电磁炉单元电路控制关系框图

合集下载

电磁炉原理图和工作原理

电磁炉原理图和工作原理

电路方框图主回路原理分析振荡电路IGBT激励电路PWM脉宽调控电路同步电路加热开关控制VAC检测电路电流检测电路VCE检测电路浪涌电压监测电路过零检测锅底温度监测电路 IGBT温度监测电路散热系统主电源辅助电源报警电路三、故障维修故障代码表主板检测标准故障案例故障现象1一、简介电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V 机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT 温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。

电磁炉各功能块电路原理

电磁炉各功能块电路原理

为帮助大家有效掌握电磁炉维修相关技术,本文特地带来九阳三款电磁炉的电路图,并做出详细解释。

九阳电磁炉电路图(一)九阳JYC-21CS21型电磁炉电源电路如下图所示,由以下几个部分组成:1.IGBT管供电从下图中可以看到,AC220V电源通过接线螺钉Jl、J2,保险丝FUSEl/10A(大电流保护),压敏电阻CTRl/10D561(过压保护),再经过高频滤波电路(共模变压器L2、C1、C2)后分为两路,其中,主电路通过串联互感器T1(感应电压用于监测主电路电流),桥堆DB1整流,L1、C3(LC)滤波得到,约300V的直流电压加至电磁线圈和IGBT管上,C4和线圈构成谐振回路。

2.电网监测从共模变压器L2输出的AC220V电压经过D200、D201整流后,一路通过R200、R201、R202、C200组成的分压、滤波电路取得电网监测电压送给CPU,用于监测电网电压。

如果电网电压不正常,CPU将及时切断振荡电路。

需要说明的是,部分偏远地区或超负荷工业园区会因电网电压极不稳定而导致电磁炉不能正常工作。

此时,可将R202做成可调电阻,通过调整分压比来解决此类问题。

3.开关电源部分D200、D201整流后的另一路经过D500、R503、C500降压滤波后提供给本机开关电源,这一部分电路是本文要重点讨论的。

在实际使用中,由于开关电源处在高电压状态下,造成此部分电路损坏元件较多,故障率较高。

下面介绍此部分电路的工作原理。

D500、C500整流滤波后输出约300V的直流电压,加到开关变压器T500初级,通过开关模块IC500(ACT30B)控制开关管Q502(13002),起振后在开关变压器初级产生20kHz左右的高频高压脉冲,耦合到开关变压器次级,次级输出较高的脉冲电压,通过快速’恢复二极管D503整流、C504电容滤波后,得到直流电压VCC(+18V),给三路电路供电:一路送IGBT管驱动电路(Q300、Q301)。

电磁炉工作原理及电磁炉电路图分析

电磁炉工作原理及电磁炉电路图分析

电磁炉工作原理及电磁炉电路图分析电磁炉工作原理及电磁炉电路图分析(一)一.电磁加热原理电磁炉是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶部,由整流电路将50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz 的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场的磁力线通过金属器皿( 导磁又导电材料) 底部金属体产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿的东西。

二、电磁炉电路工作原理分析2.1 常用元器件简介2.1.1 LM339 集成电路LM339 置四个翻转电压为6mV 的电压比较器, 当电压比较器输入端电压正向时(+ 输入端电压高于- 入输端电压), 置于LM339 部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(- 输入端电压高于+ 输入端电压), 置于LM339 部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低, 此时输出端为0V 。

2.1.2 IGBT绝缘双栅极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压鼓励场控型器件优点于一体的高压、高速大功率器件。

目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合构造。

IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出, 它抑制了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。

IGBT的特点:1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。

在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)电磁炉基本原理介绍1.电磁炉加热和工作原理简介;2.电磁炉主要元件介绍;3.电磁炉电路各模块原理讲解;1.电磁炉加热和工作原理简介1.1电磁炉加热和工作原理简介;1.2 电磁炉原理方框图;1.3 LC振荡电路;1.1电磁炉加热和工作原理简介1.2 电磁炉原理方框图1.3 LC振荡电路示意图2.电磁炉主要元件介绍2.1 QF808单片机简介;2.2 RS2007M整流桥介绍;2.3 LM339集成电路介绍;2.4 IGBT简介;2.5 74HC164移位寄存器介绍;2.1 QF808单片机简介QF808为前锋和台湾中颖共同研发的一款单片机,存储器大小为64K bits ROM,里面集成5个比较器,6通道8位ADC转换,2个8位定时计数器,8位高速PWM脉冲输出,内部频率复合放大器,在线振荡时钟电路,在线看门狗定时器,采用低电压复位;2.2 RS2007M整流桥介绍;电压输入范围为50到1000V,承受电流最大为20A;特点为输出电流大,抗大电流冲击能力强,能承受较高的峰值反向电压;2.3 LM339集成电路介绍LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.4 IBGT简介绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压高速大功率器件;IGBT有三个电极,分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极)及发射极E(也称源极),将场效应管作为推动管,大功率达林顿管作为输出级就构成了IGBT开关管;2.5 74HC164移位寄存器介绍74HC164为8位移位寄存器,现有电磁炉的面板显示项目较多,对单片机端口要求叫多,而现有单片机端口有限,为了达到显示电路的控制,现需要采用移位寄存器来扩展控制口;74HC164是8为串行输入并行输出单向移位寄存器;A,B为串行码输入端,MR为清零输入端,CLJ为时钟脉冲的输入端,IC随着时钟脉冲上升沿的到来,A,B相与后状态依次由Q0移向Q7;如下图:3.电磁炉电路各模块原理讲解3.1 EMC防护电路和整流电路3.2 高频谐振电路3.3 驱动电路3.4 同步电路及反压保护电路3.5 温度检测电路3.6 高低电压监测电路3.7 电压浪涌保护电路3.8 电流浪涌保护电路3.9 电流检测电路3.10 风扇电路蜂鸣器电路3.11 电源电路3.12 按键电路3.13 显示电路3.1 EMC防护电路和整流电路FUSE1为保险管,其规格为15A/250V,此款电磁的最高功率为2100W,AC220V其工作的最大电流为9.6A,正常状态下,不会超过保险管的正常值。

电磁炉原理

电磁炉原理

一原理简介原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速运动产生热量,然后加热锅中的食物•、电磁炉的原理方块图三磁炉工作原理说明1、主回路图中整流桥 BI 将工频(50HZ )电压变成脉动直流电压, L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动, IGBT 导通时,流过L2的电流迅速增加。

IGBT 截止时,L2、C21发生串联谐振,IGBT 的C 极对地产生高压脉冲。

当该脉冲降至为零时,驱动脉冲再次加到 IGBT 上使之导通。

上述过程周而复始,最终产25KHZ 左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。

串联谐振的频率取之 L2、C21的参数。

C5为电源滤波电容。

CNR1为压敏电阻(突波吸收器),当AC 电源电压因故突然升高时,瞬间 短路,使保险丝迅速熔断,以保护电路。

2、副电源开关电源提供有+5V , +18V 两种稳压回路,其中桥式整流后的 比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+ 18V 供IGBT 的驱动回路,同步 +5V 供主控MCU 使用。

IN^007FJDQOOIC43、冷却风扇当电源接通时主控IC 发出风扇驱动信号(FAN ),使风扇持续转动,吸入外冷空气至机体内, 再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。

当风 扇停转或散热不良,IGBT 表贴热敏电阻将超温信号传送到 CPU ,停止加热,实现保护。

通电瞬 间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU 发出风扇驱动信号使其工作。

4、定温控制及过热保护电路感测温度而改变电阻的一随温度变化的电压单位传送至主控 照温度设定值比较而作出运行或停止运行信号5、主控IC ( CPU )主要功能18脚主控IC 主要功能如下:(1) 电源ON/OFF 切换控制 (2) 加热火力/定温温度控制 (3) 各种自动功能的控制 (4) 无负载检知及自动关机 (5) 按键功能输入检知 (6) 机内温升过高保护 (7) 锅具检知 (8) 炉面过热告知 (9) 散热风扇控制 (10)各种面板显示的控制< IGAg>C12 104J该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT 上的热敏电阻(负温度系数) IC ( CPU ),CPU 经A/D 转换后对TOP^TEMPI IGBTT-TEMP16、负载电流检知电路该电路中T2 (互感器)串接在 DB (桥式整流器)前的线路上,因此 T2二次侧的AC 电压可反映输入电流的变化,此 AC 电压再经D13、D14、D15、D5全波整流为DC 电压,该电压经分压后直 接送CPU 的AD 转换后,CPU 根据转换后的AD 值判断电流大小经软件计算功率并控制PWM 输出大小来控制功率及检知负载7、驱动电路该电路将来自脉宽调整电路输出的脉冲信号放大到足以驱动 IGBT 开启和关闭的信号强度, 输入脉冲宽度愈宽IGBT 开启时间愈长。

电磁炉电路方框图识读方法

电磁炉电路方框图识读方法

电磁炉电路方框图识读方法所谓电路方框图,就是把整机电路按功能系统电路分成几大块,并在各功能方框中注上相应功能的文字和字符,再按供电走向、信号走向和控制方式,把几个方框用连线有机地连接起来而成。

必要时,还可以把整机电路方框图中的某个功能电路的方框,再画成更详细的方框图。

例如,对一块已知内部电路的集成电路,也可以把它的内部电路分成几个单元画成方框图,以便说明其构成及引脚功能。

下面,就以电磁炉电路为例,认识一下电路方框图。

电磁炉典型的电路图,是由300V供电电路、低,压电源电路、单片机(徽处理器)、主回路(LC谐振回路)、功率管驱动电路、振荡器、同步控制电路、保护电路、操作电路、温度调节电路等构成。

把以上各部分电路,按它们之间的相互关系连接,即可画成电磁炉整机电路方框图,如附图所示。

其各部分电路的功能简述如下:1.300V供电电路#通过整流、滤波电路将市电电压变换为300V直流电压,供电磁炉内的主回路工作。

2.低压电源电路#通过电源变压器将市电变为低压,再经整流、滤波,为单片机、操作显示电路提供5v直流电源,为驱动电路、振荡器保护电路、风扇电机等,提供12V或18V直流电源。

3.振荡器#产生锯齿波脉冲电压作为脉宽调制器(PWM)的触发信号。

4.脉冲宽度调制器#利用振荡器产生的锯齿波脉冲电压作为触发信号,再与功率调整信号(直流电压)比较后,产生占空比可调的激励脉冲信号‘(即调宽脉冲)。

大部分电磁炉的功率调整信号是由CPU输出的PWM信号,经低通滤波器(RC)滤波获得的;部分电磁炉的功率调整信号还包括电流自动调整信号。

5.功率管驱动电路#PWM脉冲不能直接驱动功率管,必须先将调宽脉冲进行放大,然后驱动功率管。

PWM控制CPU输出激励脉冲驱动功率管的开与关。

6.功率调整电路#就是调整激励脉冲占空比的电路,其占空比大小,决定着功率管导通时间的长短,也就是为线盘提供电流的大小(即电磁炉输出功率的大小)。

7.电流自动控制电路#该电路由取样和控制两部分组成。

尚朋堂电磁炉原理图解及检修方法

电磁炉原理图解一、电磁炉系统框图图(1)如图(1)所示高频电磁炉原理方框图。

它是由EMI滤波电路、电源回路、主回路、单片机控制电路和保护电路等单元电路组成。

它的工作原理是,首先将220V交流电转换为直流电压,再通过励磁线圈加到IGBT上,IGBT受驱动信号的控制而导通截止,再励磁线圈中有频率为20KHZ—50KHZ的电流流过,励磁线圈的周围将产生高频磁场,若此时有铁锅至于炉台上在锅底内会有涡流产生,此时涡流克服锅体内阻流动时,将电能转换成热能,作为烹饪的热源如图(2)。

图(2)二、部分电路简要说明1、EMI滤波电路当AC电压加入时,可能会有干扰串入,影响电磁炉工作,加上电磁炉在工作时,本身会产生杂讯及干扰信号会有电源回路而影响到外界的电器装置,故有EMI滤波电路来防止此干扰。

2、主回路如(图1)所示,IGBT是受矩形脉冲驱动的,当IGBT导通时,流过励磁线圈的电流迅速增加,当IGBT截止时,(L/C)回路发生谐振,IGBT的集电极产生脉冲高压,当此高压降至接近0是(励磁线圈中的电流正在反向减小)驱动脉冲再次加到IGBT的基极,使IGBT再次到通。

驱动矩形脉冲信号的宽度决定了电磁炉负荷电流的大小。

3、同步电路同步电路严密监视主回路的工作状况,当IGBT电压下降接近0V时,输出一个触发脉冲强行使IGBT导通,是振荡电路开始下一个周期的震荡。

这样可以避免励磁线圈中的电流瞬间变化太大,保护了关键部件IGBT。

4、振荡电路振荡电路输出矩形脉冲。

正常工作时该矩形脉冲的上升沿时刻受同步电路的强制控制,以确保与主回路LC谐振电路同步,而矩形脉冲的宽度受电流负反馈电路的控制。

5、电流负反馈电路符合电流的反馈信号和单片机输出的PWM信号相比较形成电流负反馈的输出,这样可限制负荷电流不至于过高。

改变PWM的占空比就可以控制负荷电流的大小。

6、过压保护电路该电路严密监视市电上尖峰干扰和IGBT集电极的电压,一旦电压过高立刻关断驱动信号保护关键部件IGBT。

电磁学应用举例

电磁学在生活中的应用主要内容:一、电磁炉 (Electromagnetic Oven )二、微波炉 (Microwave Oven)三、蓝牙技术 (Bluetooth Technology)四、磁悬浮列车 (Maglev Train)一、电磁炉1、电磁炉的结构电磁炉是现代厨房革命的产物,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高。

它是一种高效节能橱具,完全区别于传统所有的有火或无火传导加热厨具。

电磁炉是利用电磁感应加热原理制成的电气烹饪器具。

使用时,加热线圈中通入交变电流,线圈周围便产生一交变磁场,交变磁场的磁力线大部分通过金属锅体,在锅底中产生大量涡流,从而产生烹饪所需的热。

在加热过程中没有明火,因此安全、卫生。

电磁炉的功率一般在700~1800W 之间,它的结构主要由外壳、高级耐热晶化陶瓷板、PAN 电磁线盘、加热电路板、控制电路板、显示电路板、风扇组件及电源等组成。

2、电磁炉的工作原理2.1 整体电路图电磁炉的整体电路方框图如下图1-1;各部分关系框图如下图1-2:图1-1电磁炉整体电路方框图图1-2电磁炉各部分关系框图2.2 加热原理在电磁炉内部,由整流电路将50Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为15~40kHz 的高频电压,高速变化的电流流过扁平空心螺旋状的感应加热线圈(励磁线圈),线圈会产生高频交变磁场。

其磁感线穿透灶台的陶瓷台板而作用于不锈钢锅(导磁又导电材料)底部,在烹饪锅体内因电磁感应就有强大的涡流产生。

涡流克服锅体的内阻流动时完成电能向热能的转换,锅底迅速释放出大量的热量,就是烹调的热源。

2.3 涡流和涡流的产生在柱形铁芯上绕有线圈,当线圈中通上交变电流时,每个铁芯片就处在交变的磁场中。

如图1-3所示:铁芯可看成是由一系列半径逐渐变化的柱状薄壳组成,每层薄壳构成一个闭合回路。

在交变的磁场中,通过这些薄壳的磁通量都在不断地变化,所以沿着一层层的壳壁产生感应电流。

电磁炉电路图讲解

电磁炉电路图讲解一、主振荡回路它由IGBT1、C4、OUT1和OUT2之间所接的线盘构成。

其作用是在线盘中形成变化的振荡电流。

当IGBT1的G极有驱动电压时,IGBT1饱和导通,由300V---线圈---D级----S级形成通路,使线圈储存电能;当IGBT1的G极无驱动电压时,IGBT1完全截止,线圈上电能由OUT2---C4右----C4左---OUT1---线圈----OUT2向C4冲电;当C4上的电压冲到最高时,此时C4上的电压通过C4右---OUT2---线圈---OUT1---C4左通路放电。

当C4上的电压放电到最低时,G极通过控制电路后的又一个驱动电压会到来,再次使IGBT1导通。

如此周而复始,线圈上就形成了方向变化的振荡电流。

二、IGBT驱动电路它由Q300、Q301、R300~R303、D300构成。

当B点有正方波脉冲到来时,Q301导通,Q300截止,由18V---Q301C极---Q301E极---R302---D点----R301----G点----IGBT管的G极----IGBT管的S极-----地,通过这条通路给IGBT管G极注入一个约17V左右的正向驱动电压,使IGBT1饱和导通;当B点有负方波脉冲到来时,Q301截止,Q300导通,D点失去电压, IGBT管G极注入的电压消失,使IGBT1管迅速截止。

注:这里R303的作用是给B点提供一个偏置电压,使Q300、Q301能够迅速导通或截止。

R302、R301是限流电阻,根据功率的不同这两个电阻尤其是R301选用阻值有所不同,R300是用防止输入的驱动电压过高而设的,有的在它两端还关联有一只15V~18V的稳压二极管,其作用与此相同。

值得一提的是,IGBT管导通期间,注入G级的电压不得低于15V,否则IGBT管会因驱动不足致过热损耗而击穿。

三、驱动方波脉冲形成电路它由U2D的10、11、13脚构成,其作用是形成用于驱动对管的方波脉冲。

苏泊尔电磁炉电路图大全

苏泊尔电磁炉电路图集TD0303灯板原理图(前锋)TD0303主板电路原理图(前锋)QF-139-08(主)TD0305灯板电路原理图(前锋)TD0305主板电路原理图(前锋)QF-096-05(主) QF-100-08T0306灯板电路原理图(前锋).. T0307主板、灯板电路原理图(前锋)QF-101-02(主) QF-078-02TD0309主板、灯板电路原理图(前锋)QF-134-06(主) QF-136-03TD0310主板、灯板电路原理图(前锋)前锋-134-06(主)前锋-136-03TD0322灯板电路原理图(前锋)QF-836TD0322主板电路原理图(前锋)QF-7TD0412灯板电路原理图(一)(前锋)TD0412主板电路原理图(一) (前锋)TD0413灯板电路原理图(前锋)TD0413主板电路原理图(前锋)TD0418灯板电路原理图(前锋)TD0418主板电路原理图(前锋)TD0418灯板电路原理图(瑞德)TD0418主板电路原理图(瑞德)2005年电路图集TD0501CT、TD0501T灯板(一)电路原理图(前锋)TD0501CT、TD0501T灯板(二)电路原理图(前锋)TD0501CT、TD0501T主板(二)电路原理图(前锋QF-1058-02)TD0501T、TD0501CT灯板电路原理图(瑞德)TD0501T、TD0501CT主板电路原理图(瑞德)TD0501T、TD0501CT灯板电路原理图(拓邦)TD0501T、TD0501CT主板电路原理图(拓邦)TD0503T主板电路原理图(前锋)TD0504灯板电路原理图(前锋)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档