变力做功的计算总结
变力做功的计算

变力做功的计算 Prepared on 22 November 2020变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少图3答案:。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
小专题复习课(变力做功求解四法)

答案:-125 J
3.利用W=Pt求解 在功率给出且保持不变的情况下,利用W=Pt可求出变力所 做的功. 【典例6】质量为5 t的汽车以恒定的输出功率75 kW在一条平直
的公路上由静止开始行驶,在10 s内速度达到10 m/s,求摩擦
阻力在这段时间内所做的功.
【深度剖析】汽车的功率不变,根据P=Fv知,随着速度v的增大, 牵引力将变小,不能用W=Fl求功,但已知汽车的功率恒定,所 以牵引力在这段时间内所做的功WF=Pt=75×103× 10 J=7.5×105 J
轴及x=5 m所围面积,即 W1 10 5 5 J 37.5 J; W2为F2做的功,数
值等于F2图线跟坐标轴及x=5 m所围面积,即 W2 5 5 J 12.5 J, 所以Ekm=37.5 J-12.5 J=25 J. 答案:25 J
2 2
W外=ΔEp=mgΔh= 1 mg
答案: 1 mg
2
2
a 2 b2 b .
a 2 b2 b
1.(化变力为恒力)如图所示,质量为2 kg的木块套在光滑的竖
直杆上,用60 N的恒力F通过轻绳拉木块,木块在A点的速度vA=
3 m/s,则木块运动到B点的速度vB是多少?(木块可视为质点,g 取10 m/s2)
【典例4】如图所示,质量m=1 kg的物体从轨道上的A点由静止 下滑,轨道AB是弯曲的,且A点高出B点h=0.8 m.物体到达B点时 的速度为2 m/s,求物体在该过程中克服摩擦力所做的功.
【深度剖析】物体由A运动到B的过程中共受到三个力作用:重力 G、支持力FN和摩擦力Ff.由于轨道是弯曲的,支持力和摩擦力 均为变力.但支持力时刻垂直于速度方向,故支持力不做功,
如何求变力做功

F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
思想方法:变力做功的计算方法

思想方法7.变力做功的计算方法方法一平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即F=F1+F22再利用功的定义式W=F l cos α来求功.【典例1】用锤子击打钉子,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击打钉子时锤子对钉子做的功相同.已知第一次击打钉子时,钉子进入的深度为1 cm,则第二次击打时,钉子进入的深度是多少?即学即练1质量是2 g的子弹,以300 m/s的速度射入厚度是5 cm的木板(如图5-1-8所示),射穿后的速度是100 m/s.子弹射穿木板的过程中受到的平均阻力是多大?你对题目中所说的“平均”一词有什么认识?方法二用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.【典例2】如图5-1-9所示,一个人推磨,其推磨杆的力的大小始终为F,与磨杆始终垂直,作用点到轴心的距离为r,磨盘绕轴缓慢转动.则在转动一周的过程中推力F做的功为().A.0B.2πrF C.2Fr D.-2πrF即学即练2如图5-1-10所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.方法三用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.【典例3】一物体所受的力F随位移x变化的图象如图5-1-11所示,求在这一过程中,力F对物体做的功为多少?即学即练3如图5-1-12甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆.则小物块运动到x0处时F做的总功为().A.0B.12F m x2C.π4F m x0D.π4x2方法四利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的这一条件.【典例4】如图5-1-13所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为F f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功WF f;(2)小船经过B点时的速度大小v1.即学即练4汽车的质量为m,输出功率恒为P,沿平直公路前进距离s的过程中,其速度由v1增至最大速度v2.假定汽车在运动过程中所受阻力恒定,求汽车通过距离s所用的时间.方法五 利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.【典例5】 如图5-1-14所示,AB 为四分之一圆周轨道,半径R =0.8 m ,BC 为水平轨道,长为L =3 m .现有一质量m =1 kg 的物体,从A 点由静止滑下,到C 点刚好停止.已知物体与BC 段轨道间的动摩擦因数为μ=115,求物体在AB 段轨道受到的阻力对物体所做的功.(g 取10 m/s 2)即学即练5 如图5-1-15甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,(g =10 m/s 2)求:(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功. 附:对应高考题组(PPT 课件文本,见教师用书)1.(2012·上海卷,18)如图所示,位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动;若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( ).A .F 2=F 1 v 1>v 2B .F 2=F 1 v 1<v 2C .F 2>F 1 v 1>v 2D .F 2<F 1 v 1<v 22.(2012·四川卷,21)如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0.物体与水平面间的动摩擦因数为μ,重力加速度为g .则( ).A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为kx 0m-μgC .物体做匀减速运动的时间为2x 0μgD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg ()x 0-μmgk3.(2012·江苏卷,3)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( ).A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大4.(2011·海南卷,9)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( ).A .0~2 s 内外力的平均功率是94WB .第2秒内外力所做的功是54JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是455.(2011·上海卷,15)如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为( ).A .mgLωB .32mgLω C.12mgLω D .36mgLω【典例1】解析 设木板对钉子的阻力为F f =kx ,x 为钉子进入木板的深度,第一次击打后钉子进入木板的深度为x 1,第二次击打钉子时,钉子进入木板的总深度为x 2,则有W 1=F f 1x 1=0+kx 12·x 1=12kx 21W 2=F f 2(x 2-x 1)=kx 1+kx 22·(x 2-x 1)=12k (x 22-x 21) 由于W 1=W 2,代入数据解得x 2=2x 1=1.41 cm 所以钉子第二次进入的深度为 Δx =x 2-x 1=0.41 cm. 答案 0.41 cm即学即练1解析 设子弹所受的平均阻力为F f ,根据动能定理W 合=12m v 22-12m v 21得 F f l cos 180°=12m v 22-12m v 21所以F f =-m (v 22-v 21)2l =-2×10-3×(1002-3002)2×5×10-2N =1.6×103N 子弹在木板中运动5 cm 的过程中,所受木板的阻力各处不同,题中所说的平均阻力是相对子弹运动这5 cm 的过程来说的.答案 1.6×103 N 见解析 【典例2】解析 磨盘转动一周,力的作用点的位移为0,但不能直接套用W =Fs cos α求解,因为在转动过程中推力F 为变力.我们可以用微元的方法来分析这一过程.由于F 的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δs i 足够小(Δs i →0)时,F 的方向与该小段的位移方向一致,所以有:W F =F Δs 1+F Δs 2+F Δs 3+…+F Δs i =F 2πr =2πrF (这等效于把曲线拉直).答案 B即学即练2解析 将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx ,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W ′=F f Δx ,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W =ΣW ′=F f ΣΔx =2πRF f .答案 2πRF f【典例3】解析 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.S 梯形=12×(3+4)×2=7S 三角形=-12×(5-4)×2=-1所以力F 对物体做的功为W =7 J -1 J =6 J. 答案 6 J 即学即练3解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12πF 2m=12π·F m ·12x 0=π4F m x 0. 答案 C利用W =Pt 求变力做功这是一种等效代换的观点,用W =Pt 计算功时,必须满足变力的功率是一定的这一条件. 【典例4】解析 (1)小船从A 点运动到B 点克服阻力做功 WF f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功 W =Pt 1②由动能定理有W -WF f =12m v 21-12m v 20③ 由①②③式解得v 1=v 20+2m (Pt 1-F f d )④ 答案 (1)F f d (2)v 20+2m (Pt 1-F f d )即学即练4解析 当F =F f 时,汽车的速度达到最大速度v 2,由P =F v 可得F f =Pv 2对汽车,根据动能定理,有Pt -F f s =12m v 22-12m v 21联立以上两式解得t =m (v 22-v 21)2P +s v 2.答案 m (v 22-v 21)2P +s v 2.【典例5】解析 物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,且W G =mgR ,W f BC =-μmgL ,由于物体在AB 段受到的阻力是变力,做的功不能直接求解.设物体在AB 段轨道受到的阻力对物体所做的功为W fAB ,从A 到C ,根据动能定理有mgR +W fAB -μmgL =0,代入数据解得W fAB =-6 J.答案 -6 J 即学即练5 .解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数值得a =2 m/s 2,所以A 与B 间的距离为s =12at 2=4 m.(2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物体回到A 点时速度为v ,则v 2=2as ,由动能定理知W -2μmgs =12m v 2,所以W =2μmgs +mas =24 J.答案 (1)4 m (2)24 J附:对应高考题组(PPT 课件文本,见教师用书)1.解析 水平恒力F 1的作用时有P 1=F 1v 1,斜向上恒力F 2作用时有P 2=F 2v 2cos θ,其中θ为F 2与水平方向的夹角,又F 2cos θ=μ(mg -F 2sin θ),F 1=μmg ,故F 2cos θ<F 1,由于P 1=P 2,所以v 1<v 2,F 1与F 2的关系不确定,故选项B 、D 正确,A 、C 错误.答案 BD2.解析 撤去F 后,物体向左先做加速运动,其加速度大小a 1=kx -μmg m =kxm-μg ,随着物体向左运动,x 逐渐减小,所以加速度a 1逐渐减小,当加速度减小到零时,物体的速度最大,然后物体做减速运动,其加速度大小a 2=μmg -kxm=μg -kx m ,a 2随着x 的减小而增大.当物体离开弹簧后做匀减速运动,加速度大小a 3=μmg m =μg ,所以选项A 错误.根据牛顿第二定律,刚撤去F 时,物体的加速度a =kx 0-μmg m =kx 0m-μg ,选项B 正确.物体做匀减速运动的位移为3x 0,则3x 0=12a 3t 2,得物体做匀减速运动的时间t =6x 0a 3=6x 0μg,选项C 错误.当物体的速度最大时,加速度a ′=0,即kx =μmg ,得x =μmgk,所以物体克服摩擦力做的功W =μmg (x 0-x )=μmg ()x 0-μmg k ,选项D 正确. 答案 BD3.解析 小球速率恒定,由动能定理知:拉力做的功与克服重力做的功始终相等,将小球的速度分解,可发现小球在竖直方向分速度逐渐增大,重力的瞬时功率也逐渐增大,则拉力的瞬时功率也逐渐增大,A 项正确.答案 A4.解析 根据牛顿第二定律得,物体在第1 s 内的加速度a 1=F 1m =2 m/s 2,在第2 s 内的加速度a 2=F 2m =11 m/s 2=1 m/s 2;第1 s 末的速度v 1=a 1t =2 m/s ,第2 s 末的速度v 2=v 1+a 2t =3 m/s ;0~2 s 内外力做的功W =12m v 22=92 J ,平均功率P =W t =94 W ,故A 正确.第2 s 内外力所做的功W 2=12m v 22-12m v 21=()12×1×32-12×1×22J =52 J ,故B 错误.第1 s 末的瞬时功率P 1=F 1v 1=4 W .第2 s 末的瞬时功率P 2=F 2v 2=3 W ,故C 错误.第1 s 内动能的增加量ΔE k1=12m v 21=2 J ,第2 s 内动能的增加量ΔE k2=W 2=52J ,所以ΔE k1ΔE k2=45,故D 正确.答案 AD5.解析 由能的转化及守恒可知:拉力的功率等于克服重力的功率.P G =mg v y =mg v cos 60°=12mgωL ,故选C.答案 C。
变力做功的计算

根据动能定理,子弹减少的动能用于克服阻力做功,有
②
③
①②③联立求解得 。
解法二:设阻力与深度间的比例系数为k,Ff=ks。由于Ff随位移是线性变化的,所以Ff的平均值为
。
根据动能定理,有
①
②
①②联立求解得 。
小结点评:若力随位移按一次方函数关系变化时,求功时可用平均作用力来代替这个变力,用恒力功的公式求功,也可用F-s图象求功;若力随位移的变化不是一次函数关系,则可用图象求功,而不能用平均值求功。
[发散演习]
如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少?
图3
答案:31.4J。
二、图象法
在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。如果作用在物体上的力是恒力,则其F-s图象如图4所示。经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。
图5
例2.子弹以速度 射入墙壁,入射深度为h。若子弹在墙中受到的阻力与深度成正比,欲使子弹的入射深度为2h,求子弹的速度应增大到多少?
思路点拨:阻力随深度的变化图象如图6所示,由图象求出子弹克服阻力做的功,再由动能进行求解。
图6
正确解答:解法一:设射入深度为h时,子弹克服阻力做功W1;射入深度为2h时,子弹克服阻力做功W2。由图6可知
。物体的位移 。在这一过程中弹力的功在数值上等于图8中梯形OADC的面积,即 ,所以物块的最大动能为
变力做功的六种常见计算方法

变力做功的六种常见计算方法第一种方法是曲线切线式。
在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。
具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。
第二种方法是常力法。
在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。
第三种方法是分力法。
当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。
第四种方法是连续变力法。
在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。
具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。
第五种方法是有功做功法。
在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。
第六种方法是负功做功法。
在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。
具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。
综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。
变力做功的公式(一)

变力做功的公式(一)变力做功的公式及例解析变力做功是物理学中的重要概念,用于描述力对物体做功的过程。
下面列举了与变力做功有关的公式,并给出了相应的例子来说明。
1. 变力做功的一般公式变力做功的一般公式可以表示为:W=∫Fx2x1(x) dx其中,W表示功,F(x)表示施加在物体上的力,x表示物体的位移。
例子1:假设一个弹簧定律符合Hooke定律,其伸长的长度与受力的关系为F(x)=kx,其中k为弹簧的弹性系数,x为弹簧伸长的长度。
如果我们要计算当弹簧从x1伸长到x2时,因弹簧力做的功,可以使用上述公式进行计算。
W=∫kx2x1x dx=12kx2|x1x22. 一维变力做功的公式对于一维情况下的变力做功,可以使用以下公式计算:W=∑F iΔx i其中,W表示功,F i表示作用在物体上的各个力,Δx i表示物体在每个力作用下的位移。
例子2:考虑一个质量为m的物体在水平面上,分别受到施加在它上面的三个力F1、F2和F3。
如果该物体在力F1的作用下移动了Δx1,在力F2的作用下移动了Δx2,在力F3的作用下移动了Δx3,则可以通过上述公式计算出这三个力的总功。
W=F1Δx1+F2Δx2+F3Δx33. 二维变力做功的公式对于二维情况下的变力做功,可以使用以下公式计算:W=∫FC⋅dr其中,W表示功,F表示施加在物体上的力矢量,dr表示物体沿曲线C的微小位移矢量。
例子3:考虑一个质点沿着一条光滑曲线C由点A移动到点B,施加在质点上的力可以表示为F=F x i+F y j。
如果我们要计算该力在质点从A到B 的路径上所做的功,可以使用上述公式进行计算。
W=∫(F x i+F y j)C ⋅(dxi+dyj)=∫(F x dx+F y dy)C以上就是关于变力做功的公式及相应例子的说明。
通过这些公式,我们可以在实际问题中计算出力对物体所做的功,进一步理解和应用力学原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
、微元法对于变力做功,不能直接用呼■处皿&进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用八爲二皿求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法的变力的做功问题。
例1.用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为’。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小' 不变,方向时刻变化,是变力,不能直接用|瞬■ ^SCOS^求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反图1正确解答:把圆轨道分成无穷多个微元段硏•巧'肉*…*亦,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别吧工-中粥为斷♦严跖| ,,…,即=%+,,摩擦力+小在一周内所做的功+% - + &2 + 殆 4 +务)二一2贰测gR误点警示:对于此题,若不加分析死套功的公式,误认为位移s = 0,得到W 0,这是错误的。
必须注意本题中的F是变力。
. 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F= 10N作用于半径R= 1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少?图3答案:31.4J。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F—s图象如图4所示。
经过一段时间物体发生的位移为s o,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W= Fs, s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4 (b)所示)。
如果F — s 图象是一条曲线(如图 5所示),表示力的大小随位移不断变化,在曲线例2.子弹以速度射入墙壁,入射深度 为h 。
若子弹在墙中受到的阻力与深度成正思路点拨:阻力随深 度的变化图象如图6所示,由图象求出子 弹克服阻力做的功,再 由动能进行求解。
正确解答:解法一: 设射入深度为h 时,子弹克服阻力做 功W 1;射入深度为2h 时, 子弹克服阻力做功 W 。
由图6可知F 方作阶梯形折线, 则折线下方每个小矩形面积分别表示相应 恒力做的功。
当阶梯折线越 分越密时,这些小矩 形的总面积越趋近于曲线下方的总面积,可见曲线与坐标轴所围成的面积在数值上等于变 力所做的功。
由于 F — s 图象可以计算功,因 此F — s 图象又称为示功图。
根据动能定理,子弹减少的动能用于克服阻力做功,有①②③联立求解得解法二:设阻力与深度间的比例系数为k, F f = ks。
由于F f随位移是线性变化的,所以F f的平均值为石弓(0 +同。
根据动能定理,有寺+盼e刿①+ 24)2i = Q-lwv"②①②联立求解得小结点评:若力随位移按一次方函数关系变化时,求功时可用平均作用力来代替这个变力,用恒力功的公式求功,也可用F—s图象求功;若力随位移的变化不是一次函数关系,则可用图象求功,而不能用平均值求功。
[发散练习]1.如图7所示,有一劲度系数k = 500N/m的轻弹簧,左端固定在墙壁上,右端紧靠卫■ 0 4一质量m= 2kg的物块,物块与水平面间的动摩擦因数,弹簧处于自然状态。
现缓慢推动物块使弹簧从B到A处压缩10cm,然后由静止释放物块,求(1)弹簧恢复原长时,物块的动能为多大?(2)在弹簧恢复原长的过程中,物块的最大动能为多大?图7答案:(1)1.7J ; (2)1.764J。
提示:(1)从A到B的过程,对物体应用动能定理得「总-坡仁◎,其中牡=W% W弹可利用示功图求出,画出弹簧弹力随位移变化的图象(如图8所示)—彳也]町E朋n g X 500F1=kx!,弹力做功的值等于△ OAB勺面积,即 2 ,所以2 XQl a J-04X2x 10xov=L?J(2)放开物体后,物体做的是加速度越来越小的加速运动,当弹簧的弹力等于摩擦力时,物体有最大的动能。
设此时弹簧的压缩量为。
由。
物体的位移巧=心一x厂OVti-O 016w = 0 0S4w这一过程中弹力的功在数值上等于图8中梯形OADC勺面积,即耳=略_% =瓠巧车小= |x500 X (01 +所以物块的最大动能0016)X 0.084/-04X2X wx 0084 J = 1.764 J2.用质量为5kg的均匀铁索从10m深的井中吊起一质量为20kg的物体,在这个过程中至少要做多少功?(g取10m/s2)答案:2250J提示:作用在物体和铁索上的力至少应等于物体和铁索的重力,但在拉起铁索的过程中,铁索长度逐渐缩短,因此拉力也逐渐减小,即拉力是一个随距离变化的变力。
从物体在井底开始算起,拉力随深度h的变化关系是(0W h w 10),作出F—h图线如图9所示,利用示功3•—辆汽车质量为1X 105kg,从静止开始运动,其阻力为车重的0.05倍。
其牵引力F = 10^+^ F r一的大小与车前进的距离是线性关系,且’,丿是车所受阻力,当该车前进100m时,牵引力做了多少功?答案:1X 107J。
J= 1 OX IO7J所以图求解拉力的功(可用图中梯形面积表示),得出250 + 200~2~X 107= 22507 提示: 阻力= ^ = 005xixitfx WA/=$X IO4J7。
则牵引力为F = 10^+5X10*。
作出F—s图象如图10所示,图中梯形OABD的面积表示牵引力的功,图10三、利用W Pt求变力做功这是一种等效代换的观点,用W= Pt计算功时,必须满足变力的功率是一定的。
例3.汽车的质量为m输出功率恒为P,沿平直公路前进距离s的过程中,其速度由V1增至最大速度匕>。
假定汽车在运动过程中所受阻力恒定,则汽车通过距离s所用的时间为 ______________ 。
思路点拨:汽车以恒定的功率P加速时,由P= Fv可知,牵引力逐渐减小,汽车做加速度逐渐减小的加速运动,当F= F f时,加速度减小到零,速度达到最大,然后以最大的速度做匀速直线运动。
正确解答:当F= F f时,汽车的速度达到最大V2,由P ■旳可得' 工①对汽车,根据动能定理,有1 2 1 aPt - F t s -—w? * 十WV,①②两式联立得样解是错误的,因为汽车的运动不是匀加速运动,不能用求平均速度。
小结点评:汽车以恒定的功率起动时,牵引力是变力,牵引力的功不能用W= Fs计算,— 1 p P但可以用W Pt计算;若用 2 Vl耳求牵引力的功也是错误的,因为牵尸<£(耳+码)引力随位移的变化不是线性关系,不能用 2 求平均牵引力。
[发散演习]质量为m的汽车在平直的公路上从速度V。
开始加速行驶,经过一段时间t后,前进了距离s,此时恰好达到其最大速度'■磔,设此过程中汽车发动机始终以额定功率P工作,汽车所受的阻力为恒力F f,则这段时间里,发动机所做的功为()答案:A、B所以"匸“ =&%叭,选项A正确。
选项C D均将汽车的运动看作匀变速运动,其中讳+ %區选项C是先求出a,再求出合外力ma的功,选项D是先算出平均速度?,然后用动。
四、利用功能关系求变力功误点警示:有同学可能这样解:平均速度2扣丄+耳),时间提示:发动机所做的功即为发动机牵引力做的功,由功率定义确。
汽车以恒定功率起动,当F= F f时,达到最大速度应有表示发动机做的功, 显然都是错误的,因为机车的运动是变加速运动而不是匀变速运可知W Pt,选项B正求变力所做的功,往往根据动能定理、机械能守恒定律和功能关系等规律,用能量的变化量等效代换变力所做的功。
这种方法的优点是不考虑变力做功过程中力的大小及方向的细节,只考虑变力做功的效果??能量变化,解题过程简捷,是求变力功的首选方法。
例4.如图11所示,质量mi= 2kg的小球系在轻细橡皮条一端,另一端固定在悬点0处。
将橡皮条拉直至水平位置0A处(橡皮条无形变)然后将小球由A处静止释放,小球到达0点正下方h= 0.5m处的B点时的速度为v = 2m/s。
求小球从A运动到B的过程中橡皮条的弹力对小球所做的功。
取g = 10m/s2。
*I r图11思路点拨:取小球、橡皮条和地球组成的系统为研究对象,在程中,只有系统内的重力和弹力做功,机械能守恒。
正确解答:取过B点的水平面为零重力势能参考平面,橡皮条零。
设在B时橡皮条的弹性势能为E p2,由机械能守恒定律得=2X10X0.5/"-x2X2a J = 672橡皮条的弹性势能增加6J,则小球的机械能必减少6J,故橡皮条的弹力对小球做功—6J。
小结点评:弹簧或橡皮条的弹力是变力,求此类弹力做功可用机械能守恒定律结合弹力做功与弹性势能变化的关系。
[发散演习]1.将一质量为m的物体以初速度v o竖直向上抛出,落回抛出点时的速度为v,已知空气阻力与速率成正比,则从抛出到落回抛出点的整个过程中,空气阻力做的功为1 2 I 3-MV - W n答案:2 2 。
小球从A运动到B的过为原长时的弹性势能为提示:对整个过程应用动能定理。
2.如图12所示,物体沿曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑的高度为5m速度为6m/s。
若物体的质量为1kg。
则下滑过程中物体克服阻力所做的功为多少?图12答案:根据动能定理可得歼二%—应他=3汙。
五、利用动能定理求变力功6•质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()1 1 1A. — mgRB. — mgRC. 一mgRD. mgR4 2 35•某消防队员从一平台跳下,下落 2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了 0.5m。
在着地过程中,地面对他双腿的平均作用力是他自身重力的()A. 2 倍;B . 5 倍;C . 8 倍;D. 10 倍4.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,F拉力为某个值F时,转动半径为R,当拉力逐渐减小到f时,物体以另一线速度仍做匀速圆周运动,半径为2R,则物体克服外力所做的功是()2.如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物体,与两个轨道间的动摩擦因数都为,当它由轨道顶端A从静止开始下落, 恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为()C . D.C.4D . ■n-1质量为m的小球从离泥塘高H处由静止落下,不计空气阻力, 图所示,求小球在泥塘中运动时所受平均阻力多大?后停止,自静止状态开始自由下落,然后陷入泥潭后停止运动,若钢球计,则钢球克服泥潭的阻力做功 _______________ J落在泥塘上又深入泥塘如训练1 .一粒钢球从1高处的质量为,空气阻力忽略不。