第5课 二次根式及其运算

合集下载

第5课 二次根式及其运算

第5课 二次根式及其运算
2.求 a2时,注意确定 a 的符号,当问题中由已知条件不 能直接判定 a 的符号时,就要分类讨论.
易错点1 二次根式 中a的取值范围
【典例 1】 化简: a2-10a+25-( 3-a)2. 【错解】 原式= (a-5)2-( 3-a)2
=a-5-(3-a) =a-5-3+a=2a-8.
【析错】 上述解答错误地认为 a2=a,忽视了 a2=a 的条件是 a≥0,当 a<0 时, a2=-a.并且在解题时忽 略了 a 所隐含的取值范围: 3-a有意义的条件是 3- a≥0,即 a≤3.
【解析】 ∵x-y=(1- 2)-(1+ 2)=-2 2, xy=(1- 2)(1+ 2)=-1, ∴x2+y2-xy-2x+2y =x2+y2-2xy+xy-2(x-y) =(-2 2)2-1-2×(-2 2) =8-1+4 2=7+4 2.
1. a(a≥0)表示非负数 a 的算术平方根,是一个非负数, 所以 a具有双重非负性.算术平方根的非负性主要用 于两方面:(1)若 n 个非负数的和为零,则每一个非负 数都等于零;(2)某些二次根式的题目中隐含着“a≥0” 这个条件,做题时要善于发现,巧妙求解.
易错点2 最简二次根式
【典例 2】 下列二次根式中,是最简二次根式的是( )
A. 0.2b
B. 12a-12b
C. x2-y2
D. 5ab2
【错解】 A
【析错】 最简二次根式满足的条件应是:①能开方的因 式开尽方;②根号中不含分母.A 选项 0.2b中的 0.2 =15,所以根号中其实还含有分母.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。

二次根式的概念与运算

二次根式的概念与运算

二次根式的概念与运算一、二次根式的概念二次根式是指形如√a的表达式,其中a为非负实数。

在数学中,二次根式是非常重要的概念,它与平方根的运算密切相关。

在二次根式中,a被称为被开方数,√a被称为二次根式符号,它表示被开方数的平方根。

二、二次根式的运算二次根式的运算包括加减乘除四则运算,下面我将依次介绍这些运算规则:1. 二次根式的加减法:当二次根式的被开方数相同且二次根式符号相同时,可以进行加减运算。

例如:√2 + √2 = 2√2,√3 - √3 = 02. 二次根式的乘法:将二次根式相乘时,可以将被开方数相乘并保留二次根式符号。

例如:√2 × √3 = √63. 二次根式的除法:将二次根式相除时,可以将被开方数相除并保留二次根式符号。

例如:√8 ÷ √2 = √4 = 2需要注意的是,二次根式的除法要求除数不为0。

4. 二次根式的化简:化简二次根式是指将含有多项二次根式的表达式转化为最简形式。

要化简二次根式,可以通过合并同类项、约分等方法实现。

合并同类项时,需要注意被开方数是否相同以及二次根式符号是否相同。

例如:√2 + √8可以化简为√2 + 2√2 = 3√2另外,有些二次根式可以化简为整数或分数。

例如:√4 = 2,√9 = 3,√16 = 4/√2三、二次根式的运算实例为了更好地理解二次根式的概念与运算,下面我将给出一些运算实例:例1:计算√8 × √2解:根据乘法运算规则,可以将被开方数相乘并保留二次根式符号。

√8 × √2 = √(8 × 2) = √16 = 4例2:化简√12 - √27解:根据减法运算规则,要实现减法,需要先化简被开方数相同的二次根式。

√12 - √27 = √(4 × 3) - √(9 × 3) = 2√3 - 3√3 = -√3例3:将√18 + 4√2化简为最简形式解:根据加法运算规则,可以合并同类项。

二次根式的运算加减乘除

二次根式的运算加减乘除

二次根式的运算加减乘除二次根式,是指具有根号的数学表达式,常见形式为√a或√(a + b),其中a和b为实数。

本文将围绕二次根式的运算进行讨论,包括加法、减法、乘法和除法。

一、二次根式的加法对于两个具有二次根式形式的数,如√a和√b,它们的和可以通过以下步骤进行计算:Step 1: 将两个二次根式化简为最简形式,即将根号内的数分解为互质的因数。

例如,√20可以化简为√(4 × 5),再进一步化简为2√5。

Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相加。

例如,对于√20 + √45,可以分别先将二次根式化简为2√5和3√5,然后相加得到5√5。

因此,二次根式的加法运算要先将根号内的数化简为互质的因数,然后合并相同根号部分。

二、二次根式的减法二次根式的减法与加法类似,也需要先将根号内的数化简为最简形式,然后合并相同根号部分。

以下是减法的步骤:Step 1: 将两个二次根式化简为最简形式。

Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相减。

例如,对于√20 - √45,可以先将二次根式化简为2√5和3√5,然后相减得到-√5。

需要注意的是,减法运算中可能会出现负数的结果,这也是合理的。

三、二次根式的乘法二次根式的乘法运算可以通过以下步骤进行:Step 1: 将两个二次根式进行分解,将根号内的数分别因式分解为互质的因数。

例如,对于√20 × √45,可以将20分解为2 × 2 × 5,45分解为3 × 3 × 5。

Step 2: 将每个二次根式的因数进行合并。

例如,√20 × √45可以化简为(2 × √5) × (3 × √5)。

Step 3: 将合并后的二次根式继续化简为最简形式。

对于(2 × √5) × (3 × √5),可以合并根号前的系数,得到6 × √(5 × 5),即6 × √25。

第5课 二次根式及其运算

第5课 二次根式及其运算

【例】 (1)已知x=2-
探究提高
1.二次根式混合运算,把若干个知识点综合在一起,
计算时要认真仔细. 2.可以适当改变运算顺序,使运算简便.
6 知能迁移3 (1) - 18-( 1 )0 2 2 解:原式=3 2 -3 2 -1 =-1
(2)(-3)2- 4 +( 1 )-1; 2 解:原式=9-2+2=9 (3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值. 解:∵3< 10 <4,
第2课 二次根式
及实数运算
要点梳理
1.二次根式的概念:
式子 a (a≥0) 叫做二次根式. 2.二次根式的性质:
(1)( a )2= a(a≥0) ; a(a≥0) (2) a2=|a|= 0(a=0) -a(a< 0)
(3) ab = (4)
a · b(a≥0,b≥0) .
a (a≥0,b>0) . b
∴原式=
(2)已知a=3+2 5 ,b=3-2 5 ,求a2b-ab2的值;
解:∵a-b=(3+2
5)-(3-2 5 )=4 5 , ab=(3+2 5 )(3-2 5 )=-11,
∴a2b-ab2=ab(a-b)=(-11)×4 5 =-44 5 .
题型
二次根式运算中的技巧
,y=2+ 3 ,求:x2+xy+y2的值; 3 (2)已知x+ 1 =-3,求x- 1 的值. x x 解:(1)∵x=2- 3 ,y=2+ 3 , ∴x+y=(2- 3 )+(2+ 3 )=4, xy=(2- 3 )×(2+ 3 )=1, ∴x2+xy+y2=(x+y)2-xy=42-1=15.
∴ 10 的整数部分a=3,小数部分b= 10 -3. ∴a2-b2=32-( 10-3)2 =9-(10-6 10+9) =-10+6 10 .

二次根式的运算知识点总结

二次根式的运算知识点总结

二次根式的运算知识点总结二次根式是指具有形如√a的表达式,其中a是非负实数。

在数学中,二次根式的运算是一个重要的知识点,掌握了这个知识点,我们可以更好地理解和利用二次根式。

下面将总结二次根式运算的基本规则和常见的运算方法。

一、二次根式的基本规则1. 二次根式的化简:当被开方数存在平方因子时,可以进行化简。

例如√4×3 = √(4×3) = 2√3。

2. 二次根式的乘法运算:对于两个二次根式的乘法运算,可以将两个二次根式的根号内的数相乘,根号外的数相乘,并进行化简。

例如:√2 × √3 = √(2 × 3) = √6。

3. 二次根式的除法运算:对于两个二次根式的除法运算,可以将两个二次根式的根号内的数相除,根号外的数相除,并进行化简。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3。

4. 二次根式的加减运算:对于两个二次根式的加减运算,只能进行同类项相加减,并进行化简。

例如:√2 + √3 无法进行化简,可以写成2√2 + 3√5。

二、二次根式的运算方法1. 二次根式与整数的运算:当二次根式与整数进行运算时,可以将整数视为二次根式的特殊形式。

例如:√2 + 4 = √2 + √(4×4) = √2 + 2√2 = 3√2。

2. 二次根式的有理化:有时候需要将二次根式的分母变为有理数,这个过程称为有理化。

有理化的方法有两种:(1) 乘以共轭根式:对于分母中含有二次根式的情况,可以通过乘以分母的共轭根式来进行有理化。

例如:(3 + √2)/(1 + √2) = [(3 + √2)/(1 + √2)] * [(1 - √2)/(1 - √2)] = (3 - 3√2 + √2 - 2)/(1 - 2)= (1 - 2√2)/(-1)= 2√2 - 1(2) 分离根号:对于分母中含有二次根式的情况,可以通过将二次根式的根号部分与非根号部分分离,并进行化简,从而实现有理化。

二次根式的运算

二次根式的运算

二次根式的运算在数学中,二次根式是由数字和根号组成的表达式,其中根号表示取平方根的运算。

二次根式的运算是解决数学问题和实际应用中常见的操作之一。

本文将介绍二次根式的基本运算法则,并举例说明。

1. 二次根式的加法和减法二次根式的加法和减法遵循以下规则:(a√n) ± (b√n) = (a ± b)√n其中a和b为实数,n为正数。

通过将两个二次根式的系数相加或相减,保持根号下的数不变,可以进行加法或减法运算。

例如:3√2 + 5√2 = 8√24√3 - 2√3 = 2√32. 二次根式的乘法二次根式的乘法遵循以下规则:(a√n) × (b√m) = ab√(n×m)其中a、b、n和m为实数,且n和m均为正数。

乘法运算中,将两个根式的系数相乘,并将根号下的数相乘,得到新的根式。

例如:2√3 × 5√2 = 10√(3×2)3. 二次根式的除法二次根式的除法遵循以下规则:(a√n) ÷ (b√m) = (a/b)√(n/m)其中a、b、n和m为实数,且n和m均为正数。

除法运算中,将两个根式的系数相除,并将根号下的数相除,得到新的根式。

例如:(8√2) ÷ (4√2) = 8/4 = 2(3√6) ÷ (√3) = 3/1 = 34. 二次根式的化简化简二次根式是将复杂的根式转化为最简形式的过程。

化简的方法包括约分、提取公因式、合并同类项等。

例如:√8 = √(4×2) = 2√2√18 = √(9×2) = 3√25. 二次根式的有理化有理化二次根式是将分母中包含根号的式子转化为分母不含根号的形式。

有理化的方法包括乘以恰当的有理数等。

例如:1/(3 + √5) = (1/(3 + √5)) × ((3 - √5)/(3 - √5)) = (3 - √5)/(9 - 5) = (3 -√5)/4综上所述,二次根式的运算包括加法、减法、乘法、除法、化简和有理化等基本操作。

二次根式及其运算ppt课件

二次根式及其运算ppt课件
15
【解后感悟】比较两个二次根式大小时要注意: (1)负号不能移到根号内;(2)根号外的正因数要平 方后才能从根号外移到根号内.
8.(1)(2015·嘉兴)与无理数31 最接近的是 ( C )
A.4
B.5
C.6
D.7
(2)(2015·杭州)若k< 90 <k+1(k是整数),
则k=
( D)
A.6
B.7
不等于0列式进行计算即可得解.(2)根据二次根
式的性质化简得到k,m及n的值,即可作出判断.
【答案】(1)根据题意得,2x+1≥0且x-1≠0,
解得x≥- 1 且x≠1.故选A. 2
(2) 135 3 15 , 450 15 2 ,180 6 5 ,
可得:k=3,m=2,n=5,则m<k<n.
整理得出即可. 【答案】(1)原式= 2
23
2
23
2,
32
2
2
故答案为: 2 ;
(2) 3( 2 3) 24 6 3 6 3 2 6 (3 6)
=-6. 故答案为:-6. 13
【解后感悟】(1)二次根式的加减运算,关键是掌握 二次根式的化简及同类二次根式的合并;(2)二次 根式的混合运算,正确化简二次根式是解题关键.
【归纳】通过开放式问题,归纳、疏理二次根式的性质
和运算法则. 6
类型一 平方根、算术平方根、立方根
例1 (1)(2015·黄冈)9的平方根是
() A.±3
1
B. 3
C.3
D.-3
(2)(2015·湖州)4的算术平方根是 2( )
A.±2
B.2 C.-2 D.
(3)(2015·荆门)64的立方根是

二次根式的运算

二次根式的运算

二次根式的运算二次根式是代数中常见的一种运算形式,它包含有平方根,即对一个数的平方根进行运算。

在数学中,对于一个非负实数a,它的平方根可以表示为√a。

在这篇文章中,我们将讨论二次根式的运算及其相关性质。

1. 加法和减法运算二次根式的加法和减法运算可以通过合并同类项的方法来进行。

考虑以下两个二次根式:√a + √b 和√c - √d如果a和b是非负实数,那么√a + √b可以简化为√(a + b)。

同样地,如果c和d是非负实数,那么√c - √d可以简化为√(c - d)。

例如:√5 + √3 = √(5 + 3) = √8√7 - √2 = √(7 - 2) = √52. 乘法运算二次根式的乘法运算可以通过展开式来进行。

考虑以下两个二次根式:√a * √b如果a和b是非负实数,那么√a * √b可以简化为√(a * b)。

√3 * √2 = √(3 * 2) = √63. 除法运算二次根式的除法运算可以通过有理化分母的方法来进行。

考虑以下两个二次根式:√a / √b如果a和b是非负实数且b不等于0,那么√a / √b可以简化为√(a / b)。

例如:√8 /√2 = √(8 / 2) = √4 = 24. 乘方运算二次根式的乘方运算可以通过提取根号的方法来进行。

考虑以下二次根式:(√a)^n如果a是非负实数且n是正整数,那么(√a)^n可以简化为√(a^n)。

例如:(√2)^3 = √(2^3) = √8 = 2√25. 分式运算二次根式可以通过分式的形式来进行运算。

考虑以下二次根式:如果a是非负实数且a不等于0,那么1 / √a可以简化为√a / a。

例如:1 / √3 = √3 / 3综上所述,二次根式的运算涉及加法、减法、乘法、除法、乘方以及分式运算等多种形式。

正确运用这些运算规则可以简化二次根式,使其更易于计算。

理解并掌握二次根式的运算方法对于解决数学问题和理解更高级的代数内容是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.二次根式的运算: (1)二次根式加减法的实质是合并同类根式; (2)二次根式的乘法: a· b = ab(a≥0,b≥0) ; a (3)二次根式的除法: a = (a≥0,b>0) . b b 4.最简二次根式: 运算结果中的二次根式,一般都要化成最简二次根式. 最简二次根式,满足两个条件: ①被开方数不含分母; ②被开方数中不含开得尽方的因数或因式.
ab=(3+2 5)(3-2 5 )=-11, ∴a2b-ab2=ab(a-b)=(-11)×4 5 =-44 5.
2 2 2-1 2+1 x -y (3)已知x= ,y= ,求 2 2 的值; x +y 2+1 2-1
解:∵x= 2-1 =( 2 -1)2=3-2 2 , 2+1 2+1 =( 2 +1)2=3+2 2 , 2-1 ∴x+y=6,x-y=-4 2 ,xy=1. y= 原式= x+yx-y = 6×-4 2 2 2
|6-3m|+(n-5)2+|n|· m-3=3m-6, ∴m-3=0且n-5=0,
∴m=3,n=5,m-n=3-5=-2.
答题规范
2.注意二次根式运算中隐含条件 考题再现
a -1 已知:a= 1 ,求 - a+1 2+ 3
解:原式= a+1a-1 -
a+1
2
a -2a+1 的值. 2 a -a
使没有约分的情况,一般来说,只需把积(商)进行一次化简 (因为结果须是最简二次根式),当然较先化最简二次根式一
k-3>0,
k>3.
(2)已知a、b、c是△ABC的三边长,试化简:
a+b+c2+
a-b-c2+ b-c-a2 + c-a-b2 .
解:原式=|a+b+c|+|a-b-c|+|b-c-a|+|c-a-b| =(a+b+c)+(b+c-a)+(c+a-b)+(a+b-c)
3.与二次根式相关的求值问题 条件二次根式的求值,问题往往与整式、分式综合起来, 因此技巧性较强,解题不要急于动手,宜先统筹好解题的 方法与过程.通常是将已知式与求值式化简后,再按照求 代数式的方法进行,以简便、准确为目的.
基础自测
1.(2011· 泉州)(-2)2的算术平方根是( A )
A. 2
3x-6≥0 x≥2, 解析:(1)∵ ∴ 6-3x≥0, x≤2, ∴x=2,y=23=8,
∴± 10x+2y =± 10×2+2×8 =± 36 =±6.
(2)已知a=3+2 5 ,b=3-2 5 ,求a2b-ab2的值;
解:∵a-b=(3+2
5)-(3-2 5 )=4 5,
B.±2
C.-2
D. 2
解析: -22= -2=2.
2.(2011· 广安)下列运算正确的是( C ) A.-(-x+1)=x+1 B. 9 - 5 = 4 C. 3-2=2- 3 D.(a-b)2=a2-b2 解析:因为 3 <2, 3 -2<0,所以= 3-2-( 3 -2) =- 3 +2=2- 3 .
10+3)]
2010
[2分] [4分]
=[( 10 )2-32]2010 =(10-9)2010=1
探究提高
1.二次根式混合运算,把若干个知识点综合在一起,
计算时要认真仔细. 2.可以适当改变运算顺序,使运算简便.
6 知能迁移3 (1) - 18-( 1 )0 2 2 解:原式=3 2 -3 2 -1
2
2
学生作答
a-1
aa-1 =a-1- a-1 =a-1- 1 . aa-1 a
∴当a=
原式=
1
1 2+ 3
时,
-1-(2+ 3 )=-1-2 3 .
2+ 3
规范解答 解:∵a=
1 2+ 3
<1,∴a-1<0.
a-1 =|a-1|=1-a.
2
∴ a2-2a+1= ∴原式= ∴当a=
a+1a-1 a+1 1

1-a aa-1
=a-1+
1 a
.
时,
3 )=3.
2+ 3 原式= 1 -1+(2+ 2+ 3
老师忠告
(1)题目中的隐含条件为a=
1 2+ 3
<1,所以 a2-2a+1=
2 a-1 =|a-1|=1-a,而不是a-1;
(2)注意挖掘题目中的隐含条件,是解决数学问题的关键之
3.(2011· 泰安)下列运算正确的是( D ) A. 25 =±5 C. 18 ÷ 2 =9 解析: 24×
3= 2
B.4 3 - 27 =1 D.
24×
· 24
3= 2
3 =6 2
36 =6.
4.(2011· 杭州)下列各式中,正确的是( B ) A. -32 =-3 B.- 32=-3 C. ± 2 =±3 3 D.
=-1
(2)(-3)2- 4 +( 1 )-1; 2 解:原式=9-2+2=9 (3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值. 解:∵3< 10 <4,
∴ 10 的整数部分a=3,小数部分b= 10 -3. ∴a2-b2=32-( 10-3)2 =9-(10-6 10+9) =-10+6 10 .
数使分母变形为m2(m为正整数)的形式,即可将其移到
根号外.
2.二次根式加减,即化简之后合并同类二次根式. 3.二次根式乘除结果要化简为最简二次根式.
知能迁移2
(1)(2011· 潍坊)下面计算正确的是( B ) B. 27 ÷ 3 =3 D.
A.3+ 3 =3 3 C.
2· 3 = 5
-22=-2
32=±3
解析:因为 32=3,所以- 32=-3.
5.(2011· 菏泽)实数a在数轴上的位置如图所示,则 a-42 + a-112 化简后为( A )
A. 7
C.2a-15
B.-7
D.无法确定
解析:可知5<a<10,所以a-4>0,a-11<0,
原式= a-4+ a-11=(a-4)+(11-a)=7.
x x x 1 1
探究提高
1.x2+xy+y2是一个对称式,可先求出基本对称式x+y=4,
xy=1,然后将x2+xy+y2转化为(x+y)2-xy,整体代入即可. 2.注意到(x- 1 )2=(x+ 1 )2-4,可得(x- 1 )2=5, x x x 1 x- =± 5 . x
知能迁移4
(1)若y= 3x-6 + 6-3x +x3,则10x+2y的 平方根为________; ±6
题型分类 深度剖析
题型一 二次根式概念与性质
【例1】 (1)等式 2k-1= 2k-1 成立,则实数k的范围 k-3 k-3 是( D ) 1 A.k>3或k< B.0<k<3 2 C.k≥ 1 D.k>3 2 1 2k-1≥0, k≥ , 解析:要使等式成立,必须 有 2 ∴k>3.
3 =3; -64=-4. 9
(2)(2011· 烟台)如果 2a-12 =1-2a,则( B ) 1 1 1 1 A.a< B. a≤ C.a> D. a≥ 2 2 2 2 解析:由1-2a≥0,得a≤
1 2
.
(3)若化简|1-x|-
x2-8x+16 的结果为2x-5,则x的取
值范围是________. 1≤x≤4 解析:∵|1-x|- x2-8x+16 =(x-1)-(4-x)=2x-5, ∴|1-x|=x-1≥0,x≥1, 且 x2-8x+16 =4-x≥0,x≤4. ∴1≤x≤4.
3 、 ab(ab≥0)、 x+3 (x≥-3)都是二合运算 实数的混合运算与有理数混合运算相似,而二次根式的混 合运算则与整式、分式的混合运算有很多相似之处,如: 运算顺序都是先算乘方、开方、再算乘除、最后算加减, 如有括号,应先算括号里面的;有理数、整式、分式运算 中的运算律(分配律、结合律、交换律等)和所有的乘法公 式(平方差公式、完全平方公式)在二次根式中的运算仍然 适用.
题型四
二次根式运算中的技巧
【例4】 (1)已知x=2- 3 ,y=2+ 3 ,求:x2+xy+y2的值; (2)已知x+ 1 =-3,求x- 1 的值. x x 解:(1)∵x=2- 3 ,y=2+ 3 , ∴x+y=(2- 3 )+(2+ 3 )=4, xy=(2- 3 )×(2+ 3 )=1, ∴x2+xy+y2=(x+y)2-xy=42-1=15. (2)∵ ( x- )2 =( x+ )2 -4=(-3)2-4=5, ∴x- 1 =± 5 .
解析: 27 ÷ 3 = 9 =3.
(2)如图,数轴上A、B两点表示的数分别为-1和 3 ,点B关于 点A的对称点为C,则点C所表示的数为( A )
A.-2- 3 C.-2+ 3
B.-1- 3 D.1+ 3
解析:∵A、B两点表示的数分别是-1和 3 , ∴OA=|-1|=1,OB=| 3 |= 3 ,AB=1+ 3 =AC, ∴OC=AC+OA=(1+ 3 )+1=2+ 3 . ∴点C所表示的数为-(2+ 3 )=-2- 3 ,选A.
第5课 二次根式
及其运算
要点梳理
1.二次根式的概念:
式子 a (a≥0) 叫做二次根式. 2.二次根式的性质:
(1)( a )2= a(a≥0) ; a(a≥0) (2) a2=|a|= 0(a=0) -a(a< 0)
(3) ab = (4)
a · b(a≥0,b≥0) .
a b
a= b
(a≥0,b>0) .
(3)计算:-
4 1 × 15 45 5 2
4 5 5
解:原式=-
× × 45×15
2 2
1
=- 4 × 1×15× 3 =-6 3 .
相关文档
最新文档