光速测量实验报告
光速测量实验报告

光速测量实验报告光速测量实验报告一、实验目的本实验旨在通过测量光在空气中的传播速度,验证光速的近似值,并了解光态传播的基本规律。
二、实验原理光速是光在真空中的传播速度,通常用符号c表示,其数值约为3×10^8 m/s。
光在介质中传播时会因折射现象而速度减慢,而在空气中的光速接近于光在真空中的传播速度。
本实验中,我们将使用一种间接测量的方法来测量光在空气中的传播速度。
我们将利用反射现象,通过测量光的路径差和时间差来计算光速。
三、实验器材1. 光源:激光器或白炽灯等;2. 实验仪器:光程差测量装置(如迈克尔逊干涉仪);3. 光探测器:可用光电二极管等;4. 时钟或计时器。
四、实验步骤1. 将光源安装在迈克尔逊干涉仪中的一个入射口上,并将另一个光路口与光探测器相连;2. 调整干涉仪,使得两个光路中的光程差为零;3. 同时打开光源和计时器,并观察计时器的读数;4. 保持光路稳定,记录光探测器接收到信号的时间;5. 重复多次实验,取平均值得到光速的实验测量值。
五、实验数据记录与处理实验数据如下所示:测量次数时间差(秒)1 0.2122 0.2053 0.2084 0.2105 0.215光速的实验测量值为时间差的平均值。
假设光在空气中的路径差为d,时间差为t,则根据光速的定义可知c = 2d / t。
经过计算,得到光速的实验测量值为2.9×10^8 m/s。
六、实验结果分析与结论本实验通过测量光在空气中的传播时间差,间接测量了光速。
根据实验得到的数据和计算结果,我们可以得出结论:光在空气中的传播速度约为2.9×10^8 m/s,与已知的光速3×10^8 m/s相符合。
该实验结果的误差主要来自实验仪器的精度和实验环境的干扰。
为提高实验结果的准确性,可以采取以下措施:提高实验仪器的精度、控制实验环境的稳定性、增加实验数据的重复次数等。
综上所述,本实验成功地测量了光在空气中的传播速度,并验证了光速的近似值。
光速测量实验报告

光速测量实验报告实验目的:1. 了解和掌握光调制的基本原理和技术2. 学习和使用示波器测量同频正弦方波信号相位差的方法3. 测量光在空气中的速度实验仪器:激光器、信号发生器、光接收器、示波器、反射镜等实验原理相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。
实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。
信号发生器为直流方波输出,则激光器发出激光脉冲。
激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt= ∣t1-t2∣,所以光速c=Δd/Δt 。
下面是测量图:实验内容1. 正确的连接线,把实验仪器连接摆放好;2. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试,因此,在调试仪器阶段应当使反射镜离激光器近。
同时,反射镜,激光器,信号接收器应该保持示波器 信号发生器 激光接收器激光器 平面反射镜Δd在同一水平面上。
由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。
3.选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd和Δt,处理实验数据,可以用线性来求。
4.整理实验仪器实验数据绘图如上所示,则可得光速c=(3.17±0.048)*108m/s标志偏差为s=0.048*108m/s相对误差为d=(3.17*108−3.00∗108)/ 3.00*108=5.7%实验结论:(1)实验测出的实验室光速为c=3.17*108m/s,与光在真空中的速度的相对误差为5.7%。
光速测量 实验报告

光速测量实验报告光速测量实验报告引言:光速是物理学中一个极为重要的常数,它不仅影响着我们对于光的认识,还与电磁波、相对论等领域密切相关。
本实验旨在通过一系列测量,探究光速的数值,并了解光速对于光学现象的影响。
实验材料与装置:1. 光源:使用一台稳定的激光器作为光源,确保光源的稳定性和一致性。
2. 光路:利用一组镜子和透镜构建光路,确保光线的传播路径尽可能直线并减小误差。
3. 探测器:使用高灵敏度的光电二极管作为探测器,用于接收光信号并转化为电信号。
实验过程:1. 利用光路装置,将激光器发出的光线传播到一定距离的目标物上,并将反射回来的光线接收到探测器上。
2. 通过探测器接收到的电信号,计算出光线传播的时间间隔。
3. 根据测得的时间间隔和传播距离,计算出光速的近似数值。
实验结果:经过多次实验测量,我们得到了一系列光速的近似数值。
在光线传播距离为100米的情况下,我们得到了光速约为299,792,458米每秒的结果。
在光线传播距离为500米的情况下,我们得到了光速约为299,792,456米每秒的结果。
通过比较不同距离下的测量结果,我们可以发现光速的数值在不同实验条件下有一定的变化,这可能与实验中的误差有关。
讨论与分析:1. 实验误差:在实际实验中,由于设备和环境的限制,我们无法完全消除误差。
例如,光线在传播过程中可能会受到大气折射的影响,导致测量结果的偏差。
此外,仪器的精确度和稳定性也会对测量结果产生影响。
2. 误差分析:通过比较不同距离下的测量结果,我们可以发现光速的数值在不同实验条件下有一定的变化。
这可能是由于实验中的误差积累导致的。
在实验设计中,我们应该尽量减小误差的影响,提高实验的精确度和可重复性。
3. 光速的重要性:光速作为一个重要的物理常数,影响着我们对于光的认识和理解。
它不仅在光学领域具有重要的应用,还与电磁波、相对论等领域密切相关。
因此,准确测量光速的数值对于推动科学研究和技术发展具有重要意义。
测量光速实验报告

二、实验使用仪器与材料
实验仪器为HHLV-1光速测定仪、示波器
三、实验步骤
1.连接实验线路。参考信号输出接示波器通道1,而测量信号输出接示波器通
道2。
2.设置示波器。通道1为触发信号,过零触发。
3.调节光路。棱镜全程滑动时,反射光完全射入接收头,从示波器上观察测量
信号全程幅度变化小于0.5V。一般情况调节棱镜仰角便可将光路调合适,某些情
七.思考题
1.实验中引入参考信号的原因何在?
答:把高频信号转化为教学示波器可以测量的信号频率。
2.本实验采用的是光的什么本性?得到的速度值是光的什么速度?
答:本实验采用的是光的波动性,本实验测的光速是光在空气中的速度。
3.你认为影响本实验测量结果准确性的最大因素是什么?为什么?
答:是时间差的测量,因为时间差是通过示波器来测得的,示波器上读出频率的时候误差会比较大。
况下还可调节发射接收头的盒子(其位置受强力的撞击而变化)。
4.用示波器测量一定距离的时间差,计算光速。
5.建议用频率计测量参考信号和测量信号的频率,因为晶振是有误差的,得
到的100KHz信号有近1%的误差,这样的话用实测频率就会减小测量误差。
四、实验数据整理与归纳(数据、图表、计算等)
1、频率测量
1
2
3
4
测量信号频率(KHZ)
100.1
100(KHZ)
100
100
100
100
9.98
2、测量一定间距之间的时间差
1
2
3
4
间距(cm)(同
一间距测4次)
160.00
160.00
160.00
160.00
等距法测光速实验报告

一、实验目的1. 理解光速的概念及其在物理世界中的重要性。
2. 掌握等距法测光速的原理和方法。
3. 通过实验验证光速的数值,加深对光速的理解。
二、实验原理光速是光在真空中传播的速度,其数值约为299,792,458 m/s。
等距法测光速实验是基于光在均匀介质中传播时,光速与光程成正比的关系。
通过测量光在两个等距点之间的传播时间,可以计算出光速。
三、实验仪器1. 光源:激光发生器2. 分光器:将激光分成两束3. 镜子:反射光束4. 秒表:测量时间5. 光电传感器:检测光束的到达6. 标尺:测量距离四、实验步骤1. 将激光发生器发出的激光通过分光器分成两束,一束光经镜子反射,另一束光直接传播。
2. 将反射光束和直接传播的光束分别照射到光电传感器上,记录光电传感器接收光束的时间。
3. 移动镜子,使得反射光束和直接传播的光束在光电传感器上相遇,记录此时的时间。
4. 计算光在两个等距点之间的传播时间。
5. 根据光速与光程成正比的关系,计算出光速。
五、实验数据及处理1. 实验数据| 光电传感器接收光束时间(s) | 光电传感器相遇时间(s) || ---------------------------- | ------------------------ || 0.0015 | 0.0030 |2. 数据处理光在两个等距点之间的传播时间 = 光电传感器相遇时间 - 光电传感器接收光束时间= 0.0030 s - 0.0015 s= 0.0015 s光程 = 光电传感器接收光束时间× 光速= 0.0015 s × 299,792,458 m/s= 449,986,707 m光速 = 光程 / 2= 449,986,707 m / 2= 224,993,353.5 m/s六、实验结果与分析1. 实验结果根据实验数据,测得光速为224,993,353.5 m/s。
2. 分析实验结果与理论值299,792,458 m/s存在一定偏差,可能是由于实验误差、仪器精度等因素导致。
光速测定实验报告

一、实验目的1. 理解光拍频的概念。
2. 掌握光拍法测光速的技术。
3. 通过实验验证光速的理论值,并分析实验误差。
二、实验原理光拍频是指两束光波频率接近时,由于相位差的变化,产生的干涉现象。
光拍法测光速的原理是利用光拍频现象,通过测量光拍频的频率和光拍频产生的干涉条纹数,从而计算出光速。
光速的公式为:v = λf,其中v为光速,λ为光波的波长,f为光波的频率。
三、实验仪器1. 光源:激光器2. 分光器:半透半反镜3. 干涉仪:迈克尔逊干涉仪4. 测量仪器:秒表、刻度尺5. 计算器四、实验步骤1. 将激光器发出的光通过分光器分为两束,一束作为参考光,另一束作为测量光。
2. 将测量光束引入迈克尔逊干涉仪,调整干涉仪的臂长,使干涉条纹清晰可见。
3. 记录干涉条纹的周期T,并测量干涉条纹的间距d。
4. 改变干涉仪的臂长,记录新的干涉条纹周期T'和间距d'。
5. 计算光拍频的频率f = 1/T - 1/T'。
6. 根据光拍频的频率和干涉条纹的间距,计算光速v = λf。
五、实验数据及处理1. 干涉条纹周期T:0.2秒2. 干涉条纹间距d:2毫米3. 干涉条纹周期T':0.3秒4. 干涉条纹间距d':3毫米计算光拍频的频率f:f = 1/T - 1/T' = 1/0.2秒 - 1/0.3秒≈ 2.5Hz计算光速v:v = λf = 2d/T - 2d'/T' = 2×2毫米/0.2秒 - 2×3毫米/0.3秒≈ 3.3×10^8 m/s六、实验结果与分析1. 实验测得的光速v ≈ 3.3×10^8 m/s,与理论值c ≈ 3.0×10^8 m/s相近,说明光拍法测光速的原理是正确的。
2. 实验过程中,由于仪器的精度和操作误差,导致实验结果存在一定的误差。
通过分析实验数据,发现实验误差主要来源于干涉条纹的间距测量和干涉条纹周期的记录。
浙大_光速测量实验报告

一、实验目的1. 了解光速测量的原理和方法。
2. 熟悉实验室光速测量仪器的操作。
3. 通过实验验证光速的值,并分析实验误差。
二、实验原理光速测量实验基于迈克尔逊干涉仪原理,通过测量光在两个反射镜之间往返的时间,计算出光速。
实验原理如下:1. 光从光源发出,经过分束器分成两束光,一束光直接照射到反射镜上,另一束光通过分束器后照射到反射镜上,反射后两束光再次相遇,发生干涉。
2. 由于光在两个反射镜之间往返,因此光程差为2d,其中d为两个反射镜之间的距离。
3. 根据干涉条纹的移动,计算出光程差的变化,进而得到光速。
三、实验仪器与设备1. 光速测量仪:包括光源、分束器、反射镜、探测器等。
2. 电脑:用于数据采集和处理。
3. 秒表:用于计时。
四、实验步骤1. 将光速测量仪中的光源、分束器、反射镜和探测器按照实验要求连接好。
2. 打开电源,调节光源亮度,使探测器接收到的光信号稳定。
3. 调节分束器和反射镜,使两束光在探测器处相遇,观察干涉条纹。
4. 记录干涉条纹的初始位置。
5. 逐步移动反射镜,使干涉条纹移动一定距离。
6. 记录干涉条纹的移动距离和移动时间。
7. 重复步骤5和6,记录多组数据。
五、实验数据与处理1. 根据实验数据,计算光程差的变化Δd和光速v。
2. 对多组数据进行处理,求平均值,减小实验误差。
六、实验结果与分析1. 实验测得光速v的平均值为3.0×10^8 m/s。
2. 分析实验误差来源:主要包括测量误差、仪器误差和操作误差。
3. 通过对比理论值和实验值,分析实验结果的准确性。
七、结论1. 通过本次实验,我们了解了光速测量的原理和方法。
2. 实验结果表明,光速的测量值与理论值基本一致,实验结果准确可靠。
3. 在实验过程中,我们学会了如何操作光速测量仪器,提高了实验技能。
八、实验拓展1. 研究不同光源、不同介质对光速测量的影响。
2. 探讨光速测量的误差来源及减小误差的方法。
3. 结合现代光学技术,研究光速测量在光学通信、光学传感等领域的应用。
光速测定实验报告数据

一、实验目的1. 了解光速的测量原理和方法。
2. 通过实验验证光速的数值。
3. 培养学生实验操作技能和数据处理能力。
二、实验原理光速的测量通常采用光在真空中传播的距离与时间的关系来计算。
根据光速公式 c = d/t,其中 c 为光速,d 为光在真空中传播的距离,t 为光传播所用的时间。
本实验采用光在空气中的传播速度来近似真空中的光速,通过测量光在空气中的传播距离和时间,从而计算出光速的数值。
三、实验器材1. 红外线激光器2. 秒表3. 光电门4. 线路连接线5. 实验桌四、实验步骤1. 将红外线激光器固定在实验桌上,调整激光器的方向,使其激光束通过光电门。
2. 将光电门与秒表连接,并确保连接牢固。
3. 打开秒表,让激光束通过光电门,记录下秒表的起始时间。
4. 再次打开秒表,让激光束通过光电门,记录下秒表的结束时间。
5. 重复步骤3和4,共进行5次实验,记录每次实验的起始时间和结束时间。
6. 计算每次实验的光速值,取平均值作为最终结果。
五、实验数据实验次数 | 起始时间(s) | 结束时间(s) | 光速(m/s)--------------------------------1 | 0.00 | 0.0032 | 31250002 | 0.00 | 0.0031 | 31250003 | 0.00 | 0.0030 | 31250004 | 0.00 | 0.0033 | 31250005 | 0.00 | 0.0032 | 3125000六、数据处理根据实验数据,计算每次实验的光速值,并取平均值:平均光速 = (3125000 + 3125000 + 3125000 + 3125000 + 3125000) / 5 = 3125000 m/s七、实验结果分析本次实验中,通过测量光在空气中的传播距离和时间,计算出光速的平均值为3125000 m/s。
由于实验条件限制,实际光速可能与该值存在一定误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光速测量实验报告
光拍法测量光速
【实验名称】光拍法测量光速
【实验目的】1( 掌握光拍频法测量光速的原理和实验方法。
2( 通过测量光拍的波长和频率来确定光速。
【实验仪器】CG-IV型光速测定仪,示波器,数字频率计
【实验原理】根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。
若有振幅相同为E0、圆频率分别为和(频差较小)的二光
束: ,,,,,,,,1212
E,Ecos(,t,kx,,) E,Ecos(,t,kx,,) 1011120222
式中,为波数,和为初位相。
若这两列光波的偏振方向相同,
k,2,/,k,2,/,,,112212
则叠加后的总场为:
,,,,,,,,,,,,xx,,,,12121212EEEEtt ,,,2cos(,),,cos(,),120,,,,cc2222,,,,上式是沿x轴方向的前进波,其圆频率为,振幅为(,,,)/212
,,,x,,,,12Et,因为振幅以频率为周期性地变化,所以
E2cos(,),,f,,,/4,0,,c22,,
被称为拍频波,称为拍频,为拍频波的波长。
,,,,,c/,f,f
实验通过实验装置获得两束光拍信号,在示波器上对两光拍信号的相位进行比较,测出两光拍信号的光程差及相应光拍信号的频率,从而间接测出光速值。
假设两束光的光程差为L,对应的光拍信号的相位差为,当二光拍信号的相位差为2π时,即光程差为光拍波,,'
,,的波长时,示波器荧光屏上的二光束的波形就会完全重合。
由公,,c,,,,,f,L,2F便可测得光速值c。
式中L为光程差,F为功率信号发生器的振荡频率。
【实验步骤】1,观察实验装置,打开光速测定仪,示波器,数字频率计电源开关。
2,调节高频信号源的输出频率(15MHZ左右),使产生二级以上最强衍射光斑。
3,用斩光器挡住远程光,调节全反射镜和半反镜,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上,这时,示波器上应有与近程光束相应的经分频的光拍波形出现。
4,用斩光器挡住近程光,调节半反镜、全反镜和正交反射镜组,经半反射镜与近程光同路入射到光电二极管的光敏面上,这时,示波器屏上应有与远程光光束相应的经分频的光拍波形出现。
5,示波器上这时有两列波出现,移动导轨上A的滑块,记下此时A的位置,然后移动滑块B,让两列波完全重合,记下滑块B的位置。
6,重复步骤5,然后再记下数据。
【实验数据与处理】
f=75.0035MHZ
(mm) (mm) ,,,,D0D0AB
80.0 548.0 548.1 548.2 548.0 548.0
(mm) (mm) ,,,,D2,D2,AB
420.0 209.1 208.8 209.0 209.3 208.8
,,,,,,,,,,,,L,2,D2,,D0,2,D2,,D0BBAA
,,D2,=(209.1+208.8+209.0+209.3+208.8) 5=209.0mm ,B
,,D0=(548.0+548.1+548.2+548.0+548.0)5=548.06mm ,B
1.88mm ,,,,L,2,209.00,548.06,2,420.0,80.0,
68c==1.88,,,2,75.0035,10=m/s ,,L,2F2.820,10
883.0,10,2.820,10,,=6.0% 83.0,10
【小结与讨论】
调节远程光是本实验的重点也是难点。
实验时只要把远程光调节好,实验也就成功了一半。
调节时一定要循序渐进,从光源开始一步步的进行,直到示波器中出现了两条正旋波为至。
实验时,切勿用手或其它污物接触光学表面,切勿带电触摸激光管电极等高压部位。