小升初数学专项训练+典型例题分析-找规律篇(附答案)

合集下载

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.用小棒按照下面的方式摆图形。

像这样,连着摆5个正六边形需要( )根小棒。

A .26B .21C .31D .362.下图是按一定规律连续拼摆制作的图案,按此规律N 处的图案应是( )。

A .B .C .D .3.用棱长为1cm 的正方体进行摆放(如下图),n (n 为大于0的自然数)个这样的正方体摆成的长方体的表面积是( )cm 2。

A .3n +2B .4(n +2)C .4n -2D .4n +24.有这样一组数:325、300、275、250、225……要继续往下写数,这些数的规律是( )A .按照25递减B .按照25递增C .按照50递减D .按照50递增5.如图分割下去,第(8)号图形中一共有( )个三角形。

A .24B .48C .60D .无法确定6.12、34、56、78……这一列数中的第10个数应该是( ) 。

A .910B .1920C .1516D .1718二、填空题7.悦悦按这样的顺序摆三角形,如果摆60个三角形,一共要用  根小棒。

8.按规律填数:5、10、15、20、 、 、 、40。

9.笑笑发现:2×2-1×1=2+1,4×4-3×3=4+3,6×6-5×5=6+5,…。

根据规律直接写出得数:10×10-9×9+8×8-7×7+…+2×2-1×1= 。

10.淘气利用三角形学具摆出了如下的图案,按照这样的规律摆下去,第5个图形用了 个三角形。

11.根据前四幅图的规律,第5幅图中有 个●,第n幅图中有 个△。

12.如下图,照这样摆下去,第6幅图需要 根这样的小木棒,第n幅图需要 根这样的小木棒。13.观察下面用小棒摆出的图形,照这样的规律,摆4个八边形需要 根小棒,摆n个八边形需要 根小棒。

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律(含答案)

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律(含答案)

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律一、单选题1.用3根小棒可以摆一个三角形,按下面的方式摆下去,摆100个三角形需要( )根小棒.A.3×1 00 B.3×50+50+1C.2×99+1 D.3×100﹣1002.有一列数,第一个数是16,第二个数是8,从第三个数开始,每个数都是它前面两个数的平均数,则第2010个数的整数部分是( ) A.8 B.9C.10D.113.按的方式摆放在桌面上.8个按这种方式摆放,有( )个面露在外面.A.20B.23C.26D.294.用6根小棒可以拼成1个正六边形,用11根小棒可以拼成2个正六边形,用16根小棒可以拼3个正六边形,照这样拼下去,用46根可以拼( )个正六边形.A.6B.7C.8D.95.根据15×15=225,25×25=625,35×35=1225,45×45=2025可以推算出65×65=( )A.3025B.4225C.5625D.72256.木材厂将木头按下图堆放,第五堆有( )个.A.15B.21C.28D.34二、填空题7.2000多年前,古希腊毕达哥拉斯在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类(如图),1,3,6,10……由于这些数能够表示成三角形,将其称为三角形数。

按照这样的规律,第11个三角形数有 个小石子。

8.如图,下面是一些小正方形组成的图案,按照规律继续往下画,第5个图案有 个小正方形组成。

9.按下图的规律排列,第一个图形由4张卡片组成,第四个图形由 张卡片组成。

10.如果将一个边长为3的正方形四周涂上红色的框,然后剪成9个小正方形,则小正方形会有三种情况:第一种是两边有红框:第二种是一边有红框:第三种是四边都没有红框。

如果按上述方法要想得到一边有框的小正方形200个,这个正方形的边长应该为 。

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。

A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。

第15堆有( )个小球。

A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。

A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。

n个杯子叠起来的高度可以用下面( )的关系式来表示。

A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。

A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。

( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。

( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。

( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。

( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。

( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。

( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初小学六年级数学复习总结·知识点专项练习题+答案(6)找规律知识要点:对题目中给出的图形或数据认真观察分析,找到图形、数据中的数量变化规律,再根据规律递推,找出正确的解答。

这一类题型主要考察学生根据已有条件进行归纳与猜想的能力。

下面的题请同学运用各种学过的方法,如周期性分析,递推法,列表法等找出规律来解答以下各题。

1、数字规律:数字之间和差倍的规律,典型的有:兔子数列、间隔数列、等差数列、等比数列等。

2、图形规律:①图形中数量变化:点数、角数、边数、对称轴数、区域数……②图形中位置变化:一般来说,一组图形中元素个数完全相同,不同的是局部元素位置有变化,这时从位置的角度出发来解题。

位置变化的类型分为平移、旋转、翻转。

③图形的叠加减变化:图形组成的元素部分相似,进行加减同异。

习题精选:1. 按规律填数:5,2,8,6,11,10,14,()。

A.13B.16C.15D.142. 一组按规律排列的数:14,39,716,1325,2136,……,请你推断第6个数是()。

A.2948B.3148C.2949D.31493. 按顺序排列的数:3,4,6,9,14,22,35,.....,中的第八个数是()A.56B.64C.50D.524. 根据下面四个算式,发现其中规律,然后在括号中填入适当的数,其中正确的一组是()。

1×5+4=9=3×3;2×6+4=16=4×4;3×7+4=25=5×5;4X8+4=36=6×6;10×()+4=()=()×()A.14、81、9、9B.14、144、12、12C.12、121、11、11D.以上答案均不对5. 观察前两个图的规律,填出方框中的数。

()A.5B.7C.6D.86. 观察下列图形:它们是按一定规律排列的,依照此规律,第50个图形共有()个★。

A.161B.151C.141D.1317. 根据图形的排列规律,那么第50个图形中有()个小圆点。

2024年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2024年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2024年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.1、4、9、a 、25、36……在这组数中a 是( )。

A .18B .16C .142.按下面的规律,第15个图形一共有( )个 • 。

A .60B .100C .2253.将小正方体按下图方式摆放在地上,接着往下摆,第6组小正方体有( )个面露在外面。

A .23B .25C .274.按照1,12,14,18,☆……的规律,☆代表的数是( )。

A .110B .116C .1125.根据999×2+2=2000,999×3+3=3000,999×4+4=4000,可知999×5+5=( )。

A .5000B .6000C .70006.如图,……如果有n 个三角形,需要( )根小棒。

A .3B .2n+1C .2n+2二、填空题7.,摆7个六边形需要  根小棒,摆n 个六边形需要  根小棒。

8.按规律填一填,24,32,40,  ,56,  ,  。

9.已知9×0.7=6.3,99×0.77=76.23,999×0.777=776.223,9999 ×0.7777=7776.2223,那么99999×0.77777= 。

10.“37”是个有趣的数,你瞧:37×3=111,37×6=222。

写出下面两题的结果:37×9=  ,37×15= 。

11.唐唐在桌面上用小正方体按下图方式摆放。

摆1个小正方体有5个面露在外面,摆2个小正方体有8个面露在外面……摆n 个小正方体有 个面露在外面。

12.林林用火柴棒在桌面上摆图形(如下图),已经摆了3个正方形。

照这样继续摆下去,要摆出6个正方形,一共需要 根火柴棒。

13.已知:2+ 23=22×23,3+ 38=32×38,4+ 415=42×415,5+ 524=52×524,按照这个规律,下一个式子是 。

小升初数学专项训练+典型例题分析-找规律篇(附答案)

小升初数学专项训练+典型例题分析-找规律篇(附答案)

名校真题测试卷找规律篇时间:15 分钟满分 5 分姓名_________ 测试成绩________1 (12 年清华附中考题)如果将八个数14,30,33,35,39,75,143,169 平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13 年三帆中学考题)4+5=9;9+7=16 ;16+9=25 ;25+11=36 这五道算式,观察1+3=4 ;找出规律,然后填写2001 2+()=2002 23 (12 年西城实验考题)一串分数:1,21,2,3,4,1,2,3,4,5,6 7,1,2................................ 8, 1, 2 , ............ ,其中的第2000个分数3 3,5 5 5 5 7 7 7 7 7 7 9 9 9 11 11(1) 请你说明:11 这个数必须选出来;(2) 请你说明:37和73这两个数当中至少要选出一个;(3) 你能选出55 个数满足要求吗?附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33 、35、30、169 和14、39、75、4 (12 年东城二中考题)在2、3 两数之间, 第一次写上5, 第二次在2、5 和5、3 之间分别写上7、8(如下所示), 每次都在已写上的两个相邻数之间写上这两个相邻数之和. 这样的过程共重复了六次, 问所有数之和是多少?2⋯⋯7⋯⋯5⋯⋯8⋯⋯35 (04 年人大附中考题)请你从01、02、03、⋯、98、99中选取一些数,使得对于任何由0~9 当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7 、9 、11所以下面括号中填的数字为奇数列中的第2001 个,即4003。

3 【解】分母为 3 的有 2 个,分母为4 个,分母为7 的为 6 个,这样个数2+4+6+8⋯88=1980<2000,这样2000个分数的分母为89,所以分数为20/89 。

小升初专项训练_找规律篇

小升初专项训练_找规律篇

名校真题--找规律篇1 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+()=200223一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?专项训练 找规律篇一、典型例题解析1 与周期相关的找规律问题【例1】、 7n 化小数后,小数点后若干位数字和为1992,求n 为多少?【例2】、 有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【例3】、 某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?2 图表中的找规律问题【例4】、图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【例5】 自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?3较复杂的数列找规律【例6】、设1,3,9,27,81,243是6个给定的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名校真题 测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。

它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。

5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。

(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。

(3),同37的例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。

23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。

………89和98必选其一,选出1个。

如果我们只选两个中的小数这样将会选出9+8+7+6+5+4+3+2+1=45个。

再加上11~99这9个数就是54个。

小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。

在刚刚结束的12年小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。

二、2007年考点预测07年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。

三、典型例题解析 1 与周期相关的找规律问题【例1】、(★★)7n 化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n 化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。

【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。

希望考入重点中学? 奥数网是我们成就梦想的地方!【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。

所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3 较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。

从这六个数中每次或者取1个,或者取几个不同的数求和(每一个数只能取1次),可以得到一个新数,这样共得到63个新数。

把它们从小到大一次排列起来是1,3,4,9,10,12,…,第60个数是______。

【来源】1989年小学数学奥林匹克初赛第15题【解】最大的(即第63个数)是1+3+9+27+81+243=364第60个数(倒数第4个数)是364-1-3=360。

【例7】、(★★★)在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加-个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?【来源】 第五届“华杯赛”初赛第15题【解】原来的总和是10+11+…+98+99=290)9910(⨯+=4905,被7除余2的两位数是7×2+2=16,7×3+2=23,…,7×13十2=93.共12个数.这些数按题中要求添加小数点以后,都变为原数的101,因此这-手续使总和减少了(16+23+…+93)×(1-101)=212)9316(⨯+×109=588.6所以,经过改变之后,所有数的和是4905—588.6=4316.4.【例8】、(★★★)小明每分钟吹-次肥皂泡,每次恰好吹出100个.肥皂泡吹出之后,经过1分钟有-半破了,经过2分钟还有201没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有 个.【来源】 1990年小学数学奥林匹克决赛第8题【解】小明在第20次吹出100个新的肥皂泡的时候,第17次之前(包括第17次)吹出的肥皂泡全破了.此时没有破的肥皂泡共有 100+100×201+100×21=155(个).4 与斐波那契数列相关的找规律【引言】:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。

已知一对兔子每个月可以生一对小兔子,而一对兔子出生后在第二个月就开始生小兔子。

假如一年内没有发生死亡现象,那么,一对兔子一年内能繁殖成多少对?现在我们先来找出兔子的繁殖规律,在第一个月,有一对成年兔子,第二个月它们生下一对小兔,因此有二对兔子,一对成年,一对未成年;到第三个月,第一对兔子生下一对小兔,第二对已成年,因此有三对兔子,二对成年,一对未成年。

月月如此。

第1个月到第6个月兔子的对数是:1,2,3,5,8,13。

我们不难发现,上面这组数有这样一个规律:即从第3个数起,每一个数都是前面两个数的和。

若继续按这规律写下去,一直写到第12个数,就得:1,2,3,5,8,13,21,34,55,89,144,233。

显然,第12个数就是一年内兔子的总对数。

所以一年内1对兔子能繁殖成233对。

在解决这个有趣的代数问题过程中,斐波那契得到了一个数列。

人们为纪念他这一发现,在这个数列前面增加一项“1”后得到数列:1,1,2,3,5,8,13,21,34,55,89,……叫做“斐波那契数列”,这个数列的任意一项都叫做“斐波那契数”。

【例9】(★★)数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。

再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。

那么,第1年它只有主干,第2年有两枝,问15年后这棵树有多少分枝(假设没有任何死亡)?【解】 1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584 绝对是一棵大树。

【例10】(★★)有一堆火柴共 10根,如果规定每次取 1~3根,那么取完这堆火柴共有多少种不同取法?【解】此题要注重思路,因为没办法直接考虑,这样我们发现这题同样用找规律的方法,我们可以先看只有1根的情况开始:1根,有:1种;2根,有1、1,2,共两种;3根,可以有:1、1、1,1、2,2、1,3,共4种;4根,有:1、1、1、1,1、1、2,1、2、1,2、1、1,2、2,1、3,3、1,共7=4+2+1种;5根,有:1、1、1、1、1,1、1、1、2,1、1、2、1,1、2、1、1,2、1、1、1,1、2、2,2、1、2,2、2、1,1、1、3,1、3、1,3、1、1,2、3,3、2,共13=7+4+2种;6根,得到24=13+7+4种;即:n根,所有的取法种数是它的前三种取法的和。

相关文档
最新文档