小升初数学之找规律专题(含解析)
【小升初培优专题】六年级下册数学-探索数学规律(解析版)

【小升初培优专题】六年级下册数学-探索数学规律(解析版)一、知识点1、常见数列自然数列:1、2、3、4、5……奇数数列:1、3、5、7、9……偶数数列:2、4、6、8、10……等差数列:3、6、9、12、15……等比数列:1、2、4、8、16……质数数列:2、3、5、7、11……平方数列:1、4、9、16、25、36……兔子数列:1、1、2、3、5、8、13……2、数列规律相邻两数的和或差呈现某种规律复合数列:如奇数位呈现一种规律,偶数位呈现另一种规律3、图形规律固定图形—般规律:求和、求差、求积技巧:数字突然变大时多数是乘积变化图形点、线和面之间的递推规律4、分数规律分子与分母呈现单独的规律分子与分母合并后呈现规律 存在一定的周期性:分组5、数阵规律数字间的运算规律 数字间的排列规律二、学习目标1. 我能够积累数列、数阵中的常见规律与分析方法。
2. 我能够通过动手操作、观察等活动,掌握图形间变化的基本规律,并能运用这个规律合理推断下一个图形。
三、课前练习1. 把71化成小数,小数点后面第28位上的数是 ,第2021位上的数是 。
【解答】本题考查循环小数与周期问题,71=••742851.0,28÷6=4……4,第28位上的数是8;2021÷6=336……5,第2021位上的数是5。
2. 根据规律将表格填写完整:【解答】数表的规律为第一列数字是后两列数字之和,填入19。
四、典型例题例题1 按规律填空:(1)1,3,6,11,18,29,(),59【解答】数列规律为∶相邻两数的差构成质数数列,填入42。
(2)31,54,89,1316,2125,()【解答】该数列规律为:分子是平方数列,分母是兔子数列,结果为3436。
练习1 按规律填空:(1)5,6,19,33,60,(), 169【解答】计算相邻两数的差为1、13、14、27,找到规律1+13=14,13+14=27,14+27=41,计算60+41=101,填入101。
(小升初真题)六年级数学找规律题(易错题、难题)名师详解连载一

(小升初真题)六年级数学找规律题(易错题、难题)名师详解连载一第一关:我会找规律1.如下图,根据图形与数的规律,第10个数是()。
2.九张卡片上分别写着1~9九个数字。
甲、乙、丙、丁四人玩数字游戏,每人拿两张。
如果结果是:甲的两张数字之和是9,乙的两张数字之差是6,丙的两张数字之积是12,丁的两张数字之商是3。
那么剩下的这张数字是()。
3.六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次。
甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一。
比赛结果,三个人都猜对了一半。
那么,1班第()名,4班第()名。
4.按如右规律摆放三角形则第⑥个图三角形的个数为()。
A.15 B.17 C.20 D.245.下面的图形中,()是正方体的表面展开图。
1.根据规律填空:61,21,( ),29,227,( )。
2.海边灯塔上的一盏照明灯以固定的规律发出亮光。
下图表示前14秒灯光明暗变化的情况,第1秒亮( ),第2秒暗( ),第3秒暗( )……观察下图的变化规律,请你判断第39秒照明灯是( )的。
(填写“亮”或“暗”。
)3. 如下图所示,用白色和灰色小正方形按下图的规律摆大正方形。
照这样接着摆下去,第6幅图一共有( )个白色小正方形。
4.将同样大小的正方形按下列规律摆放,重叠部分涂上阴影,则下面图案中,第1个图案有3个正方形,第2个图案有7个正方形,那么:第1个 第2个 第3个(1)第六个图案中有( )个正方形;(2)若第n 个图案中有7999个正方形,则n=( )。
第二关:我会找规7. 31,91,271……按这组数的规律,第五个数应该是( );如果这样一直写下去,那么这个数会越来越接近( )。
8. 学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示) ,请你结合这个规律算一算, 6张桌子拼成一行能坐( )人, n 张桌子拼成一行能坐( )人。
小升初--数字找规律专题及详解

第一部分:重点中学招生考试题1.(西城实验考题)有一批长度分别为1,2,3,4, 5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形;如果规定底边是11厘米,你能围成多少个不同的三角形?【解】由于数量足够多,所以考虑重复情况;现在底边是11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于11.情况如下:一边长度取11,另一边可能取1~11总共11种情况;一边长度取10,另一边可能取2~10总共9种情况;…一边长度取6,另一边只能取6总共1种;下面边长比6小的情况都和前面的重复,所以总共有1+3+5+7+9+11=36种。
2.(三帆中学考题)有7双白手套,8双黑手套,9双红手套放在一只袋子里。
一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少6双手套,他最少要摸出手套()只。
(手套不分左、右手,任意二只可成一双)。
【解】考虑运气最背情况,这样我们只能是取了前面5双颜色相同的后再取三只颜色不同的,如果再取一只,那么这只的颜色必和刚才三只中的一只颜色相同故我们至少要取5×2+3+1=14只。
3.(人大附中考题)某次中外公司谈判会议开始10分钟听到挂钟打钟(只有整点时打钟,几点钟就响几下),整个会议当中共听到14下钟声,会议结束时,时针和分针恰好成90度角,求会议开始的时间结束的时间及各是什么时刻。
【解】因为几点钟响几下,所以14=2+3+4+5,所以响的是2、3、4、5点,那么开始后10分钟才响就是说开始时间为1点50分。
结束时,时针和分针恰好成90度角,所以可以理解为5点过几分钟时针和分针成90度角,这样我们算出答案为10÷11/12=1010/11分钟,所以结束时间是5点1010/11分钟。
(可以考虑还有一种情况,即分针超过时针成90度角,时间就是40÷11/12)4.(101中学考题)4道单项选择题,每题都有A、B、C、D四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有_________人的答题结果是完全一样的?【解】因为每个题有4种可能的答案,所以4道题共有4×4×4×4=256种不同的答案,由抽屉原理知至少有: [799/256]+1=4人的答题结果是完全一样的.5.(三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少,这时间等于_________分钟.【解】不难得知应先安排所需时间较短的人打水.不妨假设为:第一个水龙头第二个水龙头第一个 A F第二个 B G第三个 C H第四个 D I第五个 E J显然计算总时间时,A、F计算了5次,B、G计算了4次,C、H计算了3次,D、I计算了2次,E、J计算了1次.那么A、F为1、2,B、G为3、4,C、H为5、6,D、I为7、8,E、J为9、10.所以有最短时间为(1+2)×5+(3+4)×4+(5+6)×3+(7+8)×2+(9+10)×1=125分钟.评注:下面给出一排队方式:第一个水龙头第二个水龙头第一个 1 2第二个 3 4第三个 5 6第四个 7 8第五个 9 106.(八中考题)甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。
(小升初奥数拓展)小学数学找规律专项复习试题大全(有答案解析)

(小升初奥数拓展)小学数学找规律专项复习试题大全(有答案解析)专项练习考试范围:;考试时间:100分钟;命题人:xxx注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(题型注释)1、明明用石子摆出了图中的图案,根据规律判断第6个图案中石子总数为( )。
A.12B.16C.20D.242、为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。
某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗多少棵?()A.8500棵B.12500棵C.12596棵D.13000棵二、填空题(题型注释)3、有这样一组数:1,2,3, 5,…现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下长方形记为:①②③④(如下图)。
则第⑨个长方形的周长是()。
4、先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
5、用小棒按照如下方式摆图形:(1)摆第5个图形需用( )根小棒。
(2)摆第n个图形需用( )根小棒。
6、1=12,1+3=22,1+3+5=32,1+3+5+7=( )2,…,1+3+5+7+9+11+13+15=( )2。
根据上面的结论算一算:1+3+5+7+9+5+3+1=( );1+3+5+7+9+11+13=( )。
7、先画出第五个图形并填空。
再想一想,第10个方框里有( )个点,第51个方框里有( )个点。
8、如图,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;…,按此规律,当n=5时,图中有个圆.9、观察图中的三角形数阵,则第50行的最后一个数是______.10、找规律填数.6,7,10,15,22,3,15,35,63,99,,195.11、用小棒摆出右面的图形.摆第1个图形要4根小棒.那么摆第5个图形要( )根小棒,摆第n个图形要( )根小棒。
通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。
2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。
3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。
人教版六年级下册数学小升初分班考必刷专题:探索规律(含答案)

人教版六年级下册数学小升初分班考必刷专题:探索规律一、单选题1.,遮住了( )颗黑珠子。
A.3B.4C.5D.62.观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为( )。
A.25B.26C.27D.293.用九根同样长的小棒,最多可以拼成( )个正三角形.A.3B.4C.5D.64.观察下列各图,它们是按一定规律排列的。
根据规律,第n个图形中五角星的个数是( )。
A.4n B.4n+1C.3n+1D.3n+45.用火柴棒按照如图的方法摆正方形(每条边摆1根火柴棒),照这样摆8个正方形共需要( )根火柴棒。
A.19B.22C.24D.256.古希腊的数学家毕达哥拉斯在没有纸笔的时代,用沙子在沙滩上画呀画,发现了数与形的规律。
照下面的图形排列规律,第12组图形里共有( )个正方形的顶点。
A.48B.37C.24D.36二、填空题7.如下图是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆 根火柴时,需要的火柴棒总数是63根。
8.小明用□和■两种小正方形按下图所示的规律摆正方形,小明发现在他摆的一个小正方形中,■比□多9个。
小明摆这个正方形,用了 个■。
9.有一串数:11,12,22,12,13,23,33,23,23,14,24,24,34,44,34,24,14……这串数从左往右第 个数是1010。
10.贝贝用小棒按照下图的方式摆图形,摆1个八角形用8根小棒,摆2个八边形需要15根小棒,摆4个八边形需要 根小棒,……摆a个八边形需要 根小棒。
11.用若干个小正方体摆成下面的几何体,第⑤组有 个小正方体。
12.1+3+5的结果正好是边长3的正方形中小方格的个数,9+11+13+15的结果可以看成是边长8的正方形减去边长 的正方形后剩下小方格的个数。
13.如下图所示,第一组图形由4个小正方形组成,观察图形的变化规律,第5组图形一共有 个小正方形,第 组图形有28个小正方形。
2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)
2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。
A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。
第15堆有( )个小球。
A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。
A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
n个杯子叠起来的高度可以用下面( )的关系式来表示。
A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。
A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。
( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。
( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。
( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。
( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。
( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。
( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。
小升初六年级数学专项练习《(6)找规律》知识点总结复习训练
小升初小学六年级数学复习总结·知识点专项练习题+答案(6)找规律知识要点:对题目中给出的图形或数据认真观察分析,找到图形、数据中的数量变化规律,再根据规律递推,找出正确的解答。
这一类题型主要考察学生根据已有条件进行归纳与猜想的能力。
下面的题请同学运用各种学过的方法,如周期性分析,递推法,列表法等找出规律来解答以下各题。
1、数字规律:数字之间和差倍的规律,典型的有:兔子数列、间隔数列、等差数列、等比数列等。
2、图形规律:①图形中数量变化:点数、角数、边数、对称轴数、区域数……②图形中位置变化:一般来说,一组图形中元素个数完全相同,不同的是局部元素位置有变化,这时从位置的角度出发来解题。
位置变化的类型分为平移、旋转、翻转。
③图形的叠加减变化:图形组成的元素部分相似,进行加减同异。
习题精选:1. 按规律填数:5,2,8,6,11,10,14,()。
A.13B.16C.15D.142. 一组按规律排列的数:14,39,716,1325,2136,……,请你推断第6个数是()。
A.2948B.3148C.2949D.31493. 按顺序排列的数:3,4,6,9,14,22,35,.....,中的第八个数是()A.56B.64C.50D.524. 根据下面四个算式,发现其中规律,然后在括号中填入适当的数,其中正确的一组是()。
1×5+4=9=3×3;2×6+4=16=4×4;3×7+4=25=5×5;4X8+4=36=6×6;10×()+4=()=()×()A.14、81、9、9B.14、144、12、12C.12、121、11、11D.以上答案均不对5. 观察前两个图的规律,填出方框中的数。
()A.5B.7C.6D.86. 观察下列图形:它们是按一定规律排列的,依照此规律,第50个图形共有()个★。
A.161B.151C.141D.1317. 根据图形的排列规律,那么第50个图形中有()个小圆点。
小升初数学重难点突破——探索规律问题(含答案)
小升初数学重难点突破——探索规律问题专项1:积、商、分数的变化规律1.两个数相乘,一个因数扩大到原来的4倍,另一个因数不变,积( );两个数相乘,一个因数增加它的4倍,另一个因数缩小到原来的15,积( )。
2.两个数相除,被除数不变,除数扩大到原来的2倍,商( );一个比,它的前项扩大到原来的3倍,后项不变,比值( );一个分数,分子扩大到原来的n 倍,要使分数值不变,分母( )。
专项2:小数点的移动引起的变化规律3.一个小数,它的小数点向右移动两位后得到的数比原来大2.97,这个小数是( )。
4.一个小数,它的小数点向左移动一位后得到的数与原数的和是3.85,这个小数是( )。
专项3:一列数中的规律5.根据规律在( )里填上合适的数。
(1)4,7,10,13,( ),( ),…(2)2,6,18,( ),( ),…(3)1,4,9,16,( ),( ),…6.一列数:3,5,7,11,13,15,17,19。
(1)如果其中缺少一个数,那么这个数是几?应补在何处?(2)如果其中多了一个数,那么这个数是几?为什么?专项4:探索算式的规律7.观察下面一组算式的前三个,直接写出后三个算式的得数。
21×9=189321×9=28894321×9=3888954321×9=654321×9=7654321×9=8.根据发现的规律填空。
15×11=16523×11=25347×11=51766×11=726规律:__________________________________________________ _______________________________________________________ 25×11=()33×11=()56×11=()89×11=()专项5:循环的规律9.把37化成小数,小数点后面第200位的数字是( )。
小升初数学专项训练+典型例题分析-找规律篇(附答案)
名校真题测试卷找规律篇时间:15 分钟满分 5 分姓名_________ 测试成绩________1 (12 年清华附中考题)如果将八个数14,30,33,35,39,75,143,169 平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13 年三帆中学考题)4+5=9;9+7=16 ;16+9=25 ;25+11=36 这五道算式,观察1+3=4 ;找出规律,然后填写2001 2+()=2002 23 (12 年西城实验考题)一串分数:1,21,2,3,4,1,2,3,4,5,6 7,1,2................................ 8, 1, 2 , ............ ,其中的第2000个分数3 3,5 5 5 5 7 7 7 7 7 7 9 9 9 11 11(1) 请你说明:11 这个数必须选出来;(2) 请你说明:37和73这两个数当中至少要选出一个;(3) 你能选出55 个数满足要求吗?附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33 、35、30、169 和14、39、75、4 (12 年东城二中考题)在2、3 两数之间, 第一次写上5, 第二次在2、5 和5、3 之间分别写上7、8(如下所示), 每次都在已写上的两个相邻数之间写上这两个相邻数之和. 这样的过程共重复了六次, 问所有数之和是多少?2⋯⋯7⋯⋯5⋯⋯8⋯⋯35 (04 年人大附中考题)请你从01、02、03、⋯、98、99中选取一些数,使得对于任何由0~9 当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
143。
2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7 、9 、11所以下面括号中填的数字为奇数列中的第2001 个,即4003。
3 【解】分母为 3 的有 2 个,分母为4 个,分母为7 的为 6 个,这样个数2+4+6+8⋯88=1980<2000,这样2000个分数的分母为89,所以分数为20/89 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初之找规律专题教学目标;1、规律题是观察,实验,归纳,猜想和验证的综合考察;2、以退为进的解题过程在找规律的过程中尤其重要;3、规律的总结是抽象思维能力和计算能力,形象思维能力等的综合考察;4、规律题的积累经验也是非常必要的。
复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?思路分析:这道问题是典型的追及问题,求追及时间,根据追及问题的公式: 追及时间=路程差÷速度差150÷(75-60)=10(分钟) 答:10分钟后乙追上甲。
2、下午放学时,弟弟以每分钟40米的速度步行回家。
5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家)()()10202004060540=÷=-÷⨯(分钟)3、一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?()14842865=⨯-(千米)4、环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。
若二人同时从同一地点反向而行,只要2分钟二人就相遇。
求甲、乙的速度。
速度差:4010400=÷(米/分钟) 速度和:2002400=÷(米/分钟) 甲速度:()120220040=÷+(米/分钟) 乙速度:80120200=-(米/分钟) 5、甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?速度差:4001010004=÷⨯(米/分钟) 甲速度:()5502700400=÷+(米/分钟) 乙速度:150550700=-(米/分钟)根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
1、先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,( 18 ),22,26 (2)3,6,9,12,( 15 ),18,21 (3)33,28,23,( 18 ),13,( 8 ),3 (4)55,49,43,( 37 ),31,( 25 ),192、先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,( 25 ),31 (2)1,4,9,16,25,( 36 ),49,64 (3)3,2,5,2,7,2,( 9 ),( 2 ),11,2 (4)53,44,36,29,( 23 ),18,( 14 ),11,9,8 3、先找出规律,然后在括号里填上适当的数。
(1)2,2,4,6,10,16,( 26 ),( 42 ) (2)34,21,13,8,5,( 3 ),2,( 1 ) (3)3,7,15,31,63,( 127 ),( 255 )4、下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。
(1)(6,9)(7,8)(10,5)(□,4)11 (2)(1,24)(2,12)(3,8)(4,□)6 (3)(18,17)(14,10)(10,1)(□,5)6 5、找规律,在空格里填上适当的数。
13 2 20根据问题定位部分的题目,对学生可能出现的错误进行原因分析。
【学科问题】1. 考纲要求:掌握数字、算式、图形的规律方法,形成探究、转换的数学模型思维2.学习目标:(1)对于数字的规律如何通过加、减、乘、除、乘方等运算结合(2)掌握算式的特殊规律,找准不变的、变化的,根据公式套入(3)对于图形的规律要善于发现、总结,不同类型的图像规律对应使用不同的方法3.知识类型:陈述性知识/程序性知识(1)基本运算公式(2)能找出题目的相同地方、不同地方,从而形成模型(3)能将规律转换出基本的代数式4.学习条件:(1)必要条件:熟悉数字特点、算式模型、图形特征(2)支持性条件(外部条件):会对规律进行周期性的划分,或者增减性的区别5. 起点能力:初步掌握数字、算式、图形的特征,能准确计算【学生问题】1.心理发展:学段()稳定性()抽象()/具体()2.学习风格分析:视觉型()/听觉型()/动觉型()/混合型()场独立性()/场依存性()3.认知准备:(1)会准确计算,包括一些复杂的运算(2)能区分每种图形的特征,从而将相关条件代入题目进行分析(3)能善于观察,发现特殊的、相同的地方,从而在特殊的方面进行规律的探讨4.情感准备:内部动机:已准备好学习外部动机:教师选择合适的方法激发学习动机根据学生对各知识点的掌握情况,针对相关知识点进行详细讲解。
(学生掌握得很好的知识点可略过不讲。
)精讲1 事物的间隔排列规律例题1.1如图排列,则第2014个图是(B)A. B. C. D.例题1.2 有红、黄、绿三种颜色的灯光依次闪烁,当闪烁30次时是(B)色。
A.红 B.绿 C.黄例题1.3 在图形◈◈□♣◇◇◈◈□♣◇◇…中,从左边开始第124个是(C)A.◈ B.□ C.♣D.◇变式1-1:□□□☆☆□□□☆☆□□□☆☆□□□☆☆…左起第26个图形是____□_____,在前60个图形中,共“☆”____24_____个。
变式1-2:在下面图案排列中,□⊙⊙◇◇◇□⊙⊙◇◇◇□⊙⊙◇◇◇…第57个图案是___⊙______。
变式1-3:六(2)班的同学在布置“六•一”节联欢会场时,将180只彩色灯泡按5个红色,4个黄色,3个蓝色的顺序连成一排,那么这排彩色灯泡中:(1)黄色灯泡有___60______个。
(2)____蓝色_____灯泡的个数最少。
(3)蓝色灯泡的个数是红色灯泡个数的() ()。
53精讲2 简单周期现象中的规律例题2.1 儿童节用小灯泡布置教室,按“三红、二黄、二绿”规律连接起来,第2010个小灯泡是( A )色。
A .红B .绿C .黄例题2.2 8÷37的商小数点后面第18位小数是( C )A .1B .2C .6D .不能确定例题2.3 按下面的方法摆58个图形,最后一个是___О____图形,一共有___29____个△。
△△ОО△О△△ОО△О△△…变式2-1:黑板上有2003个数,每次任意擦掉两个数,再写上一个,经过___2002____次后,黑板上只剩一个数。
变式2-2:按照规律在括号里画出第100个图形。
〇精讲3 算术中的规律例题3.1 已知0.123456789101112131415…是一个有规律的小数.(1)小数点后第100位上的数字是______数。
(填奇或偶)奇 (2)小数点后第100位上的数字大小是_______。
5(3)探究并填空:小数点后第100位前(包括第100位)的数字之和是______。
365 解析:这个小数是有规律的,规律是按照自然数依次排列,其中一位数1~9有9个数字,两位数10~99有()180211099=⨯+-个数字,所以第100位上一定是某个两位数上的数字,()1......4529100=÷-,554510=+,即第100位上的数字是5,第101位上的数字是5,第100位前的数字为1、2、3、4、......54、5,所以各位数字之和为()()36543216510432159......21=++++⨯+⨯++++⨯+++例题3.2 编号为1至10的十个果盘中,每盘都盛有水果,共盛放100个。
其中第一盘里有16个,并且编号相邻的三个果盘中水果数的和都相等,求第8盘中水果最多可能有_______个。
11解析:第1、4、7盘的数量相等,第2、5、8盘数量相等,第3、6、9盘数量相等,故第8、9盘的和是()123416100=÷⨯-(个),由于每个盘子都有水果,所以9盘中最多可以有1个,8盘中最多可以有11个。
变式3-1:将213化成小数后,小数点后第1980位上的数字是_________。
7 ••==742851.071213是一个循环小数,所以33061980=÷,所以1980位上数字是7精讲4 数与形结合的规律例题4.1 用6根小棒可以拼成1个正六边形,用11根小棒可以拼成2个正六边形,用16根小棒可以拼3个正六边形,照这样拼下去,用46根可以拼( D )个正方形.A .6B .7C .8D .9例题4.2 按图中的规律接着画下去,第(5)个图形一共有( B )个这样的圆点.A .20B .21C .23D .26例题4.3 如果按照下面的画法,画到第10个正方形时,图中共有( C )个直角三角形.A .28B .32C .36D .40例题4.4 把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是_________ 厘米;14 (2)用n 个正方形拼成的长方形周长是_________ 厘米.()12+n变式4-1:用小棒摆正方形,如图摆6个正方形用小棒_________根,摆n 个正方形用小棒_________根.19;13+n变式4-2:认真观察多边形的“边”与“角”的关系,回答下列问题:多边形…边数 3 4 5 6 … 内角和180°360°__540°_____720°__…(1)多边形的内角和与它的边数的关系是_________;()1802⨯-n °(2)一个8边形的内角和是_1080°_度,一个n 边形的内角和是_()1802⨯-n _度.变式4-3:如图是用棋子摆成的“上”字:第一个“上”字,第二个“上”字,第三个“上”字,如果按照以上规律继续摆下去,那么通过观察,可以发现:第90个“上”字分别需要_________枚棋子.24+n ,3622904=+⨯变式4-4:分析推理找规律点数增加条数 ﹣﹣ 2 3 4 总条数13610根据上表的规律,20个点能连成__190__条线段,n 个点能连成_()[]()2111-⨯-+n n __条线段.变式4-5:准备(1)每个都是棱长为1厘米的正方体;(2)一个挨着一个排成一排;你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系. 探索过程:个数 图形 表面积(平方厘米)根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是__42__平方厘米. 当正方体个数为a 时,所拼成的长方体表面积是__24 a _平方厘米. 当拼成的长方体表面积是202平方厘米时,正方体个数是__50___.变式4-6:探寻规律:如图△是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图△),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图△),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图△),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有_________个.181精讲5 数列中的规律例题5.1 一列数1,2,2,3,3,3,4,4,4,4,….中的第35个数为( C )A .6B .7C .8D .无答案例题5.2 填在下面各正方形中的四个数之间都有相同的规律,根据规律,m 的值是( A )A .86B .52C .38D .74 例题5.3 找规律:3,6,11,18,27,( D )….A .35B .36C .37D .38例题5.4 3,9,11,17,20,( ),30,36,41.括号里的数是( C )A .24B .25C .26变式5-1:在1、3、7、15、31、( )、127…这一串数中,括号中的数应该是( C )A .46B .60C .63变式5-2:找规律:2,3,4,6,6,9,8,12,10,15,( )正确选项是( D )A .10,12B .10,18C .12,15D .12,18变式5-3:按规律填空:2、2、4、6、10、16、26、42、______、______、….68,110 变式5-4:按规律填空1 5 14 30 55 _______ 91解析:22415⨯==- 339514⨯==- 44161430⨯==- 55253055⨯==-916655=⨯+变式5-5:有这样一串数21、31、32、41、42、43、51、52、53、54… (1)第407个分数是多少?301 (2)从21开始,前407个分数的和是多少? 301203变式5-6:找规律.2 3 5 8 12 17 _________ 23 1 4 9 16 _________ 25变式5-7:找规律填得数。