第十章 双样本假设检验及区间估计_社会统计学汇总
双样本假设检验

双样本假设检验
二、两个相关样本麦克涅马尔检验
双样本假设检验
三、两个相关样本威尔科克逊检验
通过二项分布来检验两个样本所属的总体数据分布差异的显著性。属于两 个相关样本非参数检验。又称作配对符号等级检验。通过对两个相关样本变 量值配对求观测值的差,比较差的等级和,以此判定两个样本的一致性。样 本数据要求是等级数据。当数据以连续方式记分时,系统也会先求出其等级 再比较。
双样本假设检验
七、K—S双样本检验
K—S双样本检验柯尔莫戈洛夫—斯米尔诺夫单样本检验的推广,用于检验
两个独立样本是否来自同分布总体。 适合于检验比率型数据的研究样本。
八、摩西极端反应检验
用于检验两个独立样本观测值的分布范围是否存在显著性差异,通过用于 实验结果数据处理中。实验设计为实验控制组前后测模型。数据类型为连续型。 注意该检验数据结构定义方法.
参数检验:配对样本T检验(Paired-Sample T Test) 非参数检验:麦克涅马尔检验(McNemar Test) 威尔科克逊检验(Wilcoxon Test) 配对符号检验(Sign test)
变量观测值要一一对应
两个独立样本假设检验(双独立样本假设检验)
参数检验:独立样本T检验(Independent Sample T Test) 非参数检验:曼—惠特尼U检验(Mann-Whitney U Test) K-S双样本检验(Kolmgorov-Smirnov Z Test) 摩西极端反应检验(Moses Extreme Reaction Test) W-W游程检验(Wold-Wolfowitz Runs Test)
(2)如果样本采用两点记分,可以用McNemar检验
(3)如果样本采用等级记分,可以用SIGN检验 一般认为,Wilcoxon检验的精度比SIGN的精度高,对原始数据的变化
社会统计学(卢淑华),第十章

调查过程不应给被调查者带来身体或心理 上的伤害,避免涉及敏感或隐私问题。
数据处理与分析中的伦理问题
数据真实性
在处理和分析数据时,应确保数 据的真实性和完整性,避免篡改
、伪造或选择性使用数据。
数据安全性
采取必要的技术和管理措施, 确保数据的安全存储和传输, 防止数据泄露、损坏或丢失。
数据分析的客观性
报告统计结果时,应提供足够的信息 和数据支持结论,避免选择性报告或 隐瞒不利结果。
避免过度解读
在解释统计结果时,应避免过度解读 或夸大其意义,以免误导读者或产生 不必要的恐慌。
尊重被调查者的权益
在报告统计结果时,应注意保护被调 查者的隐私和权益,避免泄露个人信 息或造成不必要的伤害。
THANK YOU
社会问题调查
通过问卷调查、访谈、观察等方 法收集数据,了解社会问题的现
状、原因和影响。
社会问题分析
运用统计分析方法对调查数据进 行处理和分析,揭示社会问题的
本质和规律。
社会问题解决方案
基于分析结果,提出针对性的解 决方案和建议,为政府和社会各
界提供参考。
社会政策的制定与评估
社会政策制定
01
运用统计数据和分析结果,为政府制定社会政策提供科学依据
04
因子分析
一种通过降维技术,将多个相关变量简化为少数几个 综合变量的统计分析方法。
05
聚类分析
一种根据样本或变量之间的相似性或距离,将其分为 不同类别的统计分析方法。
02
描述性统计方法
频数分布与图形表示
频数分布表
将数据进行分类,并统计各类别出现的次数,形成 频数分布表,以直观展示数据的分布情况。
SAS是一款高级统计分析软件 ,具有强大的数据处理、分析 和可视化功能,适用于大规模 数据处理和复杂统计分析。
统计学中的假设检验与置信区间

置信区间在社会科学研究中的应用:通过计算置信区间,可以了解样本 数据的分布情况,从而对总体参数进行合理推断。
假设检验与置信区间的关系:在社会科学研究中,假设检验与置信区间是相辅 相成的,假设检验用于判断假设是否成立,而置信区间则提供了参数估计的可 靠性程度。
XX,a click to unlimited possibilities
汇报人:XX
01
02
03
04
05
06
假设检验的定义:通过样本数据对总体参数进行推断的统计方法。
假设检验的步骤:提出假设、构造检验统计量、确定显著性水平、做出决策。
假设检验的分类:单侧检验、双侧检验、独立样本检验、配对样本检验。
假设检验在金融 数据分析中的应 用:用于评估投 资策略的有效性, 通过比较实际收 益与预期收益来
检验假设。
置信区间在金融 数据分析中的应 用:用于估计投 资组合的风险和 回报,提供对未 来结果的预测区
间。
假设检验与置信 区间的关系:置 信区间提供了一 种方法来量化假 设检验中的不确 定性,帮助做出 更准确的决策。
案例选择:选择合 适的案例,确保数 据具有代表性
数据收集:收集 相关数据,确保 数据准确可靠
计算置信区间:根 据数据分布情况, 选择合适的统计方 法计算置信区间
应用分析:分析置 信区间的意义,评 估实际应用效果
案例分析能够加深对假设检验与置信区间的理解。 通过案例分析,可以更好地掌握实际应用中的统计方法。 案例分析有助于发现假设检验与置信区间中的问题,并寻找解决方案。 案例分析能够为后续的统计学习提供实践经验。
区间估计和假设检验精品PPT资料

proc print data=tval2;var lchi uchi;
run;
本章目录 21
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果如下:
LCHI
UCHI
70687.19 406071.51
即方差的置信区间为:[70687.19, 406071.51]
本章目录 22
区间估计和假设检验
本章目录 2
区间估计和假设检验
1 正态总体的均值、方差的区间估计
区间估计是通过构造两个统计量 , ,能以
100(1)%的置信度使总体的参数落入 [ , ]
区间中,即 P{}1。其中 称为显著性
水平或检验水平,通常取0.05或 0.01;
, 分别称为置信下限和置信上限
本章目录 3
区间估计和假设检验
;
proc means data=var22 t prt clm;
var y;
freq fx;
CLM表示要输出
run;
95%置信区间
本章目录 12
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果:
分析变量 : Y
T- 统计量 Prob>|T| 95.0% 置信下界 95.0% 置信上界 --------------------------------------------------------------------
注:采用PROC CHART过程对独立组样本画直方图
直方图有两种形态:垂直条形图和水平条形图,下面对例3画水
平条形图,SAS程序为:
data bodyfat;
input sex $ fatpct @;
双置信区间和假设检验

双置信区间和假设检验1. 前言在统计学中,双置信区间和假设检验是两种常用的推断方法,用于对总体参数进行估计和判断。
通过利用样本数据进行统计分析,我们可以推断总体参数的值,并对其进行假设检验。
本文将介绍双置信区间和假设检验的基本概念和应用方法。
2. 双置信区间双置信区间(Two-sided Confidence Interval)是在给定置信水平下,对总体参数的一个区间估计。
在估计总体参数时,我们通常想要找到一个区间,该区间有一定的置信度包含了总体参数的真实值。
2.1 构造方法双置信区间的构造方法主要包括以下步骤:1.选择置信水平:根据需要选择一个置信水平,常用的置信水平有95%和99%。
2.计算标准误差:根据样本数据计算总体参数的估计值和标准误差。
3.确定临界值:根据置信水平和样本量,查找相应的临界值。
可以使用标准正态分布表或统计软件进行计算。
4.构建置信区间:根据估计值、标准误差和临界值,计算出置信区间的下限和上限。
2.2 示例假设我们想要估计某个机器人的平均行走距离,并确定其95%的置信区间。
我们随机选取了20台机器人进行测试,得到样本数据为:[10.2, 9.8, 11.5, 9.9, 10.1, 10.4, 10.0, 9.7, 10.3, 9.6, 10.2, 10.2, 10.1, 10.3, 10.0, 10.3, 10.5, 10.2, 10.4, 9.9]。
首先,我们计算平均值和标准误差:平均值 = (10.2 + 9.8 + 11.5 + 9.9 + 10.1 + 10.4 + 10.0 + 9.7 + 10.3+ 9.6 + 10.2 + 10.2 + 10.1 + 10.3 + 10.0 + 10.3 + 10.5 + 10.2 + 10.4 + 9.9) / 20 = 10.1标准误差 = 样本标准差/ √样本量 = 0.26接下来,我们需要查找临界值。
由于样本量较小(n < 30),我们可以使用 t分布进行计算。
双样本置信区间和假设检验概述

打开新的工作表:
> File > New . . . > Minitab Worksheet > OK 生成10行数据。保存在c1-c8栏中。
Denom 1
2
3
4
5
6
7
8
9 10
1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
比较固定架7和固定架8的方差
s7 = .00149 固定架7的标准方差 s8 = .00110 固定架8的标准方差 每个样本的容量为10。
分子的自由度是多少? 分母的自由度是多少? F表格的临界值是多少?
哪个方差值更大,而应置于分子?
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4
7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5
6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
为什么使用假设检验和 置信区间?
4. 请注意,样本平均值和方差存在着差异,即使所有 8组数据都取自同一总体也不例外。
比较方差
何时应该比较方差?
如果您对改变了工序,并想确定输出结 果中的方差是否改变,您可以将工序改变
双样本假设检验

组别 测 查 成 果
1
78
2
80
1
71
2
76
1
75
2
85
1
85
组别 测 查 成 果
1
78
1
71
2
80
2
76
1
75
1
85
2
85
组别 测 查 成 果
1
78
1
75
1
86
1
71
1
85
1
90
1
78
经过分 组变量旳设 定决定数据 在统计过程 中旳所属。
事物前后变化情况有四种
变化前
— +
变化后
— A B
A:前后不具有某种属性或不产生某种行为 + B:前具有某种属性或有某种行为但变化后没有 C C:前无某属性或无某种行为但变化后有 D D:前后都具有某种属性或者产生某种行为
结论:假如A与D旳情况诸多,阐明事前事后没有变化,所施加旳促变条件不起作用。 假如C旳情况诸多,阐明变化原因产生了明显旳增进作用。 假如B旳情况诸多,阐明变化原因产生了明显旳克制作用。
等级差 +1 +2 -2 +6 +1 -3 +2 +2 -4 -3
Frequencies
AFTER - FIRST
Negative Differencesa Positive Differencesb Tiesc
Total
a. AFTER < FIRST
b. AFTER > FIRST
c. FIRST = AFTER
区间估计和假设检验的基础知识

区间估计和假设检验的基础知识区间估计和假设检验是统计学中非常基础的一块知识,其应用范围非常广泛,涉及到生物、医学、经济、社会科学和财务等众多领域,其最大的作用就是在统计学实践中,给出一定的数据描述方法和数据分析方式,从而更好地了解数据的内在规律,并为数据的决策做出基础性的科学参考。
一、区间估计(一)定义:区间估计是通过样本数据来推断总体的一个未知参数的取值范围的一种统计方法。
比如说,在抓小麻雀活动中,如果观察员在一个固定的面积中看到了2只麻雀,那么他或者她可以通过这个样本数值,推断出小麻雀活动的总体密度范围。
而这个总体的密度范围就是区间估计。
其中,区间估计可以分为点估计和区间估计两类。
点估计只给出未知参数的一个点估计值,而区间估计则可以给出未知参数取值范围和置信水平。
(二)置信区间:置信区间是区间估计的重要组成部分,指的是通过样本原数据而得到的一个总体参数的范围,而这个总体参数就有一定的把握程度,称为“置信水平”。
比如说,如果我们从一个大家庭中随机选取了一些人群的数据,那么根据样本数据,我们可以推断出这个大家庭的总体参数的范围,比如说他们的收入水平。
置信水平一般是用1-alpha表示,其中1-alpha就是给定区间范围的置信度。
(三)步骤:区间估计的步骤可以分为以下几步:1. 确定要估计的总体参数(比如说该大家庭的收入水平);2. 收集样本数据并计算样本统计量(比如说样本平均数和标准误);3. 根据置信水平和样本数据计算出相应的置信区间(比如说该大家庭的收入水平位于哪个区间内)。
(四)应用:区间估计在实践中有着广泛的应用。
比如说在市场研究中,我们想知道某种产品的受欢迎程度,可以通过区间估计,推断出该产品的受欢迎程度的范围,还可以通过比较不同竞争对手的受欢迎程度,从而判断该产品在市场上的潜在竞争力和市场占有率。
二、假设检验(一)定义:假设检验也是一种基础的统计推断方法,主要是通过观察数据样本,在不知道总体参数方差的条件下,对总体参数进行推断和判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无偏估计量 替代它。由于两个样
本的方差基于不同的样本容量,因而
可以用加权的方法求出σ的无偏估计
量,得
注意,上式的分母上减2,是因为
根据 和 计算S1和S2时,分别损 失了一个自由度,一共损失了两个自由
度,所以全部自由度的数目就成为
20(2n0/11+0/2n2―2)。 于是有
12
这样,对小样本正态总体,
计算检验统计量
=0.73, =0.27,n1=171 =0.58, =0.42,n2=117
确定否定域
因为α=0.01,因而有 Zα/2=Z0.005=2.58<2.66 因而否定零假设,即可以认为在0.01显著性水平上,两类学生在
性202格0/10上/2 是有差异的。
10
第二节 两总体小样本假设检验
与对单总体小样本假设检验一样,我们对两 总体小样本假设检只讨论总体满足正态分布的情 况。 1. 小样本均值差假设检验
(1) 当 和 已知时,小样本均值差 检验,与上一节所述大样本总体均值差检验完全 相同,这里不再赘述。
2020/10/2
11
(2)
和 未知,但假定它们相等时, 关键是要解决
的算式。
现又因为σ未知,所以要用它的
“不满意”组的抽样结果为: “满意”组的抽样结果为: H0:μ1―μ2=D0=0 H1: μ1―μ2 ≠0 计算检验统计量
=9.2年, S1=2.8年, n1=500; =8.5 年,S2=2.3 年, n2=600。
确定否定域, 因为α=0.05,因而有 Zα/2=1.96<4.47 因此否定零假设,即可以认为在0.05显著性水平上,婚龄对妇女婚 后生活的态度是有影响的。同时我们看到,由于样本计算值Z=4.47 远大 于单侧 Z0.05 的临界值1. 65,因此本题接受μ1―μ2 >0 的备择假设,即可 以认为妇女婚龄长容易对婚后生活产生“不满意”。
意”和“不满意”两组。从满意组中随机抽取600名妇女,
其平均婚龄为8.5年,标准差为2.3年;从不满意组抽出
500名妇女,其平均婚龄为9.2年,标准差2.8年。试问在
0.05显著性水平上两组是否存在显著性差异?
样本
人数
均值
标准差
满意组
600
8.5
2.3
不满意组
500
9.2
2.8
2020/10/2
5
[解] 据题意,
第十章 双样本假设检验及区间估计
我们在掌握了单样本检验与估计的有关方法与原理 之后,把视野投向双样本检验与估计是很自然的。双样 本统计,除了有大样本、小样本之分外,根据抽样之不 同,还可分为独立样本与配对样本。
独立样本, 指 双样本是在两个 总体中相互独立 地抽取的 。
2020/10/2
配对样本,指只有一 个总体,双样本是由于样 本中的个体两两匹配成对 而产生的。配对样本相互 之间不独立。
2020/10/2
6
2.大样本成数差检验
(1)零假设: (2)备择假设:
单侧
或 (3)否定域:单侧 (4)检验统计量
2020/10/2
双侧
双侧
其中:
为总体1的 样本成数
为总体2未知,须用样本成数 和 种情况讨论:
① 若零假设中两总体成数的关系为 P 相同的总体,它 们的点估计值为
样本 中新生有171名,四年级学生有117名。试问,在0.01水平 上,两类学生有无显著外性向差异? 内向
四年级 58%(117) 42%
一年级 73%(171) 27%
2020/10/2
9
[解] 据题意 新生组的抽样结果为:
四年级学生组的抽样结果为: H0:p1―p2=D0=0 H1:p1―p2=D0≠0
进行估算时,分以下两 ,这时两总体可看作成数
此时上式中检验 统计量 Z 可简化为
② 若零假设中两总体成数
,那么它们的点估计值有
此时上式中 检验统计量Z为
2020/10/2
(5)判定
8
[例]有一个大学生的随机样本,按照性格“外向”和 “内向”,把他们分成两类。结果发现,新生中有73%
属 于“外向”类,四年级学生中有58%属于“外向”类。
,用
估计
,于是有
[例] 用上式重新求解前例题。 [解] 用上式,检验统计量的计算为
可以看出,求算用(10.8)式和(10.10)式,得出的结果差别不大。
如果所研究的只有两个样本,也可以 用方差分析法(analysis of variance,简 称ANOVA,也称为F检验法)来检验两 个样本均值的差异,不一定要按照Z或t 检验法。
2020/10/2
4
[例]为了比较已婚妇女对婚后生活的态度是否因婚
龄而有所差别,将已婚妇女按对婚后生活的态度分为 “满
1
第一节 两总体大样本假设检验
为了把单样本检验推广到能够比较两个样本的均值的检验,必须
再一次运用中心极限定理。下面是一条由中心极限定理推广而来的重
要定理:如果从
和
两个总体中分别抽取容量为
n1和n2 的独立随机样本,那么两个样本的均值差
的抽样分
布就是
。与单样本的情况相同,在大样本的
情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具
有均值μ1和μ2以及方差
和
的两个总体。当n1和n2逐渐变大
时,
的抽样分布像前面那样将接近正态分布。
2020/10/2
2
1.大样本均值差检验 (1)零假设: (2)备择假设:
单侧
双侧
或 (3)否定域:单侧 (4)检验统计量
双侧
(5)比较判定
2020/10/2
3
对均值差异进行比较,如果是大样本 就是Z检验法,小样本就是t检验法。二 者都同时要求:①样本是随机样本②每 个总体都是正态分布的③数据是定距及 以上层次的变量。
问:能否认为A民族的家庭平均人口 高于B民族的家庭平均人口( α=0.05)? (假定家庭平均人口服从正态分布,且 方差相等)t=2.97
2020/10/2
14
(3)
和 未知,但不能假定它们相等
如果不能假定σ1=σ2 ,那么就不能引进共同的σ简
化
,也不能计算σ的无偏估计量 。现在简单的做法是用
估计
其均值差的检验步骤如下: (1)零假设: (2)备择假设:
单侧
和 未知,但σ1=σ2 , 双侧
或 (3)否定域:单侧 (4)检验统计量
双侧
(5)比较判定
2020/10/2
13
[例]为研究某地民族间家庭规模是否有 所不同,各做如下独立随机抽样:
民族A:12户,平均人口6.8人,标准 差1.5人
民族B:12户,平均人口5.3人,标准 差0.9人