小升初简便运算专题讲解完整版

合集下载

(完整版)小升初专题复习之简便运算

(完整版)小升初专题复习之简便运算

简便运算一、教学目标将计算简便、快速的运算出来。

二、考点、热点回顾(一)、简便运算之提取公因式法 1、提公因式法口诀:简便算,凭经验,先观察,后计算。

有公项,首先提,无公项,先变异。

2、格式与步骤要求:(1)寻找公因数(寻公因);(2)提取公因数(提共因);(3)去括号;(4)求结果。

3、单独公因数写成“1a ⨯”的形式。

(二)、简便运算之变形约分法 1、常见整数的拆解:(1)AAAAA=A ⨯11111;(2)A0A0A0A=A ⨯1010101;(3)101010101ababababab ab =⨯ (4)1001001001abcabcabcabc abc =⨯;(5)12345654321111111111111=⨯ 2、“大变小”思想:在变形时尽量将较大数变为较小数。

3、格式与步骤要求:(1)通过拆数、凑数改变形式;(2)有公因数时提取公因数;(3)整体或部分约分;(4)求出结果。

(三)简便运算之裂项运算 1、适用范围:(1)连续性:前一个式子分母的尾数是后一个式子分母的首数; (2)等差性:各个分母的首数与尾数的差均相等。

2、十字口诀:留两头,消中间,除以公差(分母中两个因数的差)。

3、附加公式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯;(2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ (四)简便运算之分组法1、寻找规律,先分组;2、有公因数时提取公因数,无公因数时按规律计算。

(五)简便运算之字母代换法:1、若无特殊规律,设最短的式子为a ,次短式子为b ;2、单独分离整数,即整数不包含在,a b 之内。

(六)简便运算之错位相减发 1、错位相减法祥析:(1)设原式=m ,作为①式;(2)两边同时乘或除以公比进行扩大或缩小,得到的新式子作为②式;(3)上下相减,错位相消,求出结果。

2、格式与步骤要求:(1)必须有解、设步骤;(2)应当体现错位相减之特征。

小升初数学六年级简便运算

小升初数学六年级简便运算

小升初数学六年级简便运算一、加法交换律和结合律。

1. 加法交换律。

- 定义:两个数相加,交换加数的位置,和不变。

用字母表示为a + b=b + a。

- 例如:计算23+15+77,我们可以根据加法交换律将式子变为23 + 77+15。

先计算23+77 = 100,再加上15,结果为115。

2. 加法结合律。

- 定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

用字母表示为(a + b)+c=a+(b + c)。

- 例如:计算12+34 + 66,根据加法结合律可写成12+(34 + 66)。

先算34+66 = 100,再加上12得到112。

- 在一些综合运算中,加法交换律和结合律常常一起使用。

例如计算18+25+75+82,可以变为(18 + 82)+(25+75),结果为200。

二、减法的性质。

1. 一个数连续减去两个数等于这个数减去这两个数的和。

- 用字母表示为a - b - c=a-(b + c)。

- 例如:计算125-36 - 64,可根据减法的性质写成125-(36 + 64)。

先算36+64 = 100,再用125减去100,结果为25。

2. 一个数减去两个数的差等于这个数先减去被减数再加上减数。

- 用字母表示为a-(b - c)=a - b + c。

- 例如:计算25-(15 - 5),可变为25-15 + 5,先算25-15 = 10,再加上5得到15。

三、乘法交换律、结合律和分配律。

1. 乘法交换律。

- 定义:两个数相乘,交换因数的位置,积不变。

用字母表示为a× b = b× a。

- 例如:计算25×4×13,根据乘法交换律可写成25×13×4,先算25×4 = 100,再乘以13得到1300。

2. 乘法结合律。

- 定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。

小升初简便运算专题讲解.pdf

小升初简便运算专题讲解.pdf

小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66+ 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+(); a+b-c=a+( )a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

小升初数学简便计算完整版

小升初数学简便计算完整版

小升初数学简便计算完整版数学是一个需要大量计算的科学。

在小学阶段,我们学习了加减乘除等基本运算。

而在小升初的数学考试中,我们需要熟练掌握这些基本运算,并且能够应用到解决实际问题中。

在小升初的数学考试中,除了基本运算外,还会涉及到一些简单的几何知识、分数的运算、整数的运算等。

本文将介绍一些简便计算的方法,希望能够帮助到小升初考生。

一、加法运算:要熟练掌握加法运算,可以根据不同的数字特点来进行计算。

比如:1.两个数相加时,如果有进位,则进位数的个数等于个位数和十位数进位数的和;2.两个数相加时,如果个位数为9,十位数进位数为1,则个位数为0,十位数不变;3.两个数相加时,如果单位数和十位数的和大于10,则把个位数减去10,然后十位数进位。

二、减法运算:对于减法运算,同样可以根据数字的特点来进行简便计算。

比如:1.两个数相减时,如果减数中的个位数小于被减数中的个位数,则十位数减1,个位数为10加个位数,然后相减;2.两个数相减时,如果减数中的个位数大于被减数中的个位数,则减法退位,个位数为个位数加10,十位数减1,然后相减。

三、乘法运算:乘法运算是数学中最重要的一种运算方法。

在小升初的数学考试中,经常会涉及到乘法的计算。

为了熟练掌握乘法运算,可以用以下方法简便计算:1.乘法交换律:axb=bxa。

如果遇到一个两位数和一个一位数相乘,可以按照这个规律交换位置进行计算;2.乘法的分配律:ax(b+c)=(axb)+(axc)。

如果遇到一个数乘以一个多位数,可以进行分步计算,将乘法运算和加法运算结合起来。

四、除法运算:除法运算是对除法的一种简便计算方法。

在小升初的数学考试中,常常会涉及到除法的计算。

以下是一些简便计算方法:1.除法的基本法则:如果被除数的个位数小于除数个位数,则商的个位数为0;2.除法的特殊法则:如果被除数是10的倍数,则商的个位数等于除数个位数;3.除法的近似法则:如果被除数和除数个位数相等,则商的个位数为1通过运用以上简便计算方法,我们可以在小升初数学考试中提高计算速度。

小升初常考简便运算

小升初常考简便运算

小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬”。

二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。

(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。

但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。

(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。

但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。

(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31) 2.提取公因式注意相同因数的提取。

0.92×1.41+0.92×8.59516×137-53×137 3.注意构造,让算式满足乘法分配律的条件。

257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。

(完整word版)简便计算知识点总结,推荐文档

(完整word版)简便计算知识点总结,推荐文档

简便计算
一、加法运算定律:
①加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a 如:1+2=2+1 1+2+3=2+3+1
②加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b) +c=a+(b+c)
二、减法运算定律
①减数交换律:
a-b-c=a-c-b
②减数结合律:
一个数连续减去两个数,等于减去这两个数的和。

a-b-c=a-(b+c)
三、乘法运算定律:
①乘法交换律:两个数相乘,交换乘数的位置,积不变。

a×b=b×a
②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

(a×b) ×c=a×(b×c)
③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

8个公式:
1、 5、
2、 6、
3、 7、
4、 8、
四、除法运算定律
①除数交换律:
a÷b÷c=a÷c÷b
②除数结合律:
一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c=a÷(b×c)。

完整版2019年小升初简便运算专题讲解

完整版2019年小升初简便运算专题讲解

2019年小升初简便运算专题讲解1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a ×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

)- )+( );a-b-c=a-( a+b+c=a+( )+( ); a+b-c=a-()();÷() ÷b÷c=a÷();a ×() ×c=a×(b×a))÷( a×b÷c=a÷( )×( ),a÷b×c=a×( 例1:用简便算法计算+1、12.06+5.07、 2 2.944、 30.34 3、-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、 8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(完整word版)小升初简便运算奥数专题讲解(word文档良心出品)

(完整word版)小升初简便运算奥数专题讲解(word文档良心出品)

戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数 计算专题17 加法原理、乘法原理 计算专题18 分数的估算求值 计算专题19 简单数论 奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(8361971++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++⨯+++-++++⨯++计算专题5计算综合【例题精讲】 例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初简便运算专题讲解HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算++34÷4÷+102×÷-++ 125÷2×8?二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。

(即在乘除运算中添括号时,括号前保留原符号,括号前是乘号,括号里不变号,括号前是除号,括号里要变号) 根据:乘法结合律 a ×b ×c=a ×( ) a ×b ÷c=a ×( ) a ÷b ÷c=a ÷( )a ÷b ×c=a ÷( ) 例3:用简便方法计算 1、××4?2、17×÷ 3、÷÷ + 700÷14×22、去括号法(1)当一个计算模块只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。

但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。

(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a+(b+c)= a +(b-c)= a-(b-c)=a-( b +c)=例4:用简便方法计算+(+)+ -(+) ()(2)当一个计算模块(同级运算)只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。

但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。

(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a ×(b ×c) = , a ×(b ÷c) = , a ÷(b ×c) = ,a ÷(b ÷c) = 。

例5:用简便方法计算×(4×)+×(8÷) 46÷×2)+ 4÷(6÷ ×(213×)三、乘法分配律法乘法分配律公式:m(a ±b)=ma ±mb ma ±mb= m(a ±b)1.分配法括号里是加或减运算,与另一个数相乘,注意分配例6:简便运算: 24×(1211-83-61-31)2.提取公因式乘法分配律的逆运算:注意相同因数的提取例7:简便计算:×+× 516×137-53×137 ×+× 6×108-107-5×108 3.注意构造,让算式满足乘法分配律的条件。

例8:简便运算257×103-257×2-257 ×10833338712 ×79+790×6666114 36×+×335 ×2525 +×625 ×+×+× ×2500+495×+51×四、借来还去法看到名字,就知道这个方法的含义。

用此方法时,需要注意观察,发现规律。

还要注意还哦 ,有借有还,再借不难嘛。

1、凑整法例9:简便运算9999+999+99+9 4821-9982、拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。

这需要掌握一些“好朋友”,如:2和5,4和5,2和,4和,8和等。

分拆还要注意不要改变数的大小。

例10:简便计算××25 ×88+× 765×64×××3、巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。

利用a ÷b=a b 巧解计算题巧解计算题例11:简便计算÷+÷ ×480×÷÷120÷(927 +729 )÷(57 +59) 五、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

分数裂项的最基本的公式 第三个公式在一般的小升初考试中不常见,属于小学奥数方面的知识。

有余力的孩子 可以学一下。

例12:简便计算 12×4 +14×6 +16×8 +…..+ 148×50 110×11 +111×12 +112×13+ 113×14 +114×1512 +16 +112 +120 + 130 +142 1-16 +142 +156 +172 114 -920+1130 -1342 +155611×4 +14×7 +17×10 +…..+ 197×100 113 -712 +920 -1130 +1342 -155619981×2 +19982×3 +19983×4 + 19984×5 +19985×6综合例题精讲:99999×77778+33333×666661993×1994-11993+1992×1994 12 +14 +18 +116 +132 +16423 +29 +227 +281 +2243简便运算练习题: 817 +(-1 917 ) 759 -(+1 59 )-115 -(778 -61720)- 13713 -(414 +3713 )- ×114 +125%+112 ÷45 975×+934×76-925 ×425+÷160×+× 45×+× 52×+×778 48×+× 72×-××+× 139×137138 +137×1138×+× 204+584×19911992×584-380 -1143 (89 +137 +611 )÷(311 +57 +49 ) (3711 +11213 )÷(1511 +1013)。

相关文档
最新文档