精密峰峰值检测电路
峰值检测电路分析

峰值检测电路分析1.输入信号2.整流电路:将输入信号变为全波整流信号。
常用的整流电路有半波整流电路和全波整流电路。
半波整流电路只保留输入信号的正半周期,而全波整流电路则保留了整个输入信号的周期。
3.低通滤波器:对整流信号进行平滑处理,去除高频噪声。
低通滤波器可以使用RC电路或者操作放大器构成的积分电路。
4.峰值检测器:通过比较器来获得输入信号的峰值。
比较器的输出信号即为输入信号的峰值。
具体的工作原理如下:1.输入信号经过整流电路,得到全波整流信号。
整流电路可以选择半波整流电路或全波整流电路,根据实际需要来选择。
2.全波整流信号经过低通滤波器,得到平滑的直流信号。
低通滤波器通过控制元件(如电容或电阻)来实现对高频信号的滤除,只保留直流分量。
3.平滑的直流信号经过比较器,得到输入信号的峰值。
比较器的输出信号为高电平表示输入信号大于设定阈值,为低电平表示输入信号小于设定阈值。
因此比较器的输出信号即为输入信号的峰值。
1.整流电路的选择:根据实际需要选择半波整流电路或全波整流电路。
半波整流电路更简单,但是只能保留输入信号的正半周期。
全波整流电路可以保留整个输入信号的周期,但是设计和实现较为复杂。
2.低通滤波器的设计:根据需要选择合适的滤波器类型和参数。
滤波器的截止频率确定了平滑程度,如果截止频率太低会导致响应时间变慢,如果太高则无法滤除高频噪声。
3.比较器的选择:比较器需要选择具有合适的阈值和响应时间的器件。
阈值的选择需要根据输入信号的幅值范围来确定,响应时间的选择需要根据应用场景的要求来确定。
总的来说,峰值检测电路是一种非常实用的电路,在许多领域中都有广泛的应用。
通过合理的设计和选择电路元件,可以很方便地实现输入信号的峰值检测功能。
峰值检测ths4001芯片的电路设计

1.峰值检测电路简介峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak。
为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,一般作为程控增益放大器倍数选择的判断依据。
2. 峰值检测电路原理(正峰值检测)峰值检测器(PKD,Peak Detector)就是要对信号的峰值进行采集并保持。
如下图所示。
根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
虽然这样的电路可以工作,但性能并不是很理想。
对1nF的电容器,100ms 后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
首先,上述单个二极管与电容器组成的峰值检测器中,二极管的正向导通电压必须较小,一般用锗管,其压降一般为0.2V(若为硅管,压降为0.7V),这样对于检测峰值来说误差就小许多。
其次,检波二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和)。
这个过程需要花费时间,状态,输出电压要从负饱和电压值一直到(Vi+V二极管如果在这个过程,输入发生变化,输出就会出现失真。
因此,必须在电路中加入防止负饱和的措施,也就是说,输入部分的处理环节要尽量能够跟随输入信号的电压,并提供一个尽可能理想的二极管,同时能够提供有效的输入缓冲。
一个经典的电路是通过在输入和输出间增加一个二极管(这有点类似于电压钳位),并且在输入、输出端连接高速运放进行缓冲。
最后,在搭建电路时,应尽量将外围元器件以运放为中心紧密围绕,这样可以降低信号的干扰,避免不必要的失真。
3.高速峰值检测器在高速的环境下,检波二极管的检波频率会随工作频率的增高而下降,因此,二极管和电容结构的电路就无法适应了,利用FPGA+DAC+高速比较器组成的峰值检测器可以达到很高的速率与精度,对于信号的处理也较方便。
精密峰峰值检测电路

精密峰峰值检测电路
精密峰峰值检测电路电原理图如图1所示。
图1 精密峰峰值检测电路
峰值检波的原理
交流信号从TL084引脚3输入,根据运放的虚短法则引脚2具有与引脚3同样的波形;U1B 是电压跟随器,引脚7的电压幅值与电容C1上的电压相同(加一级跟随的作用是用这个跟随器提供电流支持)。
当引脚3的电压大于电容C1电压时,电阻R2上产生压降,电流从左到右。
根据运放的虚断法则引脚2不能提供电流,并且D2反偏也不会导通。
为了维持平衡只有提升R2右端的电压(既是电容C1的电压),这个充电电流从U1A的引脚1经过D1进行。
当引脚3的电压低于电容C1电压时,电阻R2上产生压降,电流从右到左。
根据运放的虚断法则引脚2不能提供电流,则这个电流只有经过D2进入U1A。
由于电压跟随器输出电压与电容C1上的电压相同,二极管D1截止,电容不能导过D1放电,电压得到保护。
电容C1有一个放电电阻R1,RC的放电时间常数τ为100ms,1S后如果没有脉冲过来则放电到电压0V。
峰峰值检测波形如图2所示。
图2 精密峰峰值检测电路工作电压波形。
【模块电路】09峰值检测电路解析

【模块电路】峰值检测电路
一、实验目的
1、了解峰值检测的原理及改进措施
2、学会设计高性能的峰值检测电路
二、实验原理
1、略
三、实验步骤
1.基本电路的观察
组成实图4.8所示的基本电路,用示波器的
一个通道观察输入电压V i,用数字电压表(DC)
和示波器的另一通道观测输出电压V o(选择DC
通道还是AC 通道?)。
完成下列测量:
(1) 输入V i = 3V(峰值),f = 5kHz,测量V o。
(2) 输入5kHz 信号,测量V i与V o的关系。
V i的峰值由0.1V 变到3V, 作V o V i曲线,注意V o与V i 之间是否是线性关系,特别注意V i 峰值较小时(例如小于0.7 V)的情况。
提示:V i的峰值小于1V 时,要用衰减器对信号发生器的输出进行衰减。
(3) 保持输入电压为较大值(例如峰值为3V),使其频率由1Hz 变为3MHz,作V o f曲线,并利用示波器观察记录V o在50Hz、5kHz 和50kHz 频率点的波形。
2.改进电路的观测与设计
设计一个较完善的峰值检测器电路,参见
实图4.7。
(1) 完成以上三项测量并对测量结果进
行分析比较,说明得出哪几个结论。
(2) 输入频率为5kHz 的正弦信号,记录
在输入信号一个周期中的各个时间段,实图4.7中V i、V o 的波形,以及二极管D2 和D3 两端的波形,注意它们之间的时序关系,说明放大器工作状态的变化情况。
论述该电路已改进了哪些,还有哪些有待改进?。
峰峰值检测电路 应用笔记

史上最实用较深刻的峰值检测电路实例与分析作者:billyevansBlog: /billyevans/31510/category.aspx一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
既然要改进,首先要分析不足。
上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):从仿真结果来看,同等测试条件下,检测误差大大减小。
峰值检测电路分析

峰值检测电路(二)1.基本得峰值检测电路本实验以峰值检测器为例, 说明可利用反馈环改进非线性得方法。
峰值检测器就是用来检测交流电压峰值得电路, 最简单得峰值检测器依据半波整流原理构成电路。
如实图4、1所示, 交流电源在正半周得一段时间内, 通过二极管对电容充电,使电容上得电压逐渐趋近于峰值电压。
只要RC 足够大,可以认为其输出得直流电压数值上十分接近于交流电压得峰值。
图4、1 简单峰值检测电路这种简单电路得工作过程就是, 在交流电压得每一周期中, 可分为电容充电与放电两个过程。
在交流电压得作用下, 在正半周得峰值附近一段时间内, 通过二极管对电容 C 充电,而在其它时段电容 C 上得电压将对电阻 R 放电。
当然,当外界交流电压刚接上时,需要经历多个周期, 多次充电, 才能使输出电压接近峰值。
但就是,困难在于二极管就是非线性元(器)件,它得特性曲线如实图4、2所示。
当交流电压较小时,检测得得直流电压往往偏离其峰值较多。
图4、2 二极管特性曲线这里得泄放电阻R,就是指与 C 并联得电阻、下一级得输入电阻、二极管得反向漏电阻、以及电容及电路板得漏电等效电阻。
不难想到,放电就是不能完全避免得。
同时, 适当得放电也就是必要得。
特别就是当输入电压变小时, 通过放电才能使输出电压再次对应于输入电压得峰值。
实际上, 检测器得输出电压大小与峰值电压得差别与泄放电流有关。
仅当泄放电流可不计时, 输出电压才可认为就是输入电压得峰值。
用于检测仪器中得峰值检测器要求有较高得精度。
检测仪器通常 R 值很大,且允许当输入交流电压取去后可有较长得时间检波输出才恢复到零。
可以用较小得电容,从而使峰值电压建立得时间较短。
本实验得目得, 在于研究如何用运算放大器改进峰值检测器, 进一步了解运算放大器之应用。
2.峰值检测电路得改进为了避免次级输入电阻得影响, 可在检测器得输出端加一级跟随器(高输入阻抗)作为隔离级(实图4、3)。
图4、3峰值检测器改进电路(一)也可以按需要加一可调得泄放电阻。
史上最实用较深刻峰值检测电路

史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等.(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:—)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间.通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%.而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
ﻩ既然要改进,首先要分析不足。
上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7。
0绘制):ﻩ从仿真结果来看,同等测试条件下,检测误差大大减小。
计峰值检测电路

38计峰值检测电路:传感器输入信号的测量范围为1μV~10V~10μμV ,1010μμV ~100~100μμV ,100100μμV ~1mV ~1mV,,1mV~10mV 1mV~10mV;设计程控放大器,利用程控放大器将传感器的输入信号放大为;设计程控放大器,利用程控放大器将传感器的输入信号放大为0~1.999V 0~1.999V,,供A/D 转换用;设计自动切换量程电路,完成各种量程的转换。
一、设计方案峰值电流检测及保护电路通过检测流入电动机的电流来保护电机,在实际运行的基础上,给出了电动机过流保护的控制电路,并分析了相关的参数。
本课题的关键任务是检测峰值并使之保持稳定,本课题的关键任务是检测峰值并使之保持稳定,且用数字显示峰值。
且用数字显示峰值。
且用数字显示峰值。
该方案用采样该方案用采样该方案用采样//保持峰值电路,通过数据所存控制电峰值电路,通过数据所存控制电 路锁存峰值的数字量。
此方案的原理图如图路锁存峰值的数字量。
此方案的原理图如图1所示。
它由传感器、放大器、采样传感器、放大器、采样//保持、采样保持、采样//保持控制电路、保持控制电路、A/D A/D A/D(模数转换)(模数转换)、译码显示、数字锁存控制电路组成。
各组成部分的作用是:图 1 1 峰值检测系统原理框图峰值检测系统原理框图峰值检测系统原理框图(1)传感器:把被测信号量转换成电压量。
(2)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。
)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。
(3)采样)采样//保持:对放大后的被测模拟量进行采样,并保持峰值。
(4)采样采样//保持控制电路保持控制电路::该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值。
大于原峰值时保持新的峰值。
(5)A/D 转换:将模拟量转换成数字量。
转换:将模拟量转换成数字量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密峰峰值检测电路
精密峰峰值检测电路电原理图如图1所示。
图1 精密峰峰值检测电路
峰值检波的原理
交流信号从TL084引脚3输入,根据运放的虚短法则引脚2具有与引脚3同样的波形;U1B 是电压跟随器,引脚7的电压幅值与电容C1上的电压相同(加一级跟随的作用是用这个跟随器提供电流支持)。
当引脚3的电压大于电容C1电压时,电阻R2上产生压降,电流从左到右。
根据运放的虚断法则引脚2不能提供电流,并且D2反偏也不会导通。
为了维持平衡只有提升R2右端的电压(既是电容C1的电压),这个充电电流从U1A的引脚1经过D1进行。
当引脚3的电压低于电容C1电压时,电阻R2上产生压降,电流从右到左。
根据运放的虚断法则引脚2不能提供电流,则这个电流只有经过D2进入U1A。
由于电压跟随器输出电压与电容C1上的电压相同,二极管D1截止,电容不能导过D1放电,电压得到保护。
电容C1有一个放电电阻R1,RC的放电时间常数τ为100ms,1S后如果没有脉冲过来则放电到电压0V。
峰峰值检测波形如图2所示。
图2 精密峰峰值检测电路工作电压波形。