初一数学竞赛试题模拟卷1

合集下载

初一数学奥赛模拟试题[1][1].doc

初一数学奥赛模拟试题[1][1].doc

初一数学奥赛模拟试题一. 选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表 示正确答案的英文字母填在每题后面的圆括号内。

1. 数"的任意正奇数次幕都等于"的相反数,则( )2.如图所示,在数轴上有六个点,且AB=BC=CD = DE = EF ,则与点c 所表示 的数最接近的整数是( )A B C D E F I I I I I I-5 11 B. 0D. 2 3. 我国古代伟大的数学家祖冲Z 在1500年以前就已经相当精确地算岀圆周率兀是在 355223. 1415926和3. 1415927之间,并取 门彳为密率、7为约率,则( )333 355 —— <兀< ----C. 106 113D. 22 —<7T< 1.429 74. 己知x 和y 满足力+ 3歹=5,则当兀=4时,代数式3x 2+12xy + ^2的值是( )A. & = 0 a = -1 a = 1 C.B.D.不存在这样的"值C.3.1415 <TT < A. 333106 B. 355 113 22 <7T < — 7A. 4B.3 C. 2 D. 15. 两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是() A. 273B.819C. 1911 D35496.用一根长为a 米的线I 詞成一个等边三角形,测知这个等边三角形的面积为b 平方米。

现在这个等边三角形内任取一点P,则点P 到等边三角形三边距离之和为()米 the result of the expression <<3>X<25>X<30» is ()(英汉词典:greatest prime number 最大的质数;result 结果;expression 表达式)&古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸。

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案一、单选题1.下列说法正确的是( ) A .正有理数和负有理数统称有理数 B .正整数和负整数统称整数 C .整数和分数统称有理数D .一个有理数不是正数就是负数2.在一年的某月里,周五、周六出现的天数比周日多,周一、周二、周三、周四出现的天数不超过周日,则该月份一定不是( ) A .三月B .四月C .六月D .十一月3.当m 为自然数时,2(45)9m +-一定能被下列哪个数整除( ) A .5B .6C .7D .84.定义运算()()()()()()12211221a a a a b a b a b b b b --⨯⋅⋅⋅⨯-+-+*=--⨯⋅⋅⋅⨯⨯,则107*=( )A .720B .120C .240D .805.已知()123123,,x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++=( )A .5B .6C .7D .86.一个盒子中有红球m 个、白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么,m n 的关系是( ). A .10m n +=B .5m n +=C .10m n ==D .2,3m n ==7.已知x ,y 为整数,且满足224411112113x y x y x y ⎛⎫⎛⎫⎛⎫++=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则x y +的可能的值有( ) A .1个B .2个C .3个D .4个8.若223894613M x xy y x y =-+-++(,x y 是实数),则M 的值一定是( ). A .正数 B .负数C .零D .整数9.若34567201520162017201820195N++++++++=,则N =( )A .2015B .2016C .2017D .201810.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .611.锐角ABC 中,BC 边的中垂线和ABC ∠的角平分线相交于点P .若72A ∠=︒,24ACP ,则ABP ∠=( )A .24︒B .28︒C .30︒D .36︒12.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .213.满足等式22(2)1m m m ---=的所有实数m 的和为( ) A .3B .4C .5D .614.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AMMD =( ) A .72B .3C .52D .215.矩形ABCD 中,5AD =,10AB =,E 、F 分别为矩形外的两点,4BE DF ==,3AF CE ==,则EF =( )A .B .15CD .16.已知实数a ,b 满足()()330a b --≥2 ) A .0B .1C .2D .317.某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒18.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .619.若直角三角形的一条直角边长为12,另两条边长均为整数,则符合这样条件的直角三角形共有( )个. A .1B .6C .4D .无数多二、填空题20.把7串葡萄放在6个盘子里,总有一个盘子里至少要放( )串葡萄. 21.如图,已知直角三角形ABC ,90A ∠=,4AB =cm ,5BC =cm .将ABC 沿AC 方向平移1.5cm 得到A B C ''',求四边形BCC B ''的面积为________2cm .22.若正整数n 有6个正约数(包括1和本身),称其为“好数”,则不超过50的好数有______个.23.已知ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =__________.24.若a ,b ,c ,d 均为素数,且满足2a b d +=,32b c d -=,则d 的最小值是________.25.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么: (1)有______人同时用上了帽子、围巾和手套; (2)有______人只戴了手套; (3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾; (5)有______人戴着手套.26.若n n =______. 27.设x =a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________ .28.军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为________. 29.方程1433x y+=有_________组正整数解. 30.已知函数(1)1kx k y ++=(k 为正整数)的图象与两坐标轴围成的图形面积为(1,2,,2000)k S k =⋅⋅⋅,则122000S S S ++⋅⋅⋅+=_______.31.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为______32.从1到2001连续的2001个自然数按某种顺序排列,然后每连续三项计算和数,得到1999个和,则这些和数中为奇数的个数最多是_________. 33.计算:239912232421002+⨯+⨯+⨯++⨯=________.(结果可用2的幂表示)34.如图所示,点A C 、都在函数0)y x =>的图象上,点B D 、都在x 轴上,且使得OAB ,BCD △都是等边三角形,则点D 的坐标是_______.35.已知正整数n 大于30,且使得41n -整除2002n ,则n 等于_______. 36.射线AB 绕点A 逆时针旋转a ︒,射线BA 绕点B 顺时针旋转b ︒,090a ︒︒<<,090b ︒︒<<,旋转后的两条射线交点为C ,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“-”,则称()a b -,为点C 关于线段AB 的“双角坐标”,如图1,已知ABC ∆,点C 关于线段AB 的“双角坐标”为(5060)-,,点C 关于线段BA 的“双角坐标”为(6050)-,.如图2,直线:AB y =x 轴、y 轴于点A 、B ,若点D 关于线段AB 的“双角坐标”为()m n -,,y 轴上一点E 关于线段AB 的“双角坐标”为()n m -,,AE 与BD 交点为F ,若ADE ∆与ADF ∆相似,则点F 在该平面直角坐标系内的坐标是________.37.如图,在四边形ABCD 中,90BCD ∠=︒,BC =,60BAC ∠=︒,若=5AB ,=2AD ,则线段AC 的长为______.38.某演艺公司将观赏厅分为上、中、下三大区位,同一区位包含若干个座位数相同的桌位(不同区位的单个桌位所含座位数不一定相同).演艺公司对近三天的的上座情况进行统计发现,三天中每个区位坐有观众的桌位均刚好坐满.第一天上、中、下区的坐有观众的桌位数之比为3:2:1,中区的观众数占入场观众数的14,上座率为35;第二天上、中、下区的坐有观众的桌位数之比为1:1:2,上区的观众数占入场观众数的25,上座率为34;第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和.则第三天的上座率为______.(上座率=入场观众数全场总座位数)三、解答题39.如图,在菱形ABCD 中,3AB =,60DBA ∠=︒,E 为线段BD 延长线的动点,连接AE 、CE ,AE 交CD 延长线于点F .(1)求证:AE CE =; (2)若1DF =.①求点E 到CD 的距离; ①求EFED的值. 40.设,a b 是实数且422223a b a b =+,求22222010a b a b -+的值. 41.几何计算中,常利用面积法(等积法)构造方程来求线段的长,请利用这种面积法(等积法)解决下列两个问题:(1)如图①,ABC 中,13AB =,5AC =,=12BC ,求AB 边上的高;(2)在一张正方形纸张的四个角剪去四个相同的小正方形,得到如图①所示的图形,再将它分割成三块拼成如图①所示的长方形,已知m n 、满足:22818970m m n n -+-+=,求拼成新长方形的长m 、宽n 的值及被剪去的小正方形的边长.42.求证:若3|(4)x y -,则229472|()x xy y +-. 43.两位数ab 能整除十位数字为零的三位数0a b ,求ab .44.如图,点E 在四边形ABCD 的边AB 上,ABC 和CDE 都是等腰直角三角形,AB AC =,DE DC =.(1)证明://AD BC ;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE. 45.从1,2,3,…,50这50个正整数中任取n 个数,在这n 个数中总能找到3个数,它们两两互质.求n 的最小值.46.已知m ,n 都是正整数,若130m n ≤≤≤,且mn 能被21整除,求满足条件的数对(,)m n 的个数.47.证明数列49,4489,444889,4448889,…的每一项都是一个完全平方数. 48.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C组有4个单科得分相同.求B、C、D、E组的总分并填表进行检验.参考答案:1.C【分析】根据有理数的含义和分类方法,逐一判断即可. 【详解】解:A 、正有理数、负有理数和0统称有理数, ∴选项A 不正确,不符合题意;B 、正整数与负整数、0统称为整数, ∴选项B 不正确,不符合题意;C 、整数和分数统称有理数 ∴选项C 正确,符合题意;D 、一个有理数不是正数,可能是负数或0, ∴选项D 不正确,不符合题意.故选:C .【点睛】本题主要考查了有理数的含义和分类方法,解题的关键是要熟练掌握有理数的分类:①有理数可以分为正有理数,0,负有理数;正有理数可以分为正整数和正分数,负有理数分为负整数和负分数;①有理数可以分为整数和分数;整数分为正整数,0负整数;分数分为正分数和负分数;按两种分类一一判断即可. 2.A【详解】每个月的后28天,周一至周日出现的天数相同,因此在这28天之外只能出现周五和周六,故这个月有30天 3.D【分析】多项式利用平方差公式分解因式,变形后即可作出判断. 【详解】解:2(45)9m +-[][](45)3(45)3m m =+-++ (42)(48)m m =++ 8(21)(2)m m =++①无论m 为任何自然数,2(45)9m +-始终能被8整除, 故选:D .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键. 4.B【解析】略 5.A【详解】方程即()2(1)20x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是21x =,132x x +=,故()()222112331311441x x x x x x x x x -++=+-++()()31131241215x x x x x =-++=++=.6.A【详解】盒中共有10m n ++个球,取得的是白球的概率是10m np m n +=++,取得的不是白球的概率为10m n p m n '+=++.依题意有101010m nm n m n +=++++,所以10m n +=.故应选A .7.C【详解】由已知等式得2244224423x y x y x y xy x y x y++-⋅=-⋅,显然x ,y 均不为0,所以0x y +=或()32xy x y =-.若()32xy x y =-,则()()32324x y +-=-.又x ,y 为整数,可求得12x y =-⎧⎨=⎩或2,1x y =-⎧⎨=⎩.所以1x y +=或1x y +=- 因此,x y +的可能的值有3个.【点睛】本题考查了等式的性质,分式的化简,解决此题的关键是熟练运用x 、y 是整数这个条件. 8.A 【详解】因为22222222(44)(44)(69)2(2)(2)(3)0M x xy y x x y y x y x y =-++-++++=--++≥+,并且2,2,3x y x y --+不能同时等于零,所以0M >.故选A .9.C 【解析】略 10.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠. 又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅.①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 11.B【详解】①直线BP 为ABC ∠的角平分线,①ABP CBP ∠=∠.①直线PM 为BC 的中垂线,①BP CP =,①CBP BCP ∠=∠,①ABP CBP BCP ∠=∠=∠. 在ABC 中,三内角之和为180︒,①3180ABP A ACP ∠+∠+∠=︒, 即37224180ABP ∠++=°°°,解得28ABP ∠=°. 12.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .13.A【详解】当21m -=即1m =时,满足所给等式;当21m -=-即3m =时,224(2)(1)1m m m ---=-=,满足所给等式;当21m -≠±即1m ≠且3m ≠时,由已知等式可得:220m m --=且20m -≠,解得1m =-. 因此,满足等式22(2)1m m m ---=的所有实数m 的和为()1313++-=.14.B【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMC BMC S tS AF FC S S ==△△△△,所以22DMC BMD BMC BMCtS tS AB AC AE AFBE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tSt S S +=+=+=+△△△△△,又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 15.C【详解】易知90AFD BEC ∠=∠=︒,BEC DFA ≅△△,①DAF BCE ∠=∠. 延长FA ,EB 交于点G .①90GAB DAF ADF ∠=︒-∠=∠,90GBA CBE BCE DAF ∠=︒-∠=∠=∠, ①BGA AFD △△,且90AGB ∠=︒,①8AG =,6BG =, ①11GF =,10GE =,①EF ==16.B【详解】因为40b -≥,30b ->,所以3a ≥1,所以令3a =,8b =,得到最小值为1. 17.B【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y zk ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B . 18.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 19.C【详解】选C .理由:设12a =,c 为斜边,则有222144c b a -==. 因为4214423=⨯,所以, ()()722c b c b +-=⨯; ()()364c b c b +-=⨯; ()()188c b c b +-=⨯; ()()169c b c b +-=⨯; ()()483c b c b +-=⨯; ()()246c b c b +-=⨯.又因为c b +与c b -同奇偶,故符合题意条件的直角三角形有以下四个: 12.5.13;a b c =⎧⎪=⎨⎪=⎩12.9.15;a b c =⎧⎪=⎨⎪=⎩12,16,20;a b c =⎧⎪=⎨⎪=⎩12.35.37.a b c =⎧⎪=⎨⎪=⎩20.2【分析】把6个盘子看作6个抽屉,7串葡萄看作7个元素,从最不利的情况考虑,每个抽屉先放一个,共需要6个,余下这一个无论放在哪个抽屉里,总有一个至少有1+1=2(个),据此解答. 【详解】解:761÷=(串)1(串), 1+1=2(串),①总有一个盘子里至少要放2串葡萄. 故答案为:2.【点睛】本题考查了抽屉原理,解决本题的关键是掌握抽屉原理:如果有n 个抽屉,而每一个苹果代表一个元素,假如有n +1个元素放到n 个抽屉中去,其中必定有一个抽屉里至少有两个元素. 21.6【分析】根据题意,再结合平移的性质,可得AB A B ='', 1.5AA BB CC ===′′′cm ,BB CC ∥′′,ABC A B C S S '''=△△,然后再根据等量代换,得出=AA OB OCC B S S 四边形四边形′′′,然后再根据等量代换,得出BCC B AA B B S S =四边形四边形′′′′,然后再根据长方形的特征,得出四边形AA B B ''是长方形,然后再根据长方形的面积公式,算出长方形AA B B ''的面积,即可得出四边形BCC B ''的面积.【详解】解:如图,①ABC 沿AC 方向平移1.5cm 得到A B C ''',①A 的对应点为点A ',点B 的对应点为点B ',点C 的对应点为点C ',①由平移的性质,可得:4AB A B =''=cm , 1.5AA BB CC ===′′′cm ,BB CC ∥′′, 又①ABC 沿AC 方向平移1.5cm 得到A B C ''', ①ABC A B C S S '''=△△,又①ABC A OC AA OB S S S =+△△四边形′′, A B C A OC OCC B S S S =+△四边形′′′′′′,①=AA OB OCC B S S 四边形四边形′′′, ①=BOB BCC B OCC B S S S +△四边形四边形′′′′′, BOB AA B B AA OB S S S =+△四边形四边形′′′′,①BCC B AA B B S S =四边形四边形′′′′,①AB A B ='',AA BB '=',90A ∠=,①根据长方形的特征,可得:四边形AA B B ''是长方形, ①4 1.56AA B B S AB AA =⋅=⨯=长方形′′′2cm , ①6BCC B AA B B S S ==四边形四边形′′′′2cm故答案为:6【点睛】本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等. 22.8. 【详解】n 有6个正约数故n 的标准质因数分解式为5n P =或2n pq =(p 、q 为素数,(,)1p q =) 若5n p =,由50n ≤知52 若2n p q =⋅,则223n =⋅,225⋅ 232⋅,252⋅,253⋅,272⋅,2112⋅①“好数”共有8个. 23.2【详解】依题意得BAD DAM MAC ∠=∠=∠,90ADB ADC ∠=∠=︒,故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ADB ≅△△,①12BD DM CM ==,又AM 平分DAC ∠,①12AD DM AC CM ==,在Rt DAC 中,即1cos 2DAC ∠=,①60DAC ∠=︒,从而90BAC ∠=︒,30ACD ∠=︒.在Rt ADC 中,tan tan 603CD AD DAC ⋅∠︒==,1DM =.在Rt ADM △中,2AM =. (2)若ABCACB 时,如答案图2所示.同理可得2AM =.综上所述,2AM =.24.17【分析】根据题意,求得的最小值,可将等式变形得到4a b c =-,则b c -是合数,且为4的倍数,以此为突破,求得a b c d ,,, 【详解】2a b d +=①,32b c d -=①①×2-①得:40a b c -+=, 即4a b c =-,求d 的最小值,则,a b 尽量小 当2a =时,8b c -=,根据20以内的素数可知,11,3b c ==,或者13,5b c == 此时241115d a b =+=+=,此时d 为合数,故不符合题意, 当13,5b c ==时,此时241317d a b =+=+=,经检验,a b c d ,,,皆为素数,满足题意, 故答案为:17.【点睛】本题考查了素数的定义,二元一次方程组的加减消元法,掌握20以内的素数是解题的关键.25. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是①3,①1,①1,①4,①10.26.14-或7-或2-或5p =(p 为非负整数),则2222229304361204(29)394n n p n n p n p ++=⇒++=⇒++= 39(229)(229)p n p n ⇒=++--,2291102293914p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或229391022915p n p p n n ++==⎧⎧⇒⎨⎨--==⎩⎩ 或22934229137p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或22913422932p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ ①14n =-或7-或2-或5 27.1【详解】解 ①1x ==,而213<<, ①21a x =-=.又①1x -=,而312-<<-,①()33223()3++=+-++a b ab a b a ab b ab2223()1a ab b ab a b =-++=+=.28.220【详解】填220.理由:因1a ≤,b ,6c ≤,288a b c ⨯+⨯+=277c b a ⨯+⨯+,即63480a b c +-=,即3(1621)b c a =-,所以,0b =,3,6.经检验,3b =符合题意.故3b =,4c =,3a =.则238384220⨯+⨯+=. 29.5【详解】理由:因为133x ≥, 所以141833333x y =-≤-=,则1432184y ⨯≥=, 即6y ≥.原方程可化为429xy y +=, 则42(9)x y =-. 所以42能被y 整除.所以y 可取6,7,14,21,42.相应地得到五组解:112,6,x y =⎧⎨=⎩223,7,x y =⎧⎨=⎩336,14,x y =⎧⎨=⎩447,21,x y =⎧⎨=⎩558,42.x y =⎧⎨=⎩ 30.10002001【详解】解原函数关系化为111k y x k k -=+++.令0x =得11y k =+,令0y =得1x k,即直线111k y x k k -=+++与y 轴、x 轴的交点分别为10,1k A k ⎛⎫ ⎪+⎝⎭和1,0k B k ⎛⎫ ⎪⎝⎭,所以 11111(1,2,,2000)22(1)21k kk OA B k k S SOA OB k k k k k ⎛⎫==⨯⨯==-= ⎪++⎝⎭,于是122000111111111212223220002001S S S ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1110001220012001⎛⎫=-=⎪⎝⎭. 故填10002001. 注:本题中用到第一章§3-3中介绍的裂项抵消求和方法. 31【分析】连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥,结合直角三角形斜边中线等于斜边的一半求得点A 、D 、F 、E 四点共圆,=90DFE ∠︒,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:如图,连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥. ①在ABC 中,90BAC ∠=︒,点G 是DE 中点, ①AG DG EG ==. ①AG =FG ,①A 、D 、F 、E 四点共圆,G 点为圆心,DE 为直径, ①90DFE ∠=︒.①在Rt ABC 中,5AB AC ==,①BC == 又①点F 是BC 中点,①12CF BF BC ===1522FN FM AB ===. ①四边形AMFN 是正方形, ①52AN AM FN FM =====. ①90NFD DFM ∠+∠=︒,90MFE DFM ∠+∠=︒, ①NFD MFE ∠=∠.①在NFD △和MFE 中90DNF EMF NF MF NFD MFE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,①()NFD MFE ASA ≅, ①51222ME DN AN AD ==-=-=, ①51322AE AM MD =+=+=, ①在Rt DAE中,DE【点睛】本题考查直角三角形的性质,圆周角定理,四点共圆,正方形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强,较难.正确的作出辅助线是解答本题的关键. 32.1998【详解】用0表示偶数,1表示奇数,则按如下方法排列时:5011500100100100100111A B C个个,仅有一个数为偶数:A B C ++,故所求和数个数的最大值不小于199911998-=.其次,我们证明对任意排列,都至少有一个和为偶数,分4种情形.情形①:第一项为奇数,第二项为偶数.为了使和不出现偶数,第3项只能是奇数,接下去只能是1001000…这样出现了500个100后,所有1000个偶数全都排出,余下只有501个奇数,这时只能是上述排列,其中有一个和:A B C ++为偶数.情形①:第一项是奇数,第2项也是奇数.为了使和不出现偶数,以后各项只能都是奇数,排完1001个奇数后,剩下1000个偶数,再排下去必出现偶数:奇+奇+偶=偶. 情形①和①:第一项是偶数,第二项是奇数或偶数,同样必会出现和为偶数的情形. 综上可知,所求和数个数的最大值是1998. 33.1009921⨯+【详解】解:设239912232421002S =+⨯+⨯+⨯++⨯,则23991002222329921002S =+⨯+⨯++⨯+⨯,于是,由公式①得 ()299100212221002S S S =-=-+++++⨯10010021100221-=-+⨯+1009921=⨯+.故答案为:1009921=⨯+.34.【详解】解 如图所示,分别过A C 、作x 轴垂线,垂足分别为E F 、.设,OE a BF b ==,则,AE CF ==,所以A C 、的坐标分别是(),(2)A a C a b +,代入xy =得2)a b b =+=解得a b ⎧=⎪⎨=⎪⎩因此,(22,0)D a b +的坐标为.35.36【详解】解 因为对正整数n ,41n -整除2002n , 所以200241nn -是整数. 而20022(250)5004141n n n n +=+--, 又因为41n -是奇数,所以25041n n +-是整数. 则4(250)100114141n n n +=+--,可知1001能被41n -整除.因为30n >,100171113=⨯⨯,所以可得41n -只能是143.所以36n =. 故应填36.36.,-1)##(11)【分析】由y =x 轴、y 轴于点A 、B ,得到点B 的坐标是(0,OB =A 的坐标是(﹣1,0),OA =1,①ABO =30°,①OAB =60°,分别求得直线BF 的解析式为=-+y x AF 的解析式为2)2y x =,联立解方程组即可得到点F 在该平面直角坐标系内的坐标.【详解】解:①直线AB :y =x 轴、y 轴于点A 、B 当x =0时,y①点B 的坐标是(0,OB当y =0时,0x =﹣1, ①点A 的坐标是(﹣1,0),OA =1①tan ①ABO =AO BO =①①ABO =30°,①OAB =90°-①ABO =60°如图所示,由题意得①EAB =①ABD ,①ABE =①BAD , ①①ABE ①①BAD ①①AEB =①ADB①A 、E 、D 、B 四点共圆,如图所示, ①①ADE =①ABE =30°,①EAD =①EBD ①①F AB =①FBA ①①ADE ①①AFD①①F =①ADE =30°,①F AB =①FBA =75°①①F AO =①F AB -①BA 0=15°,①FBE =①F AB -①ABO =45°, ①①OGB =90°-①FBE =45° ①①OGB =①OBG ①OG =OB①点G0),设直线BF 的解析式为y =kx +b ,代入G 0),B (0b b +==⎪⎩ 解得1k b =-⎧⎪⎨=⎪⎩①直线BF 的解析式为=-+y x在线段AO 上取点H ,使得AH =EH ,则①HAE =①HEA =15°, ① ①OHE =①HAE +①HEA =30° 设OE =t , 则OH=tan 30OE=︒,22HE OE t AH ===①21OA AH OH t =+==①2t ==①点E 的坐标为(02)设直线AF 的解析式为y =k 1x +b 1,代入A (﹣1,0),E (02)得11102k b b -+=⎧⎪⎨⎪⎩解得1122k b ⎧=⎪⎨=⎪⎩ ①直线AF的解析式为2)2y x =, 联立直线BF 和AF 的解析式得2)2y x y x ⎧=-⎪⎨=⎪⎩解得11x y ⎧=⎪⎨=-⎪⎩①点F,-1) 故答案为:,-1)【点睛】本题考查了一次函数的图像和性质、解直角三角形、相似三角形的判定与性质、 解二元一次方程组、四点共圆等知识,综合性非常强,难度较大,利用待定系数法求解析式是关键. 37.2.5+【分析】连接BD ,过B 作BH ①AC 于H 点,根据①BCD 是直角三角形,可证明①BAC =①BDC ,则有A 、B 、C 、D 四点共圆,进而有BD 是该圆的直径,可得①BAD =90°,利用勾股定理可得BD =12CD BD ==BC ==,根据BH ①AC ,可得①ABH 、①BCH 是直角三角形,则有①ABH =30°,即1522AH AB ==,利用勾股定理可得BH =,再在①BCH 是直角三角形,可得CH 可得解.【详解】连接BD ,过B 作BH ①AC 于H 点,如图,①①BCD =90°,①①BCD 是直角三角形, ①222BD CD BC =+,①BC =,①2BD CD =, ①在Rt ①BCD 中,①DBC =30°, 即①BDC =60°, ①①BAC =60°, ①①BAC =①BDC , ①A 、B 、C 、D 四点共圆, ①①BCD =90°, ①BD 是该圆的直径, ①①BAD =90°, ①AB =5,AD =2,①BD①12CD BD =BC ==, ①BH ①AC ,①①ABH 、①BCH 是直角三角形,①①BAC =60°, ①①ABH =30°, ①1522AH AB ==,即BH ===, ①①BCH 是直角三角形,①CH ==①52AC AH CH =+=故答案为:52+【点睛】本题考查了勾股定理、四点共圆、圆周角定理以及含30°角的直角三角形的性质等知识,利用四点共圆是解答本题的关键. 38.710【分析】设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,根据中区的观众数占入场观众数的14,上座率为35,可得3ma +2mb +mc =35(xa +yb +zc ),6b=3a +c ①,设第二天上区的坐有观众的桌位数为n ,根据上区的观众数占入场观众数的25,上座率为34,可得na +nb +2nc =34(xa +yb +zc ),3a =2b +4c ①,联立①①可得b =54c ,a =136c ,进一步得到mc =350(xa +yb +zc ),nc =965(xa +yb +zc ),根据第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和,可得第三天上区的观众数为na =136nc ,中区的观众数为13×2mb =23 mb =56mc ,下区的观众数为136nc +56mc ,依此可求第三天的上座率.【详解】解:设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,∵中区的观众数占入场观众数的14,上座率为35,∴3ma+2mb+mc=35(xa+yb+zc),2mb=14(3ma+2mb+mc),∴6b=3a+c①,设第二天上区的坐有观众的桌位数为n,∵上区的观众数占入场观众数的25,上座率为34,∴na+nb+2nc=34(xa+yb+zc),na=25(na+nb+2nc),∴3a=2b+4c①,把①代入①得6b=2b+4c+c,即b=54 c,把b=54c代入①得3a=52c+4c,即a=136c,∴3m×136c+2m×54c+mc=35(xa+yb+zc),整理得mc=350(xa+yb+zc),∴n×136c+n×54c+2nc=34(xa+yb+zc),整理得nc=965(xa+yb+zc),∵第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的众数的13,下区的观众数是当天上区和中区观众数的总和,∴第三天上区的观众数为na=136nc,中区的观众数为13×2mb=23mb=56mc,下区观众数为136nc+56mc,∴第三天的上座率为135266nc mcxa yb zc⎛⎫+⎪⎝⎭++()()135276610xa yb zc xa yb zcxa yb zc⎡⎤+++++⎢⎥⎣⎦==++.故答案为:710.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.39.(1)证明见解析【分析】(1)根据题意和菱形的性质,利用SAS 证明ADE CDE ≌△△,即可得出结论. (2)①首先根据题意,得到ABD △为等边三角形,然后过点D 作DH AB ⊥于H ,在Rt ADH 中,依据30ADH ∠=︒,得到32AH =,然后利用勾股定理,得到DH 的长,然后再过点E 作EG DF ⊥于G ,依据1DF =,3CD =,得到3CDE FDE S S =△△,再由(1)得ADE CDE ≌△△,得到3ADE FDE S S =△△,进而得到2ADF FDE S S =△△,然后利用三角形的面积,算出EG 的长.即得到点E 到CD 的距离;①在Rt EDG 中,依据60EDG ∠=︒,得到30DEG ∠=︒,EG =DG x =,利用30︒所对的直角边等于斜边的一半,得到2DE x =,再利用勾股定理,解出x 的值,即可得到DE 的长,然后在Rt EFG 中,31144EF =-=,EG =EF 的长,即可得出EF ED 的值. (1)证明:①在菱形ABCD 中,60DBA ∠=︒, ①AD DC =,120ADE CDE ∠=∠=︒, 在ADE 和CDE 中, AD DCADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①ADE CDE ≌△△(SAS ), ①AE CE =. (2)解:①依题意ABD △为等边三角形,过点D 作DH AB ⊥于H , 在Rt ADH 中,60DAH ∠=︒,30ADH ∠=︒,3AD =,则32AH =,①DH ==过点E 作EG DF ⊥于G , ①1DF =,3CD =,①3CDE FDE S S =△△,由(1)得,ADE CDE ≌△△, ①3ADE FDE S S =△△, ①2ADF FDE S S =△△, 由12ADF S DF DH =⋅△,12FDE S DF EG =⋅△,①12EG DH ==;①在Rt EDG 中,60EDG ∠=︒,则30DEG ∠=︒,EG = 设DG x =,则2DE x =,222(2)x x +=⎝⎭, 解得:34x =±(负值舍去)①34x =, ①32=DE , 在Rt EFG 中,31144EF =-=,EG =①EF =①232EF ED == 【点睛】本题考查了菱形的性质、全等三角形的性质与判定、等边三角形的性质、勾股定理、面积与等量代换、30︒所对的直角边等于斜边的一半等知识点,解本题的关键在熟练掌握相关性质与定理. 40.135【详解】由422223a b a b =+得4224230a ab b --=,即2222(3)()0a b a b -+=. 但220a b +≠(否则22230a b +=,与已知条件矛盾), 所以2230a b -=,即223a b ,22222222312010601035a b b b a b b b --==++. 41.(1)AB 边上的高为6013(2)4m =,9n =,被剪去的小正方形的边长为54【分析】(1)先利用勾股定理的逆定理证明ABC 是直角三角形,然后再利用等面积法进行计算即可解答;(2)利用拆项配成两个完全平方式,然后求出m ,n 的值,再利用等面积法进行计算即可解答.【详解】(1)解:①2222512169AC BC +=+=,2213169AB ==, ①222AC BC AB +=, ①ABC 是直角三角形,过点C 作CD AB ⊥于点D ,如图①,①1122ABC S BC AC AB CD =⋅=⋅△, ①560121313AC CD BC AB =⋅=⨯=; (2)解:①22818970m m n n -+-+=, ①2281618810m m n n -++-+=, ①()()22490m n +-=-,①()240m -≥,()290n -≥,①40m -=,90n -=, ①4m =,9n =,设剪去的小正方形的边长x , ①()2224m x x mn +-=, ①()2242449x x +-=⨯, 解得:54x =, 答:剪去的小正方形的边长为54.【点睛】本题考查了配方法的应用,勾股定理的逆定理,偶次方的非负性,剪纸问题,熟练掌握等面积法是解题的关键. 42.见解析【详解】因2(4)3()x y x y x y +=---,而3|(4)x y -,3|3()x y -,则3|(2)x y +. 又22472x xy y +-(2)(4)x y x y =+-,则()229|472x xy y +-.43.符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90 【详解】设0a b n ab =⨯(n 为自然数),则 10010a b na nb +=+,所以10(10)(1)n a n b -=-.由于19,09a b ≤≤≤≤,因此可得110n ≤≤.分析n 取值从1到10,符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90.44.(1)见解析;(2【详解】解 (1)由题意知45ACB DCE ∠=∠=︒,BC ,EC =, 所以DCA ECB ∠=∠,AC DCBC EC=,所以ADC BEC △△,故45DAC EBC ∠=∠=︒, 所以DAC ACB ∠=∠,所以//AD BC .(2)设AE x =,因为30ACE ∠=︒,可得AC =,2CE x =,DE DC =.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以APE DPC △△, 故可得12APE DPC S S =△△.又2EPC APE ACE S S S +=△△△,2EPC DPC CDE S S S x +==△△△,于是可得2(2DPC S x =△,21)EPC S x =△.所以DPC EPC S DP PE S ==△△ 45.n 的最小值等于34. 【详解】记{1,2,3,,50}S =,i A 是S 中能被i 整除的正整数组成的集合(1,2, 3)i =,2A ,3A 分别2A ,3A 中数的个数,由容斥原理有23A A ⋃=2323A A A A +-⋂5050502323⎡⎤⎡⎤⎡⎤=+-⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦2516833=+-=. 从23A A ⋃中任取3个数,其中至少有2个数属于2A 或3A 中同一个集合,它们不互质. 故所求n 的最小值34≥.其次,设1{1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}B =,22222{2,3,5,7}B =,3{223,317,59}B =⨯⨯⨯,则1B ,2B ,3B 中共有164323++=个数,于是从S 内任取34个数,其中至少有34(5023)7--=个数属于123B B B ⋃⋃.由抽屉原理知,这7个数中至少有71133-⎡⎤+=⎢⎥⎣⎦个数属于1B ,2B ,3B 中同一个子集,它们两两互质. 综上所述,所求n 的最小值等于34. 46.57个【详解】因为正整数m ,n 满足mn 能被21整除,且130m n ≤≤≤,所以, (1)若21m =,则21n =,22,…,30.故满足条件的数对(,)m n 有10个. (2)若21m ≠,(①)当21n =时,1m =,2,…,20.满足条件的数对(,)m n 有20个. (①)当21n ≠时,因为2137=⨯,所以,1)如果3m a =,7n b =(a ,b +∈N ,且7≠a ,3b ≠),得13730a b ≤≤≤.1b =时,1a =,2; 2b =时,1a =,2,3,4;4b =时,1a =,2,3,4,5,6,8,9.故满足条件的数对(,)m n 有24814++=(个).2)如果7m a =,3n b =(a ,b +∈N ,且3a ≠,7b ≠),得17330a b ≤≤≤. 3b =,4时,a 的值均为1;5b =,6,8,9时,a 的值均为1,2;10b =时,a 的值为1,2,4.故满足条件的数对(,)m n 有2142313⨯+⨯+=(个). 综上,满足条件的数对(,)m n 共有1020141357+++=(个). 47.见解析.【详解】利用开平方运算检验前几项均符合(必要时可多算几项). 2222497,448967,444889667,444488896667====.由此我们猜想2144448889(66661)n nn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.事实上,可设2144448889(1){1,2,,},9n nnxx xx x +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+∈⋅⋅⋅, 即24111110811111(1111)n nnnx ⨯⋅⋅⋅⨯+⨯⋅⋅⋅+=⨯⋅⋅⋅+.令1111nm⋅⋅⋅=,则1091111191n nm =⨯⋅⋅⋅+=+, 代入上式,得()()2491811m m m mx +++=+, 整理成关于x 的方程,得22(3612)0mx x m +-+=, 解此方程,得6x =(负根舍去了).所以,2144448889(66661)n nn +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.另证1 21111444488894108109n nkkk n k n n+=+=+⋅⋅⋅⋅⋅⋅++∑∑()()221141101010411010n n +=+++++++++()()1221114101410199n n ++=+⋅-+⋅- ()221141041019n n ++=⋅+⋅+221121012110333n n ++⎛⎫⋅+⎛⎫==⋅+ ⎪ ⎪⎝⎭⎝⎭()21621101010933n +⎡⎤=-+⋅+⎢⎥⎣⎦()221610101076667n nn+⎡⎤=++++=⋅⋅⋅⎣⎦. 另证2144448889444488881n nnn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+1144400088881n n n++=⋅⋅⋅⋅⋅⋅+⋅⋅⋅+1141111081111n n n ++=⋅⋅⋅⋅⋅+⋅⋅⋅⋅+1114111(91111)81111n n n +++=⋅⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅+21136(111)121111n n ++=⋅⋅⋅⋅+⋅⋅⋅⋅+21(61111)n +=⋅⋅⋅⋅+.48.本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分;情形2:B 组100分,C 组90分,D 组70分,E 组60分.填表进行检验见解析. 【详解】根据条件(1),每一竖行中,五组得分各不相同.对于一门单科,全部可能的不同得分是0,10,20,30和40,只有5种. 五门单科各组的分数总和是()5010203040500⨯++++=. 从500分中减去第1名A 组180分,其余四组总分之和是320分. 为了叙述简洁,约定B 组总分记为B ,C 组总分记为C ,其余类推. 那么,402060,E B C D E ≥+=>>>. 由此得60708090300E D C B +++≥+++=.这四组实际总分之和是320,只比最低可能限度多出20分.多出的20分,只有两种可能分配方案:或者都加给第2名B ,或者B 与第3名C 各加10分.因而,本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分; 情形2:B 组100分,C 组90分,D 组70分,E 组60分.为了满足条件(2),在情形1中,C 组应该有四门20分,一门0分;在情形2中,C 组有。

初一创新杯数学邀请赛模拟试题集锦(5套)

初一创新杯数学邀请赛模拟试题集锦(5套)

初一数学“创新杯”邀请赛赛前训练题-1一、选择题1.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN:PQ=( )QP M N A CBA.1B.2C.3D.4 2.若0<a ,0>b ,0<+b a ,则下列关系中正确的是( )A.a b b a ->->>B.b b a a ->>->C.a b a b ->->>D.a b b a >->>-3.若a ,b ,c 是非零有理数,且0=++c b a ,则abc abcc c b b a a +++所有可能值为( )A.0B.1或-1C.-1D.14.计算:)514131)(615141311()61514131)(5141311(++++++-++++++=( )A.21B.31C.41D.61 5.已知实数a ,b 满足ab =1且b a M +++=1111,bba a N +++=11,则( ) A.N M > B.N M < C.N M = D.M 、N 的大小不能确定 6.观察以下数组:(1),(3,5),(7,9,11),(13,15,17,19),……2011在( )A.第44组B.第45组C.第46组 D 无法确定 7.已知:523=-++x x ,54+-=x y ,则y 的最大值是( )A.12B.15C.17D.无法确定 8.有一块试验地形状为等边三角形(设其为△ABC ),为了解情况,管理员甲从顶点A 出发,沿AB —BC —CA 的方向走了一圈回到顶点A 处。

管理员乙从BC 边上的一点D 出发,沿DC —CA —AB —BD 的方向走了一圈回到出发点D 处,则甲、乙两位管理员从出发到回到原处,在途中身体( )A.甲、乙都转过︒180B.甲转过︒120,乙转过︒180C.甲、乙都转过︒360D.甲转过︒240,乙转过︒3609.在九张卡片上分别写着数字1,2,3,……9,现将卡片顺序打乱,让空白面朝上,再写出1,2,3……,9,然后将每张卡片上的两个数字作差,则九个差的积( ) A.一定是奇数 B.可能是奇数也可能是偶数 C.一定是偶数 D.一定是负数 10.一个四位数能被9整除,去掉末位数字后所得的三位数恰好是4的倍数,这样的四位数中最大的一个的末位数字是( )A.6B.4C.3D.2二、填空题11.已知两个不相等的质数的和是一个质数,则较小的质数的倒数是 。

初一数学竞赛试卷

初一数学竞赛试卷

初一数学竞赛试卷一、选择题(每题5分,共40分)1、下列哪个数字是偶数?A. 11B. 19C. 27D. 312、下列哪个图形是三角形?A. ▭B. ▪C. ◯D. ▲3、下列哪个是5的倍数?A. 14B. 16C. 20D. 234、下列哪个是几何图形?A.草地B.爱心C.方圆D.圆形5、下列哪个是轴对称图形?A. B. C. D. E. F G H I J K L M N O P Q R S T U V W X Y Z二、填空题(每题10分,共60分)1、一个小时有____分钟。

2、圆的周长是____乘以____。

3、请在下框中填写正确的数字,使等式成立:1+2+3+4+5+6+7+8+9=____。

4、请在下框中填写正确的数字,使等式成立:9+8+7+6+5+4+3+2+1=____。

5、请在下框中填写正确的数字,使等式成立:100-____=50。

6、请在下框中填写正确的数字,使等式成立:25+____=75。

三、解答题(每题20分,共40分)1、小明和小红去买糖,他们各自带了多少钱?他们买了相同数量的糖,请计算他们各自花费了多少钱。

小明带了10元,小红带了8元。

糖的单价是1元/颗。

2、在一个正方形的四个角上,有三个角是直角,另一个角是钝角。

请计算正方形的四个角的和是多少度。

初一数学竞赛试题随着科技的进步和教育的普及,数学教育在全球范围内得到了越来越多的重视。

对于许多学生来说,参加数学竞赛不仅是一种挑战,也是一次锻炼数学思维和解决问题的能力的好机会。

今天,我们将为大家带来一份初一数学竞赛试题,希望通过这份试题,帮助大家提高数学水平,更好地应对未来的挑战。

一、选择题1、在一个等边三角形中,边长为6,下列哪个选项的面积最大?A.三角形本身B.三角形的内切圆C.三角形的外接圆D.三角形的边上的高的长度2、下列哪个数字是一个完全平方数?A. 144B. 156C. 169D. 188二、填空题3、在一个直角三角形中,如果其中一个锐角为30度,那么另一个锐角的度数为________。

七年级数学竞赛练习模拟试题

七年级数学竞赛练习模拟试题

七年级数学竞赛练习试题一.填空题(每题5分,共60分) 1.—13的倒数的相反数是_______; 2.若|x -y +1|+(+5)2=0,则xy = ; 3.近似数万精确到_________位 ; 4. (-3)2022×( -31)2022= ; 5.设有理数a ,b ,若ab>0, a+ b<0则a_______0•(用<,>填空)6.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

问:F 的对面是 ;F ADB CAE D C7.若a-b=-3,c+d=2则(b+c)-(a-d)=__________ 8. 计算:+++++++++432113211211 (100)3211+++++= 。

9.线段AB=5,C 是直线AB 上一点,BC=3则AC=_________10.飞机在AB 两城之间飞行,顺风的速度是a 千米/时,逆风速度为b 千米/时, 则风的速度为________11.若∠AOD 是平角,OC 是∠BOD 的平分线,若∠AOB=50度,则∠COD=________12.若15441544,833833,32232222⨯=+⨯=+⨯=+, 若ab a b ⨯=+21010符合前面式子的的条件,则a+b=________二.选择题(每题4分,共40分) 1.(-1)2022是( )A .最大的负数B .最小的非负数C .最大的负整数D .绝对值最小的整数2.某粮店出售三种品牌的面粉,袋上分别标有质量为±kg 、(±)kg 、(25 ± 03)kg 的字样,从中任意拿出两袋 ,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kg D . 0.4kg3.文具店老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板( )A.赚了5元 B.亏了25元 C.赚了25元 D. 亏了5元.4.若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ). B. -2 C. 6 或65. 若54322=+-a a ,则2467a a -+的值为()————————————————装订线———————————————————装订线————————————————学校___________ 姓名____________ 班级_______O OD OA OC OBO6.如果有2022名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2022名学生所报的数是( )7. 关于x 的方程mx+1=2(m-x)的解满足|x+2|=0则m 的值为( ) A.34B. 34-C.43 D. 43-8. x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零 9.若0<x <1,则1x 、x 、x 2的大小关系是( )<x <x2<1x <x C. x <x 2 < 1x D. x 2<x <1x10.观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.6519三、从生活中数学,应用数学到生活中(共50分)1.规定一种关于a,b 的运算:a*b=a(a-b)试根据规定.求2*3+(6-2)*4的值. (10分)2.某城市自来水收费实行阶梯水价,收费标准如下表所示:某户5月份交水费45元,则该用户5月份的用水量是多少?(20分)3.有若干个数,第一个记作a 1,第二个记作a 2,第三个记作a 3,第n 个记作a n ;若a 是不为1的有理数,把a -11叫做a 的差倒数;若a 1=-21,从第二个数起,每个数等于“1与前面那个数的差的倒数”。

初一数学竞赛模拟试题

初一数学竞赛模拟试题

初一数学竞赛模拟试题一、填空题(每题4分,共44分)1、如果∠A =35°18′,那么∠A 的余角等于_____;2、如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交), 且a ∥b ,若∠1=118°,则∠2的度数=_____;3、如图②,已知直线a 、b 被直线c 所截,a ∥b ,∠1=50°,则∠2= ___________。

4、如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形的圆心角的度数,所用的数学依据是 ;5、规定了 , 和 的直线叫做数轴。

6、)4(+-是 的相反数。

若– a = 5.4,则a = 。

7、 |–x| = | – 5| ,则x = 。

8、由四舍五入得到的近似数3.10×104,精确到 位。

60340保留两个有效数字,取近似值是 。

9、已知:如图,,点C 、D 在线段AB 上,且点D 是线段BC 的中点,若AB=10cm ,DB=4cm ,AC=____________cm .10、如图(1),已知AB ∥CD ,∠3=∠2, ∠1=30º,求得∠4= 度11、已知线段AB=5cm ,在线段AB 的延长线上截取BC=3cm ,则AC= cm ,在AB 的反向延长线上截取BD=14cm ;则AD= cm 。

二、选择题(每题4分,共24分)1、一个人从A 点出发向北偏东300方向走到B 点,再从B 点出发向南偏东150方向走到C 点,那么∠ABC 等于( )(A )、750 (B )、1050 (C )、450 (D )、9002、当a 是负数时,下列各式成立的是( )A.22a a -=B.33)(a a -=C.22)(a a -= D ||33a a =3、下列四种说法中,正确的有( )个。

(1)被5除商m 余2的数是25+m;(2)在数轴上表示的两个数,右边的数总比左边的数大;(3)几个非零的数相乘,积的符号由因数的个数决定;(4)500900000用科学记数法表示为5.009×107。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C4. 以下哪个选项表示的是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A5. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:B7. 以下哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 6C. x = -3D. x = 0答案:A8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x > 2C. x < 4D. x < 2答案:A10. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是:A. 1B. 2C. 3D. 4答案:C二、填空题(每题3分,共30分)1. 一个数加上它的相反数等于______。

答案:02. 一个数的绝对值是它本身,这个数是______。

答案:非负数3. 一个角的补角是它的三倍,那么这个角的度数是______。

答案:45°4. 一次函数y = 2x + 1的图象经过点(0,1),则这个点是该函数的______。

答案:截距5. 一个数的平方是16,这个数是______。

答案:±46. 一个数的立方是8,这个数是______。

答案:27. 方程3x - 7 = 2的解是______。

浙教版-学年度七年级数学竞赛试卷1(含解析)

浙教版-学年度七年级数学竞赛试卷1(含解析)

绝密★启用前浙教版2018-2019学年初一数学竞赛试卷1题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.263.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣24.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.38.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,4*8=32)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.12.已知方程组有正整数解,则整数m的值为.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为cm3.14.若x>1,y>0且满足xy=x y,,则x+y的值为.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是组,这组原来有人.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为.评卷人得分三.解答题(共6小题,56分)17.(8分)已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.18.(8分)甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.19.(10分)在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).20.(10分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?21.(10分)某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?22.(10分)有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?参考答案与试题解析一.选择题(共8小题)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.26【分析】由于任何相邻三个数字的和都是19,可由O+X+7=19倒推,即可求解.【解答】解:由题意可得:因为O+X+7=19且M+O+X=19,所以M=7;因为A+9+H=19且9+H+M=19,所以A=7;因为H+M+O=19.所以求A+H+M+O的值为19+7=26.故选:D.【点评】本题主要考查了数字变化类的一些简单的问题,关键要熟练掌握此类问题的解法.3.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.4.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少【分析】根据题意得出x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,然后把它们代入代数式xy2z中即可.【解答】解:由已知条件得:x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,∴=,∴1﹣=,∴代数式的值减小.故选:D.【点评】本题考查了代数式的求值,解题的关键是找出x、y、z的变化,然后代入代数式再求值.5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点【分析】本题可根据数轴,设出B点坐标,则A点坐标可表示出,然后再与b﹣2a=7联立,即可求得结果.【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.【点评】本题考查数轴的基本概念,结合题中条件,进行分析,得出a,b之间的关系即可.6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个【分析】由题意得“明7”和“暗7”各有19个,14个,但既是明7,又是暗7,有3个,7,70,77,即可得出答案.【解答】解:明7一共有10+9=19个,7,17,27,37,47,57,67,77,87,97,70,71,72,73,74,75,76,78,79;暗7一共有14个,7,14,21,28,35,42,49,56,63,70,77,84,91,98,既是明7,又是暗7,3个,即7,70,77,∴共有19+14﹣3=30个.故选:C.【点评】本题考查的是有理数,是基础知识比较简单.7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.3【分析】据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm【分析】本题需先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形②的阴影周长和图形③的阴影周长,比较后即可求出答案.【解答】解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+6)cm,∴②阴影周长为:2(x+6+x)=4x+12;∴③上面的阴影周长为:2(x﹣a+x+6﹣a),下面的阴影周长为:2(x+6﹣2b+x﹣2b),∴总周长为:2(x﹣a+x+6﹣a)+2(x+6﹣2b+x﹣2b)=4(x+6)+4x﹣4(a+2b),又∵a+2b=x+6,∴4(x+6)+4x﹣4(a+2b)=4x.∴C2比C3大12cm.故选:B.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.二.填空题(共8小题)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是β<α<γ.【分析】根据网格,分别把α,β,γ分成两个角,然后与45°角的大小进行比较,从而即可得解.【解答】解:根据网格结构,∵∠DBM>45°,∠DFN=45°,∠ABM>∠FEN,∴∠DBM+∠ABM>∠DFN+∠FEN,即β<α,又∵∠CGH=90°,α<90°,∴α<γ,∴β<α<γ.故答案为:β<α<γ.【点评】本题利用网格考查了三角形的角的关系,把分成的角与45°角相比较是解题的关键.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:ab.【分析】观察分式的分母,若a、b扩大相同倍数时,则分母扩大了这一倍数的平方,要使该分式的值不变,只需保证其分子也能扩大这一倍数的平方即可.【解答】解:根据分式的基本性质,则分子可以是ab.故答案为ab等.【点评】此题考查了分式的基本性质,要看已知的分母实际扩大的倍数.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.【分析】根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别得到关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,人与车之间的距离也是:at那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.【点评】注意:此题中涉及了路程问题中的追及问题和相遇问题.考查了对方程的应用,解方程组的时候注意技巧.12.已知方程组有正整数解,则整数m的值为﹣1或0或5.【分析】先解方程组,用m表示出方程组的解,根据方程组有正整数解得出m的值.【解答】解:方程组,∴x+my﹣x﹣3=11﹣2y,解得:(m+2)y=14,y=,∵方程组有正整数解,∴m+2>0,m>﹣2,又x=,故22﹣3m>0,解得:m<,故﹣2<m<,整数m只能取﹣1,0,1,2,3,4,5,6,7.又x,y均为正整数,∴只有m=﹣1或0或5符合题意.故答案为:﹣1或0或5.【点评】本题考查了二元一次方程组的解,难度较大,关键是根据已知条件列出关于m的不等式.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为60cm3.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.故答案为:60.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.14.若x>1,y>0且满足xy=x y,,则x+y的值为.【分析】首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.【解答】解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1,故y=,∴x=,解得x=4,于是x+y=4+=.故答案为:.【点评】此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同,根据将xy =x y变形,得y=x y﹣1是解题关键.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是乙组,这组原来有15人.【分析】每个组调整了两次,可以发现最后的3个数字都比14小,所以不可能出现一个组增加14人,或者减少14人,根据丙组最后有6人,所以甲组不动时,只能是从丙组调7人到乙组,乙组不动时,只能是从甲组调8人到丙组,丙组不动时,只能是从乙组调8人到甲组,根据此调动方法分别求出甲、乙、丙三组原来的人数即可判断.【解答】解:∵8+8=16,8+7=15,而最后最多的乙组只有14人,∴每个组只能调出一次,掉进一次,又∵丙组最后有6人,∴甲组不动时,从丙组调7人到乙组,乙组不动时,从甲组调8人到丙组,丙组不动时,从乙组调8人到甲组,甲组调进8人,调出8人,人数不变,原来有5人,乙组调进7人,调出8人,人数减少1,原来有14+1=15人,丙组调进8人,调出7人,人数增加1,原来有6﹣1=5人,∴原来人数最多一组是乙组,这组原来有15人.故答案为:乙,15.【点评】本题考查了三元一次方程组的应用,正确分析理解题意,找出调整人数的顺序,得到各小组最后的人数与原来人数的变化关系是解题的关键.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为119或120.【分析】设a1=a,a2=b,然后根据规律表示出a6与a7,再根据a6=74求出二元一次方程的解a、b 的值,然后代入a7的表达式计算即可.【解答】解:设a1=a,a2=b,则:a3=a2+a1=a+b,a4=a3+a2=(a+b)+b=a+2b,a5=a4+a3=(a+2b)+(a+b)=2a+3b,a6=a5+a4=(2a+3b)+(a+2b)=3a+5b=74,a7=a6+a5=(3a+5b)+(2a+3b)=5a+8b,由3a+5b=74与a1<a2,解得a=3,b=13或a=8,b=10,∴a7=5a+8b=5×3+8×13=119,或a7=5a+8b=5×8+8×10=120.故答案为:119或120.【点评】本题考查了数字变化规律的问题,设出a1与a2是解题的突破口,根据规律表示出a6与a7并求解关于a、b的二元一次方程是解题的难点.三.解答题(共6小题)17.已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.【分析】把a+b+c=0两边平方,根据多项式乘多项式的法则进行计算,然后再把a2+b2+c2=1代入即可求出ab+bc+ca=﹣;把ab+bc+ca=﹣两边平方并整理求出a2b2+b2c2+c2a2的值,再把a2+b2+c2=1两边平方并代入计算即可求解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵a2+b2+c2=1,∴1+2ab+2bc+2ca=0,∴ab+bc+ca=﹣;ab+bc+ca=﹣两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=,即a2b2+b2c2+c2a2+2abc(a+b+c)=,∴a2b2+b2c2+c2a2=,∵a2+b2+c2=1,∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,∴a4+b4+c4=1﹣2(a2b2+b2c2+c2a2)=1﹣=.故答案为:﹣,.【点评】本题考查了完全平方公式的拓广,运用多项式的乘法法则进行计算即可,因运算量较大,要小心仔细运算,以避免出错.18.甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.【分析】设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,根据甲、乙、丙、丁四人的年龄的和是108岁可得a+b+c+d=108,根据甲50岁时,乙38岁,可得a﹣b=12,根据甲34时,丙的年龄是丁的3倍,可得c﹣(a﹣34)=3[d﹣(a﹣34)],三式联立,逐步消元分离出d后即可得出答案.【解答】解:设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,由题意得:,由③得:2a+c﹣3d=68④,①+②得:2a+c+d=120⑤,⑤﹣④得:4d=52,故可得d=13,答:丁现在13岁.【点评】本题考查了多元一次方程组的知识,年龄问题是此类题目经常涉及的,像这样的含有四个未知元素,只有三个方程时,难点一般不在列方程,而在于通过消元,在消元前要仔细观察,有目的为之.19.在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).【分析】从平行线的角度考虑,先考虑二条直线都平行,再考虑三条、四条、五条平行,作出草图即可看出.【解答】解:这9条直线的位置关系为:两两相交或平行,有两种情况,分别如下:【点评】本题考查平行线与相交线的综合运用.注意运用分类讨论思想.20.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?【分析】根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.【解答】解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11557799121143165187209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.【点评】此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.21.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?【分析】易得6辆车全部开出需要20分钟的时间,进而得到从第五辆汽车回站就不能正点发车,依此可得最少时间.【解答】解:∵站内原有的6辆车全部开出用时为4×(6﹣1)=20分钟.此时站内又有出租车(20﹣2)÷6+1=4(辆)设再经过x分钟站内无车.+4=x=4848+20+4=72(分钟)答:经过至少72分钟站内无车.就不能正点发车.【点评】考查推理与论证;得到从第五辆汽车回站就不能正点发车,是解决本题的突破点.22.有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?【分析】分别表示出2个小朋友所取走的糖果数,让其相等列式求得糖果数,进而算出每个小朋友获得的糖果数,让490除以每个小朋友获得的糖果数即为小朋友的个数.【解答】解:设共有y颗糖果,则第1个小朋友取走的糖果为10+颗,第二个小朋友取走的糖果为20+[y﹣10﹣()﹣20]×=20+颗;(3分)因为糖果是平均分配的,因此可得10+=20+(7分)解得y=490,(10分)每个小朋友分得10+60=70个糖果,有小朋友490÷70=7个.答:有490个糖果,7个小朋友.【点评】考查一元一次方程的应用;得到两个小朋友所取走的糖果数的关系式是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
a
c 江山市第34届初一数学竞赛试题模拟卷1
2015/04/20
班级: 姓名:
一、选择题(每小题3分,共36分).
1.已知1999199920002000a =,2000200020012001b =,2001200120022002
c =,则a 、b 、c 的大小关系是( ) A .a >b >c B .b >c >a C .c >a >b D .c >b >a 2.如图直线a ,b 被直线c 所截,共得12个角,则图中内错角角有 ( ) A .5 对 B .6对 C .11对 D .12对
3.已知对于任意有理数b a ,,关于y x ,的二元一次方程
b a y b a x b a +=+--)()(都有一组公共解,则公共解为( )
A .00x y =⎧⎨=⎩
B .01x y =⎧⎨=-⎩
C .10x y =-⎧⎨=⎩
D .11
x y =⎧⎨=⎩ 4.已知一个直角∠AOB 以O 为端点在∠AOB 的内部画10条射线,以OA 、OB 以及这些射线为边构成的锐角的个数是( )个.
A .110
B .132
C .66
D .65
6.方程x 2-y 2=105的正整数解有( )
A .一组
B .二组
C .三组
D .四组
7、若a >0>b >c ,,,,1,c
b a P b
c a N a c b M c b a +=+=+=
=++则M 、N 、P 之间的大小关系是( ). A .M >N >P B .N >P >M C .P >M >N D . M >P >N
8、某工厂今年计划产值为a 万元,比去年增长10%,如果今年实际产值可超过计划1%,那么实际产值将比去年增长( )
A .11%
B .10.1%
C . 11.1%
D . 10.01%
9、某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人.三个区在一条直线上,位置如下图所示.公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在( ).
A .A 区
B .B 区
C . A 区
D .D 区
10、把14个棱长为1的正方体,在地面上堆叠成如图所示的立体,
然后将露出的表面部分涂成红色,那么红色部分的面积为( )
A .21
B .24
C . 33
D . 37
11、用),min(b a 表示a 、b 两数中的较小者,用),max(
b a 表示a 、b 两数中的较大者,例如5)5,5max(,3)3,3min(,5)5,3max(,3)5,3min(====.设a 、b 、
c 、
d 是互不相等的自然数,
,),min(,),max(,),max(,),max(,),min(,),min(y n m n d c m b a x q p q d c p b a ======则( )
. A .x >y B . x <y C .x = y D .x >y 和x <y 都有可能
12、父母的血型与子女可能的血型之间有如下关系:
已知:⑴汤姆与父母的血型都相同;⑵汤姆与姐姐的血型不相同;⑶汤姆不是A 型血. 那么汤姆的血型是( ).
A .O
B .B
C . AB
D . 什么型还不能确定
二、填空题(每小题4分,共84分)
13.3个有理数a 、b 、c 两两不等,则b
a a c a c c
b
c b b a ------,,中有 个是负数. 14.a 、b 是整数,且满足2=+-ab b a ,则ab = .
15.一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是
_________.
16、已知a +b =-3,ab =2,则a 2b 2-a 2-b 2-4ab +1的值是________.
17、已知实数x 、y 满足22
244690x xy y x -+-+=,=________.
18、如图,B 、C 、D 依次是线段AE 上三点,已知AE =8.9cm ,BD =3cm ,则图中以A 、
B 、
C 、
D 、
E 这五个点为端点的所有线段长度之和等于___________.
19、已知c b a ,,都是正整数,且2008=abc ,则c b a ++的最小值为_____________.
20、若20082007321------= M ,22222200820074321-++-+-= N ,则N M ,的大小关系是______________(填“>”、“<”、或“=”).
21、把能表示成两个正整数平方差的这种正整数,从小到大排成一列:123,,,,n a a a a ,
例如:222222123213325437a a a =-==-==-=,,,224318a =-=,.那么2008a =______________.
22、在同一条公路上有两辆卡车同向行驶,开始时甲车在乙车前4千米,甲车速度为每
小时45千米,乙车速度为每小时60千米,那么乙车赶上甲车的前1分钟两车相距 _ __米.
23、把两个长3cm 、宽2 cm 、高1 cm 的小长方体先粘合成一个大长方体,再把它切分成
两个大小相同的小长方体,最后一个小长方体的表面积最多可能比最初的一个小长方体的表面大__________cm 2.
24、已知四个正整数的积等于2002,而它们的和小于40,那么这四个数是____ ______.
25、一个长方体的长、宽、高分别为9 cm 、6 cm 、5 cm 先从这个长方体上尽可能大地切下一个正方体,再从剩余部分上尽可能大地切下一个正方体,最后再从第二次的剩余部分上尽可能大地切下一个正方形.那么,经三次切割后剩余部分的体积为__________cm 3.
26、今年某班有56人订阅过《初中生数学学习》,其中,上半年有25名男生、15名女生
订阅了该杂志,下半年有26名男生、25名女生订阅了该杂志,那么只在上半年订阅了该杂志的女生有__________名.
27、电影胶片绕在盘上,空盘的盘心直径为60毫米.现有厚度为0.15毫米的胶片,它紧
绕在盘上共有600圈,那么这盘胶片的总长度约为_____米.(圆周率π取3.14计算)
28.设x 、y 、z 是整数数位上的不同数字.那么算式
? ? ?
x
x x y x x +
所能得到的尽可能大的三位数的和数是
29.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7米的速度跑向百米终
点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了_____ 米(精确到个位)
30.五位数abcde 是9的倍数,其中abcd 是4的倍数,则abcde 的最小值是
31.某甲于上午9时15分钟由码头划船出游,计算最迟于12时返回原码头,已知河水
的流速为1.4千米/小时,划船时,船在静水中的速度可达3千米/小时,如果甲每划30分钟就需要休息15分钟,并且船在划行中不改变方向,只能在某次休息之后往回划,问甲最多能划离码头 远.
32、有一个运算程序,可以使:当k n m =⊗(k 为常数)时,得
.2)1(,1)1(+=+⊗-=⊗+k n m k n m
现在,已知211=⊗,那么=⊗20072007__________________.
33、已知50个数5021,,,a a a 从—1,0,1中取值,若95021=+++a a a ,且
107)1()1()1(2502221=++++++a a a ,则5021,,,a a a 中0的个数是 ________ .。

相关文档
最新文档