小升初数学专题训练—“找规律解题(全国通用)
小升初奥数真题-找规律-通用版

一找规律1根据下列各串数的规律,在括号中填入适当的数:(1) 1 , 4 , 乙10 ,( ) ,16, •…(2) 2 , 3 , 5 , 8 , 13 , ( ),34 ,(3) 1 , 2 , 4 , 8 , 16 , ( ),……(4) 2 , 6 , 12 , 20 ,( ) ,42 ,-2•观察下列各串数的规律,在括号中填入适当的数:(1)2, 3, 5, 7 11 ,13,(), 19,……(2)1, 2, 2, 4, 8, 32,(),……(3)2, 5, 11, 23, 47,(),……(4)6, 7, 3, 0, 3, 3, 6, 9, 5,(),……3•观察下列各串数的规律,并在每小题的两个括号内填入适当的数:(1) 1, 1, 2, 4, 3, 9 , 4 , 16 , ( ) , 25 , 6,(),……(2) 15, 16 , 13 , 19 , 11 , 22 , ( ) , 25 , 7 ,(),……4 •按规律填上第五个数组中的数:{1 , 5, 10}{2 , 10 , 20}{3 , 15 , 30}{4 , 20 , 40}{ }5•下面各列算式分别按一定规律排列,请分别求出它们的第40个算式:(1)1+ 1 , 2 + 3 , 3 + 5 , 1+ 7 , 2 + 9 , 3+ 11, 1+ 13 , 2+ 15 ,(2)1X 3 , 2 X 2 , 1 X 1 , 2X 3 , 1 X 2 , 2X 1, 1 X 3,……6•下面两张数表中的数的排列存在某种规律,你能找出这个规律,并根据这个规律把括号里的数填上吗?(1) 2 6 7 11 (2) 2 3 14 4 ( ) 1 35 23 5 5 64 ( ) 37.下面各列数中都有一个“与众不同”的数,请将它们找出来:(1) 3 , 5 , 7 , 11, 15 , 19 , 23 ,……(2) 6 , 12 , 3, 27 , 21 , 10 , 15 , 30 ,……(3) 2 , 5 , 10 , 16 , 22 , 28 , 32 , 38 , 24 ,……(4) 2 , 3, 5 , 8 , 12 , 16 , 23 , 30 ,……&下图所示的两组图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:(1)(2)(2)9.观察下面图形中的数的规律,按照此规律, “? ”处是几?10•根据左下图中数字的规律,在最上面的空格中填上合适的数。
(小升初真题)六年级数学找规律题(易错题、难题)名师详解连载一

(小升初真题)六年级数学找规律题(易错题、难题)名师详解连载一第一关:我会找规律1.如下图,根据图形与数的规律,第10个数是()。
2.九张卡片上分别写着1~9九个数字。
甲、乙、丙、丁四人玩数字游戏,每人拿两张。
如果结果是:甲的两张数字之和是9,乙的两张数字之差是6,丙的两张数字之积是12,丁的两张数字之商是3。
那么剩下的这张数字是()。
3.六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次。
甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一。
比赛结果,三个人都猜对了一半。
那么,1班第()名,4班第()名。
4.按如右规律摆放三角形则第⑥个图三角形的个数为()。
A.15 B.17 C.20 D.245.下面的图形中,()是正方体的表面展开图。
1.根据规律填空:61,21,( ),29,227,( )。
2.海边灯塔上的一盏照明灯以固定的规律发出亮光。
下图表示前14秒灯光明暗变化的情况,第1秒亮( ),第2秒暗( ),第3秒暗( )……观察下图的变化规律,请你判断第39秒照明灯是( )的。
(填写“亮”或“暗”。
)3. 如下图所示,用白色和灰色小正方形按下图的规律摆大正方形。
照这样接着摆下去,第6幅图一共有( )个白色小正方形。
4.将同样大小的正方形按下列规律摆放,重叠部分涂上阴影,则下面图案中,第1个图案有3个正方形,第2个图案有7个正方形,那么:第1个 第2个 第3个(1)第六个图案中有( )个正方形;(2)若第n 个图案中有7999个正方形,则n=( )。
第二关:我会找规7. 31,91,271……按这组数的规律,第五个数应该是( );如果这样一直写下去,那么这个数会越来越接近( )。
8. 学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示) ,请你结合这个规律算一算, 6张桌子拼成一行能坐( )人, n 张桌子拼成一行能坐( )人。
通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。
2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。
3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。
小升初找规律的数学题

小升初找规律的数学题
(原创实用版)
目录
1.小升初数学题的重要性
2.找规律的数学题的特点和分类
3.如何解答找规律的数学题
4.提高解题能力的方法
正文
小升初是孩子们学习生涯中的一个重要转折点,而数学作为一门基础学科,对于孩子们的未来学习和发展起着至关重要的作用。
在小升初的数学题中,找规律的题目尤为重要,它不仅能够检验孩子们对基础知识的掌握程度,还能培养他们的逻辑思维能力和观察能力。
找规律的数学题主要分为两类:一类是数字规律题,这类题目需要孩子们通过观察数字序列,找出其中的规律,并根据规律推算出下一个数字;另一类是图形规律题,这类题目要求孩子们观察图形序列,找出图形之间的规律,并根据规律推断出下一个图形。
对于如何解答找规律的数学题,首先要做的是仔细阅读题目,理解题意。
然后,通过观察数字或图形序列,找出其中的规律。
在寻找规律的过程中,可以尝试从以下几个方面入手:一是数字或图形的排列顺序;二是数字或图形的数量变化;三是数字或图形的形状变化。
找到了规律后,就可以根据规律推算出下一个数字或图形。
为了提高解题能力,首先要扎实掌握基础知识,加强基本功的训练。
其次,要注重培养自己的观察能力和逻辑思维能力,可以通过做一些有趣的智力题或参加数学竞赛来提高。
最后,要养成良好的解题习惯,遇到问题要善于思考,不怕困难,勇于挑战。
总之,在小升初阶段,找规律的数学题对于孩子们的学习和发展具有重要意义。
小升初数学专题训练找规律解题

找规律解题【例题精讲】例1 摆5个三角形,需要11根木棒,摆2019个三角形,需要_____根木棒例2每个圆点代表一个花盆,根据前3个图案,计算出第2019个图案的花盘总数是__个例3 用数字摆成下面的三角形,请你仔细观察后,推断第10行的各数之和是多少?11 11 2 11 3 3 11 4 6 4 1例4 某城市有10条笔直的道路,这10条路没有平行的,每两条都有交叉路口,但没有3条或3条以上的路在一个路口相交,如果每一个交叉路口安排一名交警,共需安排多少名?例5一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?例 6 一个三角形全涂上白色,每进行一操作,即把全白三角形分成四个全等的小三角形,中间的小正三角形涂上黑色(如图),经过五次操作后,有____个黑色三角形,白色部分是整个三角形的_____。
例7 计算下面长方形的各数(没有正方形)?小学数学思维之找规律解题练习试卷简介: 全卷共5题,全部为选择题,共100分。
整套试卷注重数学的本质,锻炼思维能力,引导学生发挥想象力和创造力。
找规律解题,通过最简单最基本的情况寻找突破口。
学习建议: 数学是思维的体操,而奥数就是侧重于发展学生的思维能力。
建议学生将课本知识扎实掌握,比如计算能力,同时需要加强对应用题解题思维的发展,提高对常识问题的理解和应用,让自己发现问题、分析问题、解决问题的能力有大的提高!一、单选题(共5道,每道20分)1.将2019名学生排成一排,按1、2、3、4、5、6、7、6、5、4、3、2、1;1、2、3、4、5、6、7、6、5、4、3、2、1……循环报数,则第2019名学生报的数是_______。
A.3B.1C.4D.52.如图,用3根火柴可以摆出第1个正三角形,加上2根火柴可以摆出第2个正三角形,再加上2根火柴可以摆出第3个正三角形……这样继续下去,摆出第51个正三角形共用_______根火柴。
六年级下册数学试题---小升初专项训练--找规律篇---全国通用(含答案)(汇编)

小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。
在刚刚结束的小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。
二、2018年考点预测18年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。
1 与周期相关的找规律问题【例1】、(★★)7n 化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n 化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。
【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。
【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?【来源】 第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。
所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。
小升初数学规律专题

小升初数学--规律专题1、有A、B、C、D,4张透明胶片,请你根据字母和图形关系将第四幅图补充完整.2、如图,每个图案都是由若干个棋子摆成,依此规律,第100个图案中棋子的总个数是( )。
3、一列数1,2,2,3,3,3,4,4,4,4,……中的第35个数为( )。
4、用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第2010个图形需棋子( )枚。
5、用火柴棒连续摆这个图形,摆一个这样的图形需要4根火柴棒,如果像这样一直摆下去……连续排20个图形需要( )根火柴棒,用100根火柴棒可以摆成( )个这样的图形。
6、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,反复几次,就把这根很粗的面条拉成许多细的面条,如下面的草图所示:这样捏合到第( )次后可拉出128根细面条。
7、一串数排成一行,它们的规律是:头两个数都是1,从第三个数开始,每一个数都是它前面两个数之和,则这串数的前2008个数中有( )个偶数。
8、我国将于2008年主办第29届奥运会。
按每四年举行一次,则第39届奥运会将在()年举行。
9、张老师把72张号码是1-72的卡片,依次发给A、B、C、D四个同学,第68号卡片发给了同学( )。
10、观察下面一列数的规律,在括号内填数。
1、2、4、7、11、()、22。
11、观察上面图形规律:当n=( )时,图形中“口"的个数是“。
”的个数的3倍。
12、观察按下顺序排列的等式:9x0+1=01,9x1+2=11,9x2+3=21 ,9x3+4=31,9x4+5=41按以上各式成立的规律,写出第12个等式是:( )。
13、有一列数1,1,2,3,5,8,13,21,34,55......,从第三个数开始,每个数都是它前两个数之和。
那么在前1000个数中,有( )个奇数。
14、找规律,下图空缺的数是( )。
15、自然数按一定的规律排列如下:从排列规律可知,99排在第( )行第( )列。
小升初数学专项训练+典型例题分析-找规律篇(附答案)

名校真题测试卷找规律篇时间:15 分钟满分 5 分姓名_________ 测试成绩________1 (12 年清华附中考题)如果将八个数14,30,33,35,39,75,143,169 平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13 年三帆中学考题)4+5=9;9+7=16 ;16+9=25 ;25+11=36 这五道算式,观察1+3=4 ;找出规律,然后填写2001 2+()=2002 23 (12 年西城实验考题)一串分数:1,21,2,3,4,1,2,3,4,5,6 7,1,2................................ 8, 1, 2 , ............ ,其中的第2000个分数3 3,5 5 5 5 7 7 7 7 7 7 9 9 9 11 11(1) 请你说明:11 这个数必须选出来;(2) 请你说明:37和73这两个数当中至少要选出一个;(3) 你能选出55 个数满足要求吗?附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33 、35、30、169 和14、39、75、4 (12 年东城二中考题)在2、3 两数之间, 第一次写上5, 第二次在2、5 和5、3 之间分别写上7、8(如下所示), 每次都在已写上的两个相邻数之间写上这两个相邻数之和. 这样的过程共重复了六次, 问所有数之和是多少?2⋯⋯7⋯⋯5⋯⋯8⋯⋯35 (04 年人大附中考题)请你从01、02、03、⋯、98、99中选取一些数,使得对于任何由0~9 当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
143。
2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7 、9 、11所以下面括号中填的数字为奇数列中的第2001 个,即4003。
3 【解】分母为 3 的有 2 个,分母为4 个,分母为7 的为 6 个,这样个数2+4+6+8⋯88=1980<2000,这样2000个分数的分母为89,所以分数为20/89 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找规律解题【例题精讲】
例1 摆5个三角形,需要11根木棒,摆2011个三角形,需要_____根木棒
例2每个圆点代表一个花盆,根据前3个图案,计算出第2011个图案的花盘总数是__个
例3 用数字摆成下面的三角形,请你仔细观察后,推断第10行的各数之和是多少?
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
例4 某城市有10条笔直的道路,这10条路没有平行的,每两条都有交叉路口,但没有3条或3条以上的路在一个路口相交,如果每一个交叉路口安排一名交警,共需安排多少名?例5一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?
例6 一个三角形全涂上白色,每进行一操作,即把全白三角形分成四个全等的小三角形,中间的小正三角形涂上黑色(如图),经过五次操作后,有____个黑色三角形,白色部分是整个三角形的_____。
例7 计算下面长方形的各数(没有正方形)?
小学数学思维之找规律解题练习
试卷简介全卷共5题,全部为选择题,共100分。
整套试卷注重数学的本质,锻炼思维能力,引导学生发挥想象力和创造力。
找规律解题,通过最简单最基本的情况寻找突破口。
学习建议数学是思维的体操,而奥数就是侧重于发展学生的思维能力。
建议学生将课本知识扎实掌握,比如计算能力,同时需要加强对应用题解题思维的发展,提高对常识问题的理解和应用,让自己发现问题、分析问题、解决问题的能力有大的提高!
一、单选题(共5道,每道20分)
1.将2000名学生排成一排,按1、2、3、4、5、6、7、6、5、4、3、2、1;1、2、3、4、5、6、7、6、5、4、3、2、1……循环报数,则第2000名学生报的数是_______。
A.3
B.1
C.4
D.5
2.如图,用3根火柴可以摆出第1个正三角形,加上2根火柴可以摆出第2个正三角形,再加上2根火柴可以摆出第3个正三角形……这样继续下去,摆出第51个正三角形共用_______根火柴。
A.103
B.153
C.102
D.101
3.一楼梯共12级,规定每步只能跨上一级或两级,要登上第12级,共有多少种不同走法?
A.89
B.2
C.233
D.144
4.下图有多少个长方形?
A.36
B.150
C.441
D.256
5.一个三角形全涂上黑色,每进行一操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色(如图),经过6次操作后,有____个白色三角形。
A.121
B.364
C.243
D.18。