峰值检测电路

合集下载

峰值检测电路分析

峰值检测电路分析

峰值检测电路分析1.输入信号2.整流电路:将输入信号变为全波整流信号。

常用的整流电路有半波整流电路和全波整流电路。

半波整流电路只保留输入信号的正半周期,而全波整流电路则保留了整个输入信号的周期。

3.低通滤波器:对整流信号进行平滑处理,去除高频噪声。

低通滤波器可以使用RC电路或者操作放大器构成的积分电路。

4.峰值检测器:通过比较器来获得输入信号的峰值。

比较器的输出信号即为输入信号的峰值。

具体的工作原理如下:1.输入信号经过整流电路,得到全波整流信号。

整流电路可以选择半波整流电路或全波整流电路,根据实际需要来选择。

2.全波整流信号经过低通滤波器,得到平滑的直流信号。

低通滤波器通过控制元件(如电容或电阻)来实现对高频信号的滤除,只保留直流分量。

3.平滑的直流信号经过比较器,得到输入信号的峰值。

比较器的输出信号为高电平表示输入信号大于设定阈值,为低电平表示输入信号小于设定阈值。

因此比较器的输出信号即为输入信号的峰值。

1.整流电路的选择:根据实际需要选择半波整流电路或全波整流电路。

半波整流电路更简单,但是只能保留输入信号的正半周期。

全波整流电路可以保留整个输入信号的周期,但是设计和实现较为复杂。

2.低通滤波器的设计:根据需要选择合适的滤波器类型和参数。

滤波器的截止频率确定了平滑程度,如果截止频率太低会导致响应时间变慢,如果太高则无法滤除高频噪声。

3.比较器的选择:比较器需要选择具有合适的阈值和响应时间的器件。

阈值的选择需要根据输入信号的幅值范围来确定,响应时间的选择需要根据应用场景的要求来确定。

总的来说,峰值检测电路是一种非常实用的电路,在许多领域中都有广泛的应用。

通过合理的设计和选择电路元件,可以很方便地实现输入信号的峰值检测功能。

精密峰峰值检测电路

精密峰峰值检测电路

精密峰峰值检测电路
精密峰峰值检测电路电原理图如图1所示。

图1 精密峰峰值检测电路
峰值检波的原理
交流信号从TL084引脚3输入,根据运放的虚短法则引脚2具有与引脚3同样的波形;U1B 是电压跟随器,引脚7的电压幅值与电容C1上的电压相同(加一级跟随的作用是用这个跟随器提供电流支持)。

当引脚3的电压大于电容C1电压时,电阻R2上产生压降,电流从左到右。

根据运放的虚断法则引脚2不能提供电流,并且D2反偏也不会导通。

为了维持平衡只有提升R2右端的电压(既是电容C1的电压),这个充电电流从U1A的引脚1经过D1进行。

当引脚3的电压低于电容C1电压时,电阻R2上产生压降,电流从右到左。

根据运放的虚断法则引脚2不能提供电流,则这个电流只有经过D2进入U1A。

由于电压跟随器输出电压与电容C1上的电压相同,二极管D1截止,电容不能导过D1放电,电压得到保护。

电容C1有一个放电电阻R1,RC的放电时间常数τ为100ms,1S后如果没有脉冲过来则放电到电压0V。

峰峰值检测波形如图2所示。

图2 精密峰峰值检测电路工作电压波形。

峰值检测电路

峰值检测电路

一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出V o = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。

峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。

有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。

当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。

(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。

其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。

如下图(T INA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。

通过简单仿真(输入正弦信号5kHz,2 Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。

而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。

既然要改进,首先要分析不足。

上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):从仿真结果来看,同等测试条件下,检测误差大大减小。

但我们知道,超级二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和状态,输出电压要从负饱和电压值一直到(Vi+V二极管)。

峰值检测电路分析

峰值检测电路分析

峰值检测电路(二)1.基本得峰值检测电路本实验以峰值检测器为例, 说明可利用反馈环改进非线性得方法。

峰值检测器就是用来检测交流电压峰值得电路, 最简单得峰值检测器依据半波整流原理构成电路。

如实图4、1所示, 交流电源在正半周得一段时间内, 通过二极管对电容充电,使电容上得电压逐渐趋近于峰值电压。

只要RC 足够大,可以认为其输出得直流电压数值上十分接近于交流电压得峰值。

图4、1 简单峰值检测电路这种简单电路得工作过程就是, 在交流电压得每一周期中, 可分为电容充电与放电两个过程。

在交流电压得作用下, 在正半周得峰值附近一段时间内, 通过二极管对电容 C 充电,而在其它时段电容 C 上得电压将对电阻 R 放电。

当然,当外界交流电压刚接上时,需要经历多个周期, 多次充电, 才能使输出电压接近峰值。

但就是,困难在于二极管就是非线性元(器)件,它得特性曲线如实图4、2所示。

当交流电压较小时,检测得得直流电压往往偏离其峰值较多。

图4、2 二极管特性曲线这里得泄放电阻R,就是指与 C 并联得电阻、下一级得输入电阻、二极管得反向漏电阻、以及电容及电路板得漏电等效电阻。

不难想到,放电就是不能完全避免得。

同时, 适当得放电也就是必要得。

特别就是当输入电压变小时, 通过放电才能使输出电压再次对应于输入电压得峰值。

实际上, 检测器得输出电压大小与峰值电压得差别与泄放电流有关。

仅当泄放电流可不计时, 输出电压才可认为就是输入电压得峰值。

用于检测仪器中得峰值检测器要求有较高得精度。

检测仪器通常 R 值很大,且允许当输入交流电压取去后可有较长得时间检波输出才恢复到零。

可以用较小得电容,从而使峰值电压建立得时间较短。

本实验得目得, 在于研究如何用运算放大器改进峰值检测器, 进一步了解运算放大器之应用。

2.峰值检测电路得改进为了避免次级输入电阻得影响, 可在检测器得输出端加一级跟随器(高输入阻抗)作为隔离级(实图4、3)。

图4、3峰值检测器改进电路(一)也可以按需要加一可调得泄放电阻。

史上最实用较深刻峰值检测电路

史上最实用较深刻峰值检测电路

史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。

峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。

有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。

当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等.(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:—)二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。

其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。

如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间.通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%.而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。

ﻩ既然要改进,首先要分析不足。

上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7。

0绘制):ﻩ从仿真结果来看,同等测试条件下,检测误差大大减小。

计峰值检测电路

计峰值检测电路

38计峰值检测电路:传感器输入信号的测量范围为1μV~10V~10μμV ,1010μμV ~100~100μμV ,100100μμV ~1mV ~1mV,,1mV~10mV 1mV~10mV;设计程控放大器,利用程控放大器将传感器的输入信号放大为;设计程控放大器,利用程控放大器将传感器的输入信号放大为0~1.999V 0~1.999V,,供A/D 转换用;设计自动切换量程电路,完成各种量程的转换。

一、设计方案峰值电流检测及保护电路通过检测流入电动机的电流来保护电机,在实际运行的基础上,给出了电动机过流保护的控制电路,并分析了相关的参数。

本课题的关键任务是检测峰值并使之保持稳定,本课题的关键任务是检测峰值并使之保持稳定,且用数字显示峰值。

且用数字显示峰值。

且用数字显示峰值。

该方案用采样该方案用采样该方案用采样//保持峰值电路,通过数据所存控制电峰值电路,通过数据所存控制电 路锁存峰值的数字量。

此方案的原理图如图路锁存峰值的数字量。

此方案的原理图如图1所示。

它由传感器、放大器、采样传感器、放大器、采样//保持、采样保持、采样//保持控制电路、保持控制电路、A/D A/D A/D(模数转换)(模数转换)、译码显示、数字锁存控制电路组成。

各组成部分的作用是:图 1 1 峰值检测系统原理框图峰值检测系统原理框图峰值检测系统原理框图(1)传感器:把被测信号量转换成电压量。

(2)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。

)放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。

(3)采样)采样//保持:对放大后的被测模拟量进行采样,并保持峰值。

(4)采样采样//保持控制电路保持控制电路::该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值。

大于原峰值时保持新的峰值。

(5)A/D 转换:将模拟量转换成数字量。

转换:将模拟量转换成数字量。

峰值检测电路原理

峰值检测电路原理

峰值检测电路原理峰值检测电路是一种电路,用于检测一个信号的最大峰值。

它的应用范围很广,例如在音频和视频设备中,用于检测输入信号的最大幅值,以便动态控制音量和亮度。

峰值检测电路很重要,因为当信号峰值超过放大器输出电平时,可能会引起信号失真或破裂,这将损坏音频和视频设备。

峰值检测器在许多应用中也是实现自动增益控制的关键。

峰值检测电路通常由放大器、整流器和滤波器组成。

主要原理是将输入信号放大,然后通过整流器将所有负半周信号翻转成正半周信号,接下来通过低通滤波器,将翻转后的信号滤波并平滑输出,即可得到检测到的峰值。

因为整流后的信号是脉冲形式的,所以峰值检测电路还需要一定的取样和保持电路,以保证输出结果的稳定性。

下面是详细的峰值检测电路原理:一、放大器一个峰值检测电路最常见的配置是放大器-整流器-低通滤波器。

这种配置中,放大器的任务是将输入信号放大到一个能够被后续电路处理的幅度范围内,通常是几个电压单位。

放大器的选择依赖于输入信号的幅度和电路的噪声量级和放大器的增益率。

二、整流器整流器是峰值检测电路中最重要的模块之一,它将输入信号的负半周翻转成正半周。

简单的整流器可以使用二极管,如下图所示:在正半周周期的第一半周,二极管D导通,输出为正,整流电平与输入信号的幅度相同。

在正半周周期的后一半周期,二极管D截止,整流电平保持不变,即保持在最后一次导通时的值。

在负半周周期中,二极管D反向偏置,截止状态下,整流电平保持不变,等于最后一次导通的值加上一个电压降(如果二极管具有正向漏电流,则会出现电压降),即输出为零。

如果二极管具有零偏电流,则会输出一个正负误差,误差等于最后一次导通值与二极管零偏电流之积。

三、低通滤波器整流器输出的信号是脉冲形式的,需要一个低通滤波器来平滑输出信号。

该滤波器的截止频率应该低于输入信号的频率,通常在数百赫兹到几千赫兹之间。

低通滤波器通常由电容器和电阻器组成,如下图所示:四、取样和保持电路由于整流器输出的电压是一个脉冲序列,因此需要一个取样和保持电路来捕获这些脉冲,并在滤波器输出电压的反向方向建立一个参考电压。

峰值检测电路原理

峰值检测电路原理

峰值检测电路原理1.输入电阻:输入电阻用于连接待测信号到峰值检测电路中。

输入电阻的阻值应该足够高,以避免对待测信号的干扰。

2.整流电路:整流电路的作用是将输入信号转换为全波整流信号。

全波整流意味着无论输入信号的振幅是正的还是负的,输出信号都是正的。

一种常用的整流电路是使用二极管的半波整流电路。

3.平滑过程:平滑过程用于平滑整流过后的信号,以消除高频噪声和使输出波形更加稳定。

一种常用的平滑过程是使用电容器来滤波。

当输入信号的幅度增大时,电容器会逐渐充电,从而输出信号的幅度也会增大。

而当输入信号的幅度减小时,电容器会逐渐放电,从而输出信号的幅度也会减小。

这样,峰值检测电路就可以保持最大幅度的信号。

4.输出部分:输出部分用于输出经过峰值检测和平滑处理后的信号。

这个信号可以被连接到其他设备进行进一步处理或用于显示最大信号的数值。

1.当输入信号通过整流电路时,原始信号的正负部分被转换成了相同的正信号。

2.转换后的信号经过平滑过程时,电容器会根据信号的幅度进行充放电。

当输入信号振幅增大时,电容器充电速度加快,输出信号也会相应增大。

而当输入信号振幅减小时,电容器放电速度加快,输出信号也会相应减小。

3.输出部分通过连接到一个电压测量装置,将峰值(或最大值)读取出来。

需要注意的是,由于电容器的充放电过程是一个延时过程,峰值检测电路的输出信号在输入信号的峰值变化后仍然具有一定的延迟。

这是因为电容器的充放电时间与电容器的容值和电阻值有关。

因此,设计峰值检测电路时,需要根据实际需求选择合适的电容器和电阻值来平衡响应速度和准确度。

总的来说,峰值检测电路通过整流、平滑处理和输出部分实现对信号峰值的检测和测量。

它在音频、视频和其他信号处理领域具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:12 峰值检测电路初始条件:具备数字电子电路的理论知识;具备数字电路基本电路的设计能力;具备数字电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、4位LED显示;2、设计峰值检测电路,模数转换,锁存电路;3、清零设置功能;每次检测到的最大值被保存和显示;4、安装调试并完成符合学校要求的设计说明书;5、设计电源;6、焊接:采用实验板完成,不得使用面包板。

时间安排:第十九周一周,其中3天硬件设计,2天硬件调试指导教师签名: 2012年 5 月 30日系主任(或责任教师)签名:年月日1 绪论1.1软件介绍Protues软件是英国Labcenter electronics公司出版的EDA工具软件。

它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MPLAB等多种编译,功能十分强大。

1.2 A/D转换芯片介绍ICI-7135是421位双积分A/D转换芯片,可以转换输出±20000个数字量,有STB选通控制的BCD码输出,与微机接口十分方便。

ICL7135具有精度高(相当于14位A/D转换),价格低的优点。

其转换速度与时钟频率相关,每个转换周期均有:自校准(调零)、正向积分(被测模拟电压积分)、反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10000个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲)。

故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数。

将计数的脉冲个数减10000,即得到对应的模拟量。

图1给出了ICL7135时序,由图可见,当BUSY变高时开始正向积分,反向积分到零时BUSY变低,所以BUSY可以用于控制计数器的启动/停止。

ICL7135为DIP28封装,芯片引脚排列如图2所示,引脚的功能及含义如下:(1)与供电及电源相关的引脚(共7脚).-V:ICL7135负电源引入端,典型值-5V,极限值-9V;.+V:ICL7135正电源引入端,典型值+5V,极限值+6V;.DGND:数字地,ICL7135正、负电源的低电平基准;. REF:参考电压输入,REF的地为AGND引脚,典型值1V,输出数字量=10000×(VIN/VREF);.AC:模拟地,典型应用中,与DGND(数字地)“一点接地”;.INHI:模拟输入正;.INLO:模拟输入负,当模拟信号输入为单端对地时,直接与AC相连。

图1 1CL7135时序图2 1CL7135芯片引脚(2)与控制和状态相关的引脚 (共12脚).CLKIN:时钟信号输入。

当T=80ms时,fcp=125kHz,对50Hz工频干扰有较大抑制能力,此时转换速度为3次/s。

极限值fcp=1MHz时,转换速度为25次/s。

.REFC+:外接参考电容正,典型值1μF。

.REFC-:外接参考电容负。

.BUFFO:缓冲放大器输出端,典型外接积分电阻。

.INTO:积分器输出端,典型外接积分电容。

.AZIN:自校零端。

.LOW:欠量程信号输出端,当输入信号小于量程范围的10%时,该端输出高电平。

.HIGH:过量程信号输出端,当输入信号超过计数范围(20001)时,该端输出高电平。

.STOR:数据输出选通信号(负脉冲),宽度为时钟脉冲宽度的一半,每次A/D 转换结束时,该端输出5个负脉冲,分别选通由高到低的BCD码数据(5位),该端用于将转换结果打到并行I/O接口。

.R/H:自动转换/停顿控制输入。

当输入高电平时;每隔40002个时钟脉冲自动启动下一次转换;当输入为低电平时,转换结束后需输入一个大于300ns的正脉冲,才能启动下一次转换。

.POL:极性信号输出,高电平表示极性为正。

.BUSY:忙信号输出,高电平有效。

正向积分开始时自动变高,反向积分结束时自动变低。

(3)与选通和数据输出相关的引脚(共9脚)’.B8~B1:BCD码输出。

B8为高位,对应BCD码;。

D5:万位选通;.D4~D1:千、百、十、个位选通。

1.3 设计目的(1)通过对峰值检测电路的设计,掌握电路的工作原理和设计方法。

(2)通过实验了解峰值检测电路,A/D模数转换电路,锁存电路等单元电路的内部电路结构及工作原理,了解外围电路主要元件的作用以及典型应用电路。

(3)通过实验掌握一些调试的基本技能,自己发现错误并修正电路,使其能够正常工作。

被测信号输入采样/保持译码采样/保持控制电路数字锁存控制电路A/D转换译码显示1.4 设计思路本课设的关键任务是检测峰值并使之保持稳定,且用数字显示峰值。

用采样/保持峰值电路,通过数据锁存控制电路锁存峰值的数字量。

设计的原理图如图1所示。

它由被测信号、采样/保持、采样/保持控制电路、A/D(模数转换)、译码显示、数字锁存控制电路组成。

各组成部分的作用是:图 3 系统原理框图(1)采样/保持:对被测模拟量进行采样,并保持峰值。

(2)采样/保持控制电路:该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值。

(3)A/D转换:将模拟量转换成数字量。

(4)译码显示:完成峰值数字量的译码显示。

(5)数字锁存控制电路:对模拟转换的峰值数字量进行锁存,小于峰值的数字量不能锁存。

2 系统总电路原理图图4 系统总电路图3 各单元部分原理图及功能3.1 采样/保持电路该电路的核心器件选用LF398采样/保持集成电路芯片,它具有体积小、功能强、运行稳定可靠等优点。

它的功能是对模拟信号进行采样和储存。

具有电路如图3所示。

LF398的8脚是采样/保持的逻辑控制脚,当该脚输入高电平时,LF398进行采样,输入地电平送时保持。

保持时,回路阻抗很大,故保持能力很强;采样时,输入信号使采样/保持电容C1迅速充电到ViC1的质量对电路的性能影响很大,一般对此电容要求很高,如要求它的绝缘电阻大、漏电小。

选用有机薄膜介质电容聚苯乙烯,取大小为C1=0.1μF。

图 5 采样/保持电路3.2 采样/保持控制电路采样/保持控制电路可选用比较电路,如图4所示。

比较电路将LF398的输入端电压与输出端电压相比较,产生一个控制信号VK ,用VK控制LF398的逻辑控制脚。

当Vi >Vo2时,比较器输出VK为高电平,使LF398采样,当Vi<Vo2时,比较器输出VK为低电平,使LF398保持。

图4中,二极管保证输出低电平时,输出端为0电平(忽略管压降)。

VK还用来控制数字所存控制电路。

比较器选用运算放大器μA741。

二极管选普通硅二极管2CK11。

图 6 采样/保持控制电路3.3 A/D 转换电路图7 A/D 转换电路图5为A/D 转换电路,该电路采用142位A/D 转换芯片ICL7135来实现,其中10管脚输入信号为采集到的模拟信号的峰值输入端,22管脚为时钟脉冲输入端,输入125KHz 的时钟脉冲,此时转换速度为3次/秒。

25管脚为控制信号输入。

转换输出时,D5-D1为位选控制端,连接数码管时,控制响应的数码管使能。

B8、B4、B2、B1为8421BCD 码的输出端,控制数码管显示相应数字。

3.4 译码显示电路图8 译码显示电路图6为译码显示电路,采用74LS47+7段共阳基数码组成显示单元,输出电压值范围0000-1.999V。

通过A/D转换器的D5-D2位选控制端与数码管的使能端相连实现位选。

3.5 锁存控制电路图9 锁存控制电路通过比较器输出的高低电平来控制A/D转换器的25管脚,从而控制其转换状态,达到锁存的目的。

A/D转换器ICL7135的25管脚的功能如下:当该管脚为“1”时,ICL7135处于连续转换状态,每40002个脉冲周期完成一次A/D转换;若该管脚由“1”变“0”,则ICL7135在完成本次转换之后进入保持状态,此时输出为最后一次转换的结果,不受输入电压变化的影响,因此利用25管脚的功能可以使数据有保持功能。

如果下一时刻输入的信号峰值比之前的大,则比较器输出高电平“1”,A/D 转换器处于转换状态,输出显示大的峰值;若下一时刻输入的信号峰值比之前的小,则比较器输出低电平“0”, A/D转换器处于保持状态,输出显示仍为上一时刻的峰值,以此来达到锁存的目的。

4 仿真结果当输入信号为峰峰值为1.25V的正弦信号时,数码显示为1.250,如图8所示图105 实物图图116 课程设计心得通过这次课程设计,使我明白了所学习知识的重要性。

对于各门功课的理解、掌握所学的知识才能很好的完成课程设计。

课程设计的操作,使我感到自己知识的欠缺,仿佛有一种“书到用时方恨少”的感觉。

通过对课程设计的操作,不仅使我看到了自己的不足,也使我学到新的知识,而且学到了一些分析问题解决问题的能力,同时也使我明白了理论与实践相结合的重要性。

自己用双手实实在在的做出来的东西,虽然在实验室焊板子和调试的过程是辛苦的,但是在这个过程当中我也学会了很多东西。

其实课程设计的目的就是让我们发现问题,然后认真冷静的分析问题,最后解决问题,并在解决问题的过程中学习知识。

这次课程设计培养了自己动手能力,掌握和巩固了书本上的理论知识,综合运用了本专业的相关知识,对知识有了系统的重新认识。

可以说真正做到了理论与实践相结合。

这次课程设计的顺利完成可以为以后的毕业设计、工作打下了基础,并且我也深深体会到自己还有很多东西都不懂,需要在以后的时间多花点时间给自己学习,为未来的就业做好充分准备。

总之,实践要以理论为基础,理论与实践相结合7 参考文献[1] 《常用电子器件及典型应用》周惠潮电子工业出版社 2007[2] 《稳压电源设计与技能实训教程》孙余凯电子工业出版社 2007[3] 《脉冲与数字电路》顾德仁北京高等教育出版社 1986[4] 《电子技术实践与训练》廖先芸北京高等教育出版社 2000[5] 《数字电子技术基础》伍时和清华大学出版社 20098 元件清单Category,Reference,Value,Order Code Resistors,"R1",10k,Resistors,"R5",10k,Resistors,"R6",10k,Resistors,"R2",100k, Resistors,"R3",100k, Resistors,"R4",100k, Capacitors,"C1",0.1uF, Capacitors,"C2",0.1uF, Capacitors,"C3",1nF, Capacitors,"C4",0.47uF, Capacitors,"C5",1uF, Capacitors,"C6",0.047uF, Capacitors,"C7",0.01uF,Integrated Circuits,"U1",LF398, Integrated Circuits,"U2",UA741, Integrated Circuits,"U3",ICL7135, Integrated Circuits,"U4",74LS47, Integrated Circuits,"U5",74LS47, Integrated Circuits,"U6",74LS47, Integrated Circuits,"U7",74LS47, Integrated Circuits,"U8",555, Diodes,"D1",DIODE,Diodes,"D2",DIODE,9 本科生课程设计成绩评定表姓名徐涛性别男专业、班级电信1002班课程设计题目:峰值检测电路课程设计答辩或质疑记录:成绩评定依据:最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:年月日。

相关文档
最新文档