("\n");}}void disp2(int c[n][n]){int i,j;for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",c[i][j]);printf("\n");}}void main(){int a[m]={1,2,3,4,5,6,7,8,9,10};int b[m]={1,1,1,1,1,1,1,1,1,1};int c1[n][n],c2[n][n];madd(a,b,c1);mult(a,b,c2);printf("\n");printf("a矩阵:\n");disp1(a);printf("b矩阵:\n");disp1(b);printf("a+b:\n");disp2(c1);printf("a*b:\n");disp2(c2);printf("\n");}实验题5.4实现稀疏矩阵(采用三元组表示)的基本运算/*文件名:exp5-4.cpp*/#include <stdio.h>#define N 4typedef int ElemType;#define MaxSize 100 /*矩阵中非零元素最多个数*/ typedef struct{ int r; /*行号*/int c; /*列号*/ElemType d; /*元素值*/} TupNode; /*三元组定义*/typedef struct{ int rows; /*行数值*/int cols; /*列数值*/int nums; /*非零元素个数*/TupNode data[MaxSize];} TSMatrix; /*三元组顺序表定义*/void CreatMat(TSMatrix &t,ElemType A[N][N]){int i,j;t.rows=N;t.cols=N;t.nums=0;for (i=0;i<N;i++){for (j=0;j<N;j++)if (A[i][j]!=0){t.data[t.nums].r=i;t.data[t.nums].c=j;t.data[t.nums].d=A[i][j];t.nums++;}}}void DispMat(TSMatrix t){int i;if (t.nums<=0)return;printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);printf("\t------------------\n");for (i=0;i<t.nums;i++)printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d); }void TranMat(TSMatrix t,TSMatrix &tb){int p,q=0,v; /*q为tb.data的下标*/tb.rows=t.cols;tb.cols=t.rows;tb.nums=t.nums;if (t.nums!=0){for (v=0;v<t.cols;v++) /*tb.data[q]中的记录以c 域的次序排列*/for (p=0;p<t.nums;p++) /*p为t.data的下标*/if (t.data[p].c==v){tb.data[q].r=t.data[p].c;tb.data[q].c=t.data[p].r;tb.data[q].d=t.data[p].d;q++;}}}int MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){int i=0,j=0,k=0;ElemType v;if (a.rows!=b.rows || a.cols!=b.cols)return 0; /*行数或列数不等时不能进行相加运算*/c.rows=a.rows;c.cols=a.cols; /*c的行列数与a的相同*/while (i<a.nums && j<b.nums) /*处理a和b中的每个元素*/{if (a.data[i].r==b.data[j].r) /*行号相等时*/{if(a.data[i].c<b.data[j].c) /*a元素的列号小于b 元素的列号*/{c.data[k].r=a.data[i].r;/*将a元素添加到c中*/c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else if (a.data[i].c>b.data[j].c)/*a元素的列号大于b元素的列号*/{c.data[k].r=b.data[j].r; /*将b元素添加到c中*/c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}else /*a元素的列号等于b元素的列号*/{v=a.data[i].d+b.data[j].d;if (v!=0) /*只将不为0的结果添加到c中*/{c.data[k].r=a.data[i].r;c.data[k].c=a.data[i].c;c.data[k].d=v;k++;}i++;j++;}}else if (a.data[i].r<b.data[j].r) /*a元素的行号小于b元素的行号*/{c.data[k].r=a.data[i].r; /*将a元素添加到c中*/c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else /*a元素的行号大于b元素的行号*/{c.data[k].r=b.data[j].r; /*将b元素添加到c中*/c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}c.nums=k;}return 1;}int value(TSMatrix c,int i,int j){int k=0;while (k<c.nums && (c.data[k].r!=i || c.data[k].c!=j))k++;if (k<c.nums)return(c.data[k].d);elsereturn(0);}int MatMul(TSMatrix a,TSMatrix b,TSMatrix &c){int i,j,k,p=0;ElemType s;if (a.cols!=b.rows) /*a的列数不等于b的行数时不能进行相乘运算*/return 0;for (i=0;i<a.rows;i++)for (j=0;j<b.cols;j++){s=0;for (k=0;k<a.cols;k++)s=s+value(a,i,k)*value(b,k,j);if (s!=0) /*产生一个三元组元素*/{c.data[p].r=i;c.data[p].c=j;c.data[p].d=s;p++;}}c.rows=a.rows;c.cols=b.cols;c.nums=p;return 1;}void main(){ElemType a1[N][N]={{1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};ElemType b1[N][N]={{3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};TSMatrix a,b,c;CreatMat(a,a1);CreatMat(b,b1);printf("a的三元组:\n");DispMat(a);printf("b的三元组:\n");DispMat(b);printf("a转置为c\n");TranMat(a,c);printf("c的三元组:\n");DispMat(c);printf("c=a+b\n");MatAdd(a,b,c);printf("c的三元组:\n");DispMat(c);printf("c=a*b\n");MatMul(a,b,c);printf("c的三元组:\n");DispMat(c);}实验题5.5实现广义表的基本运算#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct lnode{ int tag; /*结点类型标识*/ union{ElemType data;struct lnode *sublist;}val;struct lnode *link; /*指向下一个元素*/} GLNode;extern GLNode *CreatGL(char *&s);extern void DispGL(GLNode *g);void Change(GLNode *&g,ElemType s,ElemType t) /*将广义表g中所有原子s 替换成t*/{if (g!=NULL){if (g->tag==1) /*子表的情况*/Change(g->val.sublist,s,t);else if (g->val.data==s) /*原子且data域值为s的情况*/g->val.data=t;Change(g->link,s,t);}}void Reverse(GLNode *&g) /*将广义表g所有元素逆置*/{GLNode *p,*q,*t;t=NULL;if (g!=NULL){p=g;while (p!=NULL) /*将同级的兄弟逆置*/{q=p->link;if (t==NULL){t=p;p->link=NULL;}else{p->link=t;t=p;}p=q;}g=t;p=g;while (p!=NULL){if (p->tag==1)Reverse(p->val.sublist);p=p->link;}}}int Same(GLNode *g1,GLNode *g2) /*判断两个广义表是否相同*/ {int s;if (g1==NULL && g2==NULL) /*均为NULL的情况*/return 1;else if ((g1==NULL && g2!=NULL) || (g1!=NULL && g2==NULL)) /*一个为NULL,另一不为NULL的情况*/return 0;else{s=1;while (g1!=NULL && g2!=NULL && s==1){if (g1->tag==1 && g2->tag==1)/*均为子表的情况*/s=Same(g1->val.sublist,g2->val.sublist);else if (g1->tag==0 && g2->tag==0)/*均为原子的情况*/{if (g1->val.data!=g2->val.data)s=0;}else /*一个为原子,另一为子表的情况*/s=0;g1=g1->link;g2=g2->link;}if (g1!=NULL || g2!=NULL) /*有一个子表尚未比较完时*/s=0;return s;}}ElemType MaxAtom(GLNode *g) /*求广义表g中最大的原子*/{ElemType m=0,m1; /*m赋初值0*/while (g!=NULL){if (g->tag==1) /*子表的情况*/{m1=MaxAtom(g->val.sublist); /*对子表递归调用*/if (m1>m) m=m1;}else{if (g->val.data>m) /*为原子时,进行原子比较*/m=g->val.data;}g=g->link;}return m;}void DelAtom(GLNode *&g,ElemType x) /*删除广义表g中的第一个为x原子*/{GLNode *p=g,*q,*pre;while (p!=NULL){q=p->link;if (p->tag==1) /*子表的情况*/DelAtom(p->val.sublist,x); /*对子表递归调用*/else{if (p->val.data==x) /*为原子时,进行原子比较*/{if (p==g)/*被删结点是本层的第1个结点*/{g=q;free(p); /*释放结pre=g;}else /*被删结{pre->link=q;free(p);}return;}}pre=p;p=q;}}void DelAtomAll(GLNode *&g,ElemType x) /*删除广义表g中的所有为x原子*/{GLNode *p=g,*q,*pre;while (p!=NULL){q=p->link;if (p->tag==1) /*子表的情况*/DelAtomAll(p->val.sublist,x); /*对子表递归调用*/else{if (p->val.data==x) /*为原子时,进行原子比较*/if (p==g)/*被删结点是本层的第1个结点*/{g=q;free(p); /*释放结pre=g;}else /*被删结{pre->link=q;free(p);}}pre=p;p=q;}}void PreOrder(GLNode *g) /*采用先根遍历g*/{if (g!=NULL){if (g->tag==0) /*为原子结点时*/printf("%c ",g->val.data);elsePreOrder(g->val.sublist); /*为子表时*/ PreOrder(g->link);}}void main(){GLNode *g1,*g2,*g3,*g4;char *str1="(a,(a),((a,b)),((a)),a)";char *str2="(a,(b),((c,d)),((e)),f)";char *str3="(a,(a,b),(a,b,c)))";char *str4="(a,(b),((c,d)),((e)),f)";g1=CreatGL(str1);printf("\n");printf(" 广义表g1:");DispGL(g1);printf("\n");printf(" 将广义表g1中所有'a'改为'b'\n");Change(g1,'a','b');printf(" 广义表g1:");DispGL(g1);printf("\n\n");g2=CreatGL(str2);printf(" 广义表g2:");DispGL(g2);printf("\n");printf(" 广义表g2中最大原子:%c\n",MaxAtom(g2));printf(" 将g2的元素逆置\n");Reverse(g2);printf(" 广义表g2:");DispGL(g2);printf("\n\n");printf(" 广义表g1和g2%s\n\n",(Same(g1,g2)?"相同":"不相同"));g3=CreatGL(str3);printf(" 广义表g3:");DispGL(g3);printf("\n");printf(" 删除广义表g3的第一个为'a'的原子\n");DelAtom(g3,'a');printf(" 广义表g3:");DispGL(g3);printf("\n\n");printf(" 删除广义表g3中的所有'a'原子\n");DelAtomAll(g3,'a');printf(" 广义表g3:");DispGL(g3);printf("\n\n");g4=CreatGL(str4);printf(" 广义表g4:");DispGL(g4);printf("\n");printf(" 采用先根遍历g4的结果:");PreOrder(g4);printf("\n\n");}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构上机试题一、顺序表的操作(1)插入元素操作:将新元素x插入到顺序表a中第i个位置。
(2)删除元素操作:删除顺序表a中第i个元素。
#include<iostream.h>#include<stdlib.h>#define MAX 100;typedef struct{int data[100];int length;}sqlist;void init(sqlist &a)//线性表初始化{a.length=0;}void insert(sqlist &a ,int i,int x)// 插入元素操作{int j;if(i<0||i>a.length+1||a.length==100);else{for(j=a.length+1;j>i;j--)a.data[j]=a.data[j-1];a.data[j]=x;a.length++;}}void deleted(sqlist &a ,int i)// 删除元素操作{int j;if(i<0&&i>a.length);else{for(j=i;j<a.length;j++)a.data[j]=a.data[j+1];a.length--;}}void main(){sqlist a;//线性表为aint i,e,x,n,j,s;//i插入位置,e动态建线性表要用,X插入元素,n表长init(a);//构造一个空表cout<<"输入表长n: ";cin>>n;cout<<"输入表长为"<<n<<" 个数: ";for(j=0;j<n;++j){cin>>e;insert(a,j,e);}cout<<"插入前: ";for(j=0;j<a.length ;j++)cout<<a.data[j]<<" ";cout<<"输入要插入位置i: ";cin>>i;cout<<"输入要插入的元素x: ";cin>>x;cout<<"打算在第"<<i<<"个位置插入元素"<<x ; insert(a,i-1,x);//由于从0开始,要构造显示从一开始,所以减1cout<<"插入后结果: ";for(j=0;j<a.length;j++)cout<<a.data[j]<<" ";cout<<"输入要删除的位置s: ";cin>>s;deleted(a,s-1);//由于从0开始,要构造显示从一开始,所以减1cout<<"删除后结果: ";for(j=0;j<a.length;j++)cout<<a.data[j]<<" ";}二、单链表的操作(1)创建一个带头结点的单链表;(2)插入元素操作:将新元素x插入到单链表中第i 个元素之后;(3)删除元素操作:删除单链表中值为x的元素;#include<iostream.h>#include<stdlib.h>typedef struct LNode{int data;struct LNode *next;}LNode;//创建一个带头结点的长度长度长度为n的链表L;void createlist(LNode *&L ,int n){int i;LNode *p;L=(LNode *)malloc(sizeof(LNode));L->next=NULL;for(i=1;i<=n;i++){p=(LNode *)malloc(sizeof(LNode));cout<<"请输入链表第"<<i<<"个元素";cin>>p->data;p->next=L->next;L->next=p;}}//插入元素操作:将新元素x插入到单链表L中第i 个元素之后void insert(LNode *&L ,int i,int x){int j=0;LNode *p,*q;p=L;while(p->next!=NULL){j++;if(j==i){q=(LNode *)malloc(sizeof(LNode));//找到位置q->data=x;//放入数据q->next=p->next;p->next=q;break;}p=p->next;}if(p->next==NULL){q=(LNode *)malloc(sizeof(LNode));//找到位置q->data=x;//放入数据q->next=p->next;p->next=q;}}//删除元素操作:删除单链表中值为x的元素;void deleted(LNode *&L ,int x){LNode *p,*q;p=L;while(p->next!=NULL){if(p->next->data==x){q=p->next;p->next=p->next->next;free(q);}p=p->next;}}void print(LNode *&L){LNode *p;p=L->next;while(p!=NULL){cout<<p->data<<" ";p=p->next;}}void main(){LNode * L,*p;//节点为Lint i,x,y,s,n;//i插入位置,X插入元素,y为删除元素,n表长cout<<"输入表长n: ";cin>>n;createlist(L,n);cout<<"输出插入之前:";print(L);cout<<"请输入插入的位置i: ";cin>>i;cout<<"请输入插入的元素x: ";cin>>x;insert(L,i,x);cout<<"输出插入后:";print(L);cout<<"请输入删除的元素y: ";cin>>y;deleted(L,y);//删除元素操作:删除单链表中值为y 的元素;cout<<"输出删除后:";print(L);}三、在顺序栈上实现将非负十进制数转换成二进制数#include<iostream.h>#include<stdlib.h>#define MAX 100//在顺序栈上实现将非负十进制数x转换成二进制数void conversion(int &x){int stack[MAX];int top=-1;int t;while(x){stack[++top]=x%2;x=x/2;}while(top!=-1){t=stack[top--];cout<<t;}}void main(){int x,t;cout<<"请输入你要转换的非负十进制数x:"<<endl;cin>>x;cout<<"输出转换后的二进制数:";conversion(x);cout<<endl;}四、在顺序表中采用顺序查找算法和折半查找算法寻找关键字X在顺序表中的位置。
#include<iostream.h>#include<stdlib.h>#define MAX 100//在顺序表中采用顺序查找算法和折半查找算法寻找关键字X在顺序表中的位置typedef struct{int data[MAX];int length;}sqlist;void init(sqlist &a)//线性表初始化{a.length=0;void insert(sqlist &a ,int i,int x)// 插入元素操作{int j;if(i<0||i>a.length+1||a.length==100);else{for(j=a.length+1;j>i;j--)a.data[j]=a.data[j-1];a.data[j]=x;a.length++;}}int search(sqlist &sq,int x)//顺序查找算法{int i;for(i=0;i<sq.length;i++)//顺序表存储从0开始if(sq.data[i]==x)return i;}int hsearch(sqlist &sq,int low,int high,int x)//折半查找算法int mid;while(low<=high){mid=(low+high)/2;if(sq.data[mid]==x)return mid;else if(sq.data[mid]>x)high=mid-1;else if(sq.data[mid]<x)low=mid+1;}}void main(){sqlist sq;//线性表为sqint i,e,x,y,n;//i插入位置,x,y要查找元素,n表长init(sq);//构造一个空表cout<<"输入表长n: ";cin>>n;cout<<"输入表长为"<<n<<" 个数: ";for(i=0;i<n;i++)cin>>e;insert(sq,i,e);}cout<<"查找前(便于判断):"<<endl;for(i=0;i<sq.length ;i++)cout<<sq.data[i]<<" ";cout<<endl;cout<<"采用顺序查找算法:"<<endl;cout<<endl;cout<<"输入要查找元素关键字x ";cin>>x;cout<<endl;cout<<"关键字"<<x<<"在顺序表中的位置为"<<search(sq,x)+1<<endl; //下表从0开始,+1显示时,转化成从1开始了cout<<"采用折半查找算法:"<<endl;cout<<endl;cout<<"输入要查找元素关键字y ";cin>>y;cout<<endl;cout<<"关键字"<<y<<"在顺序表中的位置为"<<hsearch(sq,1,sq.length,y)+1<<endl;}五、将无序数列使用直接插入排序算法和快速排序算法将其排成递增有序数列。