正比例函数教学设计
《正比例函数》教案(优秀6篇)

《正比例函数》教案(优秀6篇)在教学工作者开展教学活动前,就不得不需要编写教案,借助教案可以让教学工作更科学化。
那么应当如何写教案呢?以下内容是为您带来的6篇《《正比例函数》教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
《正比例》优秀教学反思篇一刚刚上完正比例的教学内容,有以下几点心得:1、比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比。
两个数相除叫做这两个数的比。
比有两种写法,一种是比号写法,另一种是用分数写法。
2、单刀直入(其实学生已经预习知道)主题,告诉学生什么叫做正比例:两个量发生变化后(可以变大爷可以变小),他们的比值不变我们就说这两个量成正比例。
老师例子说明,并且请学生互动找例子。
3、现在这个环节是比较重要的,我不认同书本上就靠表格天数据来认知正比例。
首先强调这两个量都可以作为比的前项后后项,但是最好是写出有意义的比;其次,要求学生针对每一对数据表格都要写出一个比,并且求出比值,从而加深对正比例的意义的理解,也强化了正比例的计算方法。
我觉得这个环节是非常非常重要的,比起空洞地填写表格要实在的多,学生通过这个活动基本上掌握了正比例的意义,能准确地判断正比例。
4、运用以上的知识和方法,请学生完成书上的作业。
检查结果基本上没有错误。
注意点:让学生自己找生活中的例子可能不是很准确;表达阐述正比例的关系中,有些例子需要加入前提,如直径和半径成正比例的前提是同圆或等圆。
《正比例》优秀教学反思篇二正比例这一内≮≮容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。
从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。
教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。
在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。
正比例函数教案与教学设计(两份)

《正比例函数》教学设计(一)一、教学目标:1、知道一次函数与正比例函数的意义.2、能写出实际问题中正比例关系与一次函数关系的解析式.3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力二、教学重点:对于一次函数与正比例函数概念的理解.三、教学难点:根据具体条件求一次函数与正比例函数的解析式.四、教学方法:结构教学法、以学生“再创造”为主的教学方法五、教学步骤(一)明确目标前几节课我们学习了一些与函数有关的知识点,它们都是一些一般性的问题.从这节课开始,我们将来研究几个特殊函数的解析式和图象.首先,我们来研究一次函数.(板书)(二)整体感知提问:1.什么是函数?2.函数有哪几种表示方法?3.你能否举出几个函数的例子?若学生举的例子正是一次函数,就把它写在黑板上,用于讲解;若学生举的例子不适合,可采用书上给出的例子讲解.提问:(1)这些式子表示的是什么关系?(函数关系)(2)这些函数中的自变量是什么?函数是什么?这个问题主要是使学生明确函数就是等号左边的s和y;而自变量是x 和t之后,明确等号右边其实是一个代数式的形式,以便回答下一个问题.(3)在这些函数式中,含有函数的自变量的式子,分别是关于自变量的什么式子?这个问题是给出一次函数的概念的关键问题,若学生没有想到用“一次式”这种方式表示,教师可直接向学生提出“是关于自变量的几次式”这个问题,再由学生回答.(4)结合我们学过的一元一次方程的有关知识,你能否说出x的一次式的一般形式是什么样的?由学生讨论回答,及时纠正可能出现的错误,最后加以总结:x的一次式是kx+b(k≠0)的形式.由上面的问题结果综合得到:(板书)一般地,如果y=kx+b(k、b是常数,k≠0),那么,y叫做x的一次函数.提问:(1)k、b是常数的含义是什么?答:对于一个特定的函数式,k和b的值是固定的.(2)对于函数y=2x+3和y=-2x-5,你能否指出其中的k和b?这个问题一方面是为了向学生进一步说明k和b是常数的含义,另一方面也是为了培养学生思维的灵活性和深刻性,充分体会一次函数标准形式的表示方法,能正确分清其中的k和b,为以后学习一次函数的图象和性质打下良好的基础.强调学生在回答时,注意k和b的符号.(3)k≠0这个条件能否省略不写?由学生讨论回答,指出若k=0,则y=kx+b变形为y=b,b是关于x的0次式,因此不是一次函数,不必向学生交待常函数的意义.(4)上述一次函数的定义中,限制了k≠0,那么b能否为0呢?若b=0,上述式子变形为什么样?这个问题主要是为了引出正比例函数的概念,同时,通过这种引法,也可以使学生体会到正比例函数与一次函数是有关系的.由问题(4)总结,板书:特别地,当 b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.提问:(1)正比例函数与一次函数有怎样的关系?答:正比例函数是一次函数的特例.(2)小学时,学过正比例的知识吗?是怎样叙述的?请你回忆一下.小学叙述时,是强调两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.写成式子是y=kx(k为常数,k不等于0)提问:小学学过的正比例与我们现在说的正比例函数有什么关系?先由学生观察,然后总结:把小学学过的正比关系的式子加以变形就成为y=kx(k一定),也就是我们现在所学习的正比例函数.由于小学定义时k为商,所以k当然不为0,这个细节可由教师提问后学生回答.但小学学习时,x与y只能取正数,但现在就不同了,x和y可以取任意实数.由这个总结使学生对学过的知识能加以系统的理解.练习一:P.105中1 口答.注意:一定要让学生说清原因.刚才我们学习了一次函数和正比例函数的概念,下面我们来看一下,能否根据实际问题自己列出一次函数和正比例函数的关系式呢?(出示幻灯)例1 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求经过几秒小球的速度可变化为10米/秒.分析:v与t是正比例关系,若学生有困难,可出示下表帮助学生理解:例2 拖拉机开始工作时,油箱中有油40升,如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式,并求出自变量的取值范围.这道题学生会感到有困难,以提问的方式分析:(1)油箱中的油为什么会减少?(耗油)(2)余油量与什么有关?(原油量与耗油量)(3)耗油量与什么有关,怎样表示?(4)你能否确定这个函数关系式?(5)这道题是实际问题,拖拉机能否一直工作?什么时候拖拉机不能工作了呢?练习二:P.105中2 填在书上,口答,注意单位(万元).(三)重点、难点的学习与目标完成过程本节课的第一个重点是一次函数与正比例函数的概念,为了便于学生的理解,教师不是上来就给出概念让学生背,而是通过一些函数的解析式让学生归纳总结一次函数概念,然后通过一次函数概念中的一些条件的分析得出正比例函数,使学生很清楚地看到一次函数与正比例函数的关系.关于本节课的第二个重点和难点,教师更是要给学生充分的思考时间,并把问题层层剖析,使学生能理解实际问题的含义,由此自然而然地达到把实际问题抽象成数学模型的目的.(四)总结、扩展教师提问,学生思考回答:1.这节课我们学习了几个特殊的函数?2.你能分别说出它们的一般形式吗?3.正比例函数与一次函数有怎样的关系?4.确定实际问题的自变量取值范围应注意什么?《正比例函数》教学设计(二)一、教学目标知识与技能:1.理解正比例函数的概念。
《正比例函数》教案

《正比例函数》教案一、教学目标:1.理解正比例函数的概念,掌握正比例函数的性质。
2.能够绘制正比例函数的图象,运用正比例函数解决实际问题。
3.了解正比例函数在日常生活和工作中的应用。
二、教学重点和难点:1.正比例函数的性质和特点。
2.正比例函数的图象及其特点。
3.能够运用正比例函数解决实际问题。
三、教学过程:步骤一:导入新知(5分钟)1.反思:回顾在上一节课中我们学习的线性函数,谈谈它的特点和性质。
2.引入新知:今天我们将学习正比例函数,正比例函数和线性函数有什么异同之处?步骤二:概念讲解(10分钟)1. 定义:什么是正比例函数?正比例函数是一种特殊的线性函数,其表达式为y=kx(k≠0),其中k为常数,叫做比例因子。
2.性质:正比例函数的图象必经过原点(0,0);正比例函数的图象都通过同一点(如(1,k)或(k,1));正比例函数的图象总是经过第一象限;正比例函数的图象是一条直线,通过原点,且不会经过其他象限。
步骤三:绘制正比例函数的图象(15分钟)1.提示学生如何绘制正比例函数的图象:利用比例因子k的值来确定斜率,y轴上为k,x轴上为1/k的点,连接得到的点,绘制图象。
2.利用绘制的图象让学生发现正比例函数的性质,并让学生从图象中确定比例因子k的值。
步骤四:练习与巩固(20分钟)1.给出一组数据,让学生判断是否正比例关系,并求出比例因子k的值。
2.给出一个问题,让学生利用正比例函数求解,如:张璐每天跑步30分钟能消耗300卡路里的热量,如果她每天跑步60分钟,能消耗多少卡路里的热量?3.提供足够的练习题,让学生加深对正比例函数的理解和掌握。
步骤五:实际应用(15分钟)1.通过展示一些实际应用的例子,让学生了解正比例函数在生活和工作中的应用,如:手机话费与通话时间的关系、汽车行驶里程与耗油量的关系等。
2.让学生举例说明自己身边可能存在的正比例关系,引导学生思考正比例函数的实际应用。
步骤六:课堂小结(5分钟)1.对学生进行知识点的总结,强调正比例函数的定义、性质和图象特点。
初中数学正比例函数教学设计

初中数学正比例函数教学设计篇一:正比例函数教学设计教学设计:冀教版八年级数学(上)册第二十一章第一节《正比例函数》。
主要从教材、教法、学法以及教学过程四个方面,谈谈对本节教学内容的认识与处理。
一、教材分析:(一)确定教材的作用和地位。
世界是运动变化的,函数是研究运动变化的重要数学模型,它客观实际又服务于客观实际。
在建立和运用函数这种模型的过程中,变化与对应的思想是重要的基础。
函数是中学数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型,正比例函数是一次函数特例,也是初中数学中的一种最简单最基本的函数,努力上好正比例函数才能为后面学习一次函数打下基础,为此在教学中通过实验,引导学生观察探索,让学生在学习过程中感悟函数思想,从而激发学生学习函数的信心和兴趣。
(二)确定教学目标1、认知目标:掌握正比例函数的定义及解析式特点,并能正确判断正比例函数。
2、技能目标:培养学生观察、比较、概括的能力及抽象思维能力。
3、情感目标:使学生经历由“问题情境——自主探索——观察总结——得出结论——练习巩固”的数学思维活动过程,使学生感受数学学习的兴趣,增强学生学习数学的兴趣。
(三)教学重点和难点教学重点:正比例函数的概念。
教学难点:正比例函数在数学中的简单运用。
二、教法分析在教学过程中,抓住学生已有的知识点,在学生主动参与和教师引导下充分调动学生的学习积极性和主动性,使学生在自主探索的过程中掌握新知识,为了提高课堂效果,通过试验,适当的辅以多媒体技术,演示变化的规律,使学生获得直观的印象,激发学生的学习兴趣,增强对知识点的理解。
三、学法指导课堂教学中,重视数学概念中蕴涵的思想,注意从运动变化和联系的角度认识函数,借助简单的相关练习,由具体到抽象的认识正比例函数,通过函数应用举例,体现数学建模思想,重视数形结合的研究方法,通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到“学会”和“会学”的目的。
四、教学过程设计教学过程安排教学设计说明本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法。
《正比例》的教学设计(通用5篇)

《正比例》的教学设计《正比例》的教学设计(通用5篇)作为一名专为他人授业解惑的人民教师,就难以避免地要准备教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
教学设计应该怎么写呢?下面是小编精心整理的《正比例》的教学设计(通用5篇),仅供参考,希望能够帮助到大家。
《正比例》的教学设计1【教学目标】1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
【教学重难点】重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
【教学过程】一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。
哪种袜子更便宜?学生独立完成后师提问:你们是怎样比较的?生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)二、引导探索,学习新知1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:===…=3、5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
19.2正比例函数(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了正比例函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是形如y=kx(k为常数,且k≠0)的函数。它在生活中有着广泛的应用,如速度与时间、单价与总价等关系。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以每小时60公里的速度行驶,那么行驶的距离与时间之间的关系就可以用正比例函数来描述。这个案例展示了正比例函数在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂中,我们学习了正比例函数的相关内容。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课的部分,我通过提出与生活相关的问题,激发了学生的兴趣。但在实际操作中,我发现有些学生对这个问题还是有些迷茫,可能是我没有把问题讲得足够清楚。下次我可以尝试用更直观的方式,如图片或实物,来引导学生更好地理解问题。
三、教学难点与重点
1.教学重点
-正比例函数的定义:强调函数表达式y=kx中,k为常数且k≠0的特点,这是区分正比例函数与其他函数的核心。
-正比例函数图像的绘制:通过实例,引导学生学会如何绘制正比例函数的图像,理解图像是一条通过原点的直线。
-正比例函数的性质:包括单调性(k>0时递增,k<0时递减)和奇偶性(关于原点对称),这些性质是解决实际问题时的重要依据。
正比例函数》教案

正比例函数》教案19.2.1正比例函数》教案一、教材分析:正比例函数是八年级下册数学中非常重要的内容,它是刻画和研究现实世界变化规律的重要模型之一。
正比例函数是一次函数的特例,也是初中数学中最简单、最基本的函数之一。
掌握好正比例函数对后面研究一次函数打下基础。
函数思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,体现了数学的建模思想和数形结合思想。
因此,在教学中通过生活实际,引导学生观察探索,让学生在研究过程中感悟函数思想,从而激发学生研究函数的信心和兴趣。
二、学情分析:学生在小学已经研究了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。
然而,从正比例关系到正比例函数,这个年龄段的学生以感性认识为主,加上本节课内容的概念性和理论性较强,并向理性认知过渡,学生可能缺乏研究兴趣。
因此,本节课的设计是通过学生所熟悉的问题情境出发,让学生的自主探索贯穿课堂全过程。
同时,注意教师与学生的互动,加强教师的引导和示范,在对比和分组讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。
三、教学目标:1)知识目标:掌握正比例函数的概念,理解正比例函数解析式的特点,根据正比例函数的意义,判断两个相关联的量是否成正比例。
2)能力目标:经历思考、探究过程,发展总结归纳能力,体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题。
3)情感态度:积极参与数学活动,对其产生好奇心和求知欲,形成合作交流的研究惯。
四、教学重、难点:教学重点:理解正比例函数的概念及形式。
教学难点:利用正比例函数解决相关问题。
五、教法学法:本节课的重点是理解正比例函数的概念,利用正比例函数解决生活实际问题。
在教学过程中,抓住学生已有的知识点,在学生主动参与和教师引导下充分调动学生的研究积极性和主动性,使学生在自主探索的过程中掌握新知识。
教师的主导作用与学生主体地位达到了相互统一。
为了提高课堂效果,适当辅以多媒体技术,使学生获得直观的印象,激发学生的研究兴趣,增强对知识点的理解。
八年级数学上册《正比例函数》教案、教学设计

3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2.1 正比例函数
【课题】:14.2.1 正比例函数
【教学时间】:
【学情分析】:(适用于特色班)
一次函数是函数学习的基础.掌握一次函数的意义、特点、应用对以后进一步学习函数有着非常重要的意义.
本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、图象及其特点、性质引入一次函数的特点及性质,逐步掌握一次函数的线性性质特点,并会利用特点使一次函数的不同表达方法相互转化.根据实际问题、具体要求选用适当的表示方法来解决相关问题.
【教学目标】:
知识与技能:认识正比例函数的意义;掌握正比例函数解析式特点;理解正比例函数图象性质及特点.过程与方法:经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐述自己的观点.体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题.
情感与态度:积极参与数学活动,对其产生好奇心和求知欲.形成合作交流、独立思考的学习习惯.【教学重点】:理解正比例函数意义及解析式特点.掌握正比例函数图象的性质特点.
【教学难点】:正比例函数图象性质特点的掌握
【教学突破点】:探索正比例函数的性质.
【教法、学法设计】:探究─交流,归纳─总结.
【课前准备】课件
指出下列函数是否是正比例函数?如果是,比例系数是多少?
(1)3
y x
=2
(2)y x
=(3)
2
x
y=(4)y= πx2
三、动手操
作、实践探
索、理解区
别
A问题引入:我们现在已经知道了正比例函数关系式的特点,那么它的
图象有什么特征呢?
B 活动——画图象及观察分析图象:
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点
与不同点(1)y=2x (2)y=-2x
教师活动:引导学生正确画图、认真探索、比较异同.
学生活动:利用描点法正确地画出两个函数图象,并开展讨论和比较.
活动过程:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
X -3 -2 -1 0 1 2 3
Y -6 -4 -2 0 2 4 6
画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
X -3 -2 -1 0 1 2 3
Y 6 4 2 0 -2 -4 -6
画出图象如图(2).
C 活动——讨论图象特征及性质
思考讨论:
1.函数的图象是什么图形?它们有什么共同点?
2.观察表格和图象,函数y=2x中,函数值y与自变量x之间的变化关
系有什么规律?函数y=-2x呢?
D正比例函数的图象和性质归纳:
1、正比例函数的图象是经过原点的直线,当k>0时,直线经过一、三
象限,当k<0时,直线经过二、四象限.
2、正比例函数的性质:当k>0时,正比例函数的图象从左向右呈上升
状态,即随着x的增大y也增大;当k<0时,正比例函数的图象从左
向右呈下降状态,即随x增大y反而减小.
使学生通过动手
实践、自主探索、
合作交流体会图
像的特点,k值对
函数图象影响的
区别.从而理解掌
握正比例函数图
象的特点和性质.
尝试练习,
加深认识已知下面两个正比例函数:(1)y=
1
2
x (2)y=-
1
2
x
1.在同一坐标系中,画出这两个函数的大概图象.
2.请你说出这两个函数的性质;
3.若(x1,y1),(x2 ,y2)是y=
1
2
x 的两点,且x1<x2,那么y1和y2
谁大?为什么?
巩固练习,
拓展思维
1、用你认为最简单的方法画出下列函数图象:
(1)y=
3
2
x (2)y=-3x
课堂练习:
1、下列函数中,是正比例函数的有( )个
212(1)2(2)(3)(4)(5)1(6)2(7)23y x y y v y x y r y x x π=-==-==-== A 、2 B 、3 C 、4 D 、5
2、正比例函数的图像经过点(-1,5),则函数的关系式是( )
A 、5y x =
B 、15y x =-
C 、5y x =-
D 、15
y x = 3、正比例函数3y x =-,若它的图象有两点1122(,),(,)A x y B x y ,当12x x <时,则( ) A 、12y y < B 、12y y > C 、12y y = D 、无法确定1y 、2y 的大小
4、正比例函数是一条 ,它一定经过 。
5、若函数(4)y m x =-是关于x 的正比例函数,则m
6、当0k >时,正比例函数y kx =函数经过 象限,y 随x 的增大而
7、已知函数2
(1)(1)y m x m =++-,当m 取什么值时y 是x 的正比例函数?
8、画出3y x =的函数图像
答案:
1、B
2、C
3、B
4、直线,原点
5、≠4
6、第一、三,增大
7、1m =-
8、略
备课资源:
一、填空题 1.形如___________的函数是正比例函数.
2.若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.
3.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________而_________. 4.已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.
5.一个正比例函数的图象经过点(2,5-),则这个正比例函数的表达式是 ;6.函数22
1--
=m x y 是正比例函数,则m 的值是 ; 7.下列三个函数x y 5-=,x y 31-=,x y )21(-=共同点是(1) ; (2) ;(3) ;
二、选择题
1.下列关系中的两个量成正比例的是( )
A .从甲地到乙地,所用的时间和速度;
B .正方形的面积与边长
C .买同样的作业本所要的钱数和作业本的数量;
D .人的体重与身高
2.下列函数中,y 是x 的正比例函数的是( )
A .y=4x+1
B .y=2x 2
C ..
3.下列说法中不成立的是( ) A .在y=3x-1中y+1与x 成正比例; B .在y=-2
x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例
4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )
A .m=-3
B .m=1
C .m=3
D .m>-3
5.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )
A .y 1>y 2
B .y 1<y 2
C .y 1=y 2
D .以上都有可能
三、解答题
1、写出下列各题中x 与y 之间的关系式,并判断,y 是否为x 的正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;
②圆的面积y (厘米2)与它的半径x (厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)
2.已知函数y=(m+1)x+(m 2-1),当m 取什么值时,y 是x 的正比例函数?
3.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?
(1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系;
(2)地面气温是28℃,如果每升高1km ,气温下降5℃,则气温x (•℃)•与高度y (km )的关系;
4.已知y=(k+1)x+k-1是正比例函数,求k 的值.
5.根据下列条件求函数的解析式
①y 与x 2成正比例,且x=-2时y=12.
②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.
6.已知3-y 与x 成正比,且当1=x 时,6-=y ;
(1)求y 与x 之间的函数关系式; (2)若点(a ,2)在这个函数图象上,求a ;。