材料 外文翻译 外文文献 圆弧型柔性铰链刚度特性分析
三种形状柔性铰链转动刚度的计算与分析_左行勇

Calculation and analysis of rotational stiffness for three types of flexure hinges
Zuo Xing yong L iu Xiao ming
( School of M echatronics Eng ineer ing , Univer sity of Electr onics Science and T echnology of China, Chengdu 610054 , #43; f Ebt 3 E bR 2 f2 =
2
( 4)
Q
m
m
Q
H m
cosH
3
-H m
t + 2 - 2cosH R ( 1)
dH
3 dH= t + 2 - 2cos H R H m 4 8C ( 2C + 1) tan 2 2+ 2 2 H m ( 4C + 1) 1+ ( 4 C + 1) tan 2 H m 3 3 4C ( 6C + 3C + 1) tan 2 + H m 2 ( 4C + 1) 1+ ( 4 C + 1) tan2 2 4 12C ( 2C + 1) H m 5/ 2 arctan 4C + 1t an ( 4C + 1) 2 R [5] 式中: C = 。 t 弓形柔性铰链的转动刚度计算公式为:
图4 柔性铰链宽度 b 与力矩 M z 的关系曲线
( 4) 转动刚度 与圆心角 H m 呈曲线递 减关系 , 且减速 越来越平缓; ( 5) 转动刚度与材料的弹性模量 E 成正比。 弓形柔性铰链各设计参数对其转动刚度的影响程度 依次为: 最小厚度 t 影响最大, 其次为圆弧半径 R , 再次 为圆心角 H m , 最后为宽度 b。 3. 2 倒圆角直梁形柔性铰链刚度与设计参数的关系 倒圆角直梁形柔 性铰链 的转动 刚度计 算公 式如式 ( 6) 所示, 设计参数为: 材料弹性模量 E , 柔性铰链宽度 b 及最小厚度 t , 倒圆角半径 R , 直梁部分长度 l 。各设计参 数与柔性铰链偏转一定角度所需力矩 M z 之间的关系曲 线如图 4~ 图 6 和图 8 所示。 由公式( 6) 和图 4~ 图 6 以及图 8 分析可得: ( 1) 转动刚度与宽度 b 呈线性递增关系; ( 2) 转动刚度与最小厚度 t 呈曲线递增关系, 且增速 越来越快;
第二章柔性铰链的分类与分析

第二章柔性铰链的分类与分析2.2柔性铰链的分类与分析柔性铰链是利用材料的变形产生位移的一种特殊运动副,用于提供绕轴作复杂运动的有限角位移,具有无机械摩擦、无间隙、易维护、分辨率高和可一体化加工等优点。
柔性铰链有很多种结构,最普通的形式是绕一个轴弹性弯曲,而且这种弹性变形是可逆的。
[现代精密机械设计],如图2.1所示。
图2.1 柔性铰链结构简图Fig.2.1Diagram of flexure hinge2.2.1柔性铰链的分类及编号自20世纪60年代以来,国内外学者、科研院校及研究机构对柔性铰链进行了多方面的研究,包括理论计算、结构创新设计及应用等方面。
按目前国内外的发展研究状况,柔性铰链按其切口形状可分为单边的和双边的,按其截面曲线分为单一的和混合的;按运动副分可分为转动副、移动副和球副,按其传递运动和能量的方向分单轴柔性铰链、双轴柔性铰链、万向柔性铰链和柔性联杆。
按照横截面的不同形状,可以分为:矩形截面柔性铰链和圆形截面柔性铰链。
按研究出现的先后顺序可分为传统的柔性铰链和典型的大变形柔性铰链。
还有其他特殊类型的如弓形柔性铰链、三角形柔性铰链、叶状形的柔性铰链、簧片式的柔性铰链等等。
根据以上的分析可将柔性铰链分成以下三大类,如表2-1,2-2,2-3所示。
表2-1基本曲线规则截面单轴柔性铰链()Single-Axis Flexure Hinges单轴对S-CCircular Flexure Hinge)直圆型(称1)抛物线型(Parabolic Flexure Hinge Inverse Parabolic Flexure反转抛物线(S-Ip)Hinge S-SSecant Flexure Hinge正割型()hyperbolic cosine Flexure双曲余弦型(S-H)HingeS-Aarched Flexure Hinge)弓型(S-V型(V Flexure Hinge)VS-Cy)cycloidal Flexure Hinge摆线型(s-E )椭圆型(Elliptical Flexure Hinge1单s-P )Parabolic Flexure Hinge抛物线型(轴不hyperbolic cosine Flexure 双曲线型(对s-HcHinge)称s-CB导角型Corner-Filleted Flexure Hinge()表2-2由基本柔性铰链混合而成的单轴铰链模型()Single-Axis Flexure HingesS-BB 类型二2交错铰链直两个车轮铰链Cross(梁-混合cartwheel(FlexureS-BB直3flexural)Hinge梁hinges)混合型S-BB 类型三4交错叶片混合一二S-BB cross-axis flexural(5混合)pivot直梁-直圆导角型(Corner-Filleted S-CB)Flexure Hinge混合型直圆-导角S-CCB混合型直圆-椭圆S-CE1混合型表2-3双轴柔性铰链(Two-Axis Flexure Hinges)ted(serially-disposed) T-EE-NC-P两轴平行双11)notches轴柔性T-CC-C -V两轴垂直铰链并联-同位配置(collocatednotches)T-BB-C-P两轴平行例T-EE-V双轴椭圆铰链11子表2-4多轴柔性铰链(Multiple-Axis Flexure Hinges)Corner-Filleted导角型(M-CBFlexure Hinge)直圆型(Circular Flexure M-C抛物线型(Parabolic M-PFlexure Hinge)双曲线型(Hyperbolic M-H)Flexure Hinge编号规则:1、大写代表单轴对称,即双边切口,小写代表单轴不对称,即单边切口。
基于田口方法的柔性铰链柔度稳健优化设计

基于田口方法的柔性铰链柔度稳健优化设计伍建军;万良琪;吴事浪;聂鹏飞;吴佳伟【摘要】T he flexibility robustness of compliant mechanism is the premise of compliant mecha‐nism widely applying in miniature electromechanical systems and precise engineering field .In practice ,this problem cannot be solved by using traditional method .A new robust design method was presented ,the structural parameters of flexure hinge and working load were selected as well . By processing and analyzing test data resulted from orthogonal test ,the best combination o f pa‐rameters was obtained and verified by experiment .The results demonstrated that ,against the traditional design ,the signal noise ratio increased about 4 .68 dB ,the quantity loss of flexible hinge reduced .It also implemented the flexibility stabilit y optimization on the flexible hinge .Fi‐nally ,the flexibility robustness of flexible hinge could be optimized . T he robust design can be widely used and has reference value in application .%柔顺机构柔度稳健性是柔性机构在微机电系统与精密工程等领域广泛应用的前提和基础,但在实际工程中传统设计方法未充分考虑其稳健性.引入田口稳健优化设计方法,选取柔性铰链各结构参数为可控因素,工作载荷为噪声因子,通过正交试验数据分析得出各个可控因素的信噪比和贡献率,进而选出最佳的参数水平组合,并对柔度综合稳健性能的最优方案进行了验证.算例表明,采用田口稳健优化设计的柔性铰链柔度稳健性比传统方法信噪比水平提高了4.68 dB ,降低了其质量损失,实现了柔性铰链柔度稳定性优化.田口稳健优化设计方法具有普适性,在实际工程应用中具有较高参考价值.【期刊名称】《工程设计学报》【年(卷),期】2015(000)003【总页数】6页(P224-229)【关键词】柔顺机构;田口方法;稳健优化【作者】伍建军;万良琪;吴事浪;聂鹏飞;吴佳伟【作者单位】江西理工大学机电工程学院,江西赣州341000;江西理工大学机电工程学院,江西赣州341000;江西理工大学机电工程学院,江西赣州341000;江西理工大学机电工程学院,江西赣州341000;江西理工大学机电工程学院,江西赣州341000【正文语种】中文【中图分类】TH112柔顺机构作为一种新型机构具有无间隙、无机械摩擦、运动灵敏度高以及加工简单等优点,广泛应用于微机电系统、航空航天、生物工程等高尖端领域.柔顺机构柔度稳定性往往受到结构参数与外界随机载荷的交互作用影响,造成柔顺机构在高尖端领域柔度稳健难以实现.到目前为止国内外学者在柔顺机构拓扑优化设计方面的研究比较深入,但针对柔顺机构柔度稳健优化设计的研究文献还偏少.文献[1]提出了一种结构法柔顺机构可靠性拓扑优化设计方法,将外界载荷与结构尺寸参数作为随机变量,采用了一可靠度方法计算串联系统的失效概率,建立了柔顺机构可靠性多目标拓扑优化设计模型,结果表明采用可靠性设计方法可获得性能比较好的机构.文献[2]采用一次二阶矩法并且采用可靠性指标来衡量参数随机不确定性的影响.作者以机构柔度最小化与输出位移最大化为目标函数,将可靠性指标作为约束,建立柔顺机构热固耦合拓扑优化数学模型,结果表明基于该方法找到了柔顺机构经济性与安全性最佳结合点,获得良好的性能.文献[3]对一种双稳态的柔顺曲柄滑块进行了可靠性设计,通过有限元模拟仿真,验证了该方法的有效性.针对柔顺机构柔度在复杂工况[4-8]下,其柔度受结构参数(可控因素)与外界随机载荷(噪声因素)影响,难以实现在高尖端领域柔度稳健的难题,本文引入田口稳健优化设计方法,以倒圆角直梁柔性铰链为载体的柔顺机构为例来探索一种新的柔度稳健实现方法.在倒圆角直梁柔性铰链柔度数学计算模型及其不稳定影响因素阐述的基础上,找出影响柔性铰链柔度不稳定的可控因素与噪声因素,并以柔性铰链柔度在各种条件下的模拟试验数据为基础,通过正交试验设计来确定设计参数的最佳水平组合;并以信噪比作为衡量柔度稳健程度的特性指标,为柔顺机构柔度稳健优化设计提供一种新的途径.1 田口方法稳健优化设计理论稳健性设计方法是工程实际问题中非常有价值的优化方法,包括[9]:1)以半经验设计为基础的稳健设计方法,主要有田口方法、响应曲面法等;2)以工程模型为基础的稳健优化设计方法,主要有变差传递法、随机模型法等.由于田口方法具有简单实用、便于与有限元方法相结合等优点,它成为柔性铰链稳健设计首选方法.田口稳健设计方法由日本著名质量管理专家田口玄一博士提出,是一种在正交试验和信噪比技术基础上的稳健设计方法.根据实际的目标需求不同,可将研究对象的质量特性分为望大特性、望小特性和望目特性.望大特性是指质量特性y越大越好,y的理想值为无穷大.其信噪比计算公式为望小特性是指非负值的质量特性y越小越好,y的理想值为零.其信噪比计算公式为望目特性是指质量特性y具有目标值.通常采用二阶段优化方法来达到或靠近目标值.其信噪比计算公式为式中:S/N为信噪比,yi为试验结果,N为试验次数,为试验结果的平均值,σ为试验结果标准差.柔顺机构在实际工程背景下对柔度要求是望大质量特性,后文基于式(2)采用概念性方法对柔性铰链进行均值与信噪比的计算.结合本文研究情况,图1为柔性铰链柔度田口稳健优化设计步骤.图1 柔性铰链柔度稳健优化设计步骤Fig.1 Robust optimization design steps of flexible hinge flexibility2 柔性铰链柔度稳健优化设计2.1 影响柔性铰链柔度因素的确定本文以倒圆角直梁柔性铰链为载体的柔顺机构为例探索一种新的柔度稳健实现方法.考虑倒圆角直梁柔性铰链的结构模型复杂,很难直接确定其柔度计算公式,故本文提出的假设是基于小变形悬臂梁理论,将倒圆角直梁型柔性铰链一端固定,其另一端施加载荷.经查阅参考相关文献,本文在对柔性铰链一端施加力矩MZ作用下,其柔度的计算公式[10]为:式中:ω为倒圆角直梁柔性铰链柔度,t为倒圆角直梁柔性铰链的最小厚度,b为宽度,R为倒圆角半径,l为直梁长度.其结构如图2所示.根据柔度计算公式及工程实践经验,通常影响柔性铰链柔度的可控因素主要为铰链的结构参数,而其工作载荷随机波动可以假定作为影响柔度的噪声因素.图2 倒圆角直梁柔性铰链的结构图Fig.2 The corner-filleted flexural hinge structure diagram2.2 正交试验安排根据柔性铰链柔度分析可知影响其柔度的因素有最小厚度t、宽度b、倒圆角R、直梁长度l四个几何尺寸参数.将这4个影响因素作为田口稳健设计的可控因素,工作载荷MZ作为噪声因素.每个可控因素选择3个具有代表性的水平值,同时噪声因素也选择3个具有代表性的水平值.按照柔性铰链实际工程背景,可控因素与噪声因素水平配置如表1与表2所示.表1 可控因素及水平配置表Table 1 Controllable factors and level configuration table mm?表2 噪声因素及水平配置表Table 2 Noise factor and level configurationtable N·mm/radMZ 25.2 28.0 30.0在确定影响柔性铰链可控因素与噪声因素及其水平配置表后,选用相应的正交试验表,建立正交试验方案.本文正交试验安排选用L9(34×31)正交表,正交试验的目标函数为柔性铰链柔度,质量特性为望大信噪比.在建立相应的正交试验方案后,计算各试验条件下的柔性铰链柔度的信噪比及其均值,具体计算数值见表3.信噪比是衡量研究对象稳健性的一种测度.在柔性铰链的稳健设计中,以柔性铰链柔度为稳健优化对象,表现为典型的望大特性.其计算公式为式(1).以表3的试验1为例,柔性铰链柔度信噪比可计算为2.3 柔性铰链柔度方差分析为了进一步探究各可控因素对柔性铰链望大目标函数的影响程度,采用方差分析来评估正交试验中的每个可控因素的贡献率.方差分析是通过采用标准偏差平方和来探究每个设计变量的差异和差异程度.1)总偏差平方和ST.表3 正交试验数据表Table 3 Orthogonal test data sheet1 9 0.9 2.25 3.6 21.798 24.220 26.642 27.596 0 24.220 0 2 9 1.0 2.50 4.0 19.198 21.331 23.464 26.492 8 21.331 0 3 9 1.1 2.75 4.4 17.152 19.058 20.964 25.514 1 19.058 0 4 10 0.9 2.50 4.4 25.139 27.932 30.726 28.834 7 27.932 3 5 10 1.0 2.75 3.6 16.641 18.490 20.339 25.251 3 18.490 0 6 10 1.1 2.25 4.0 12.459 13.843 15.228 22.737 4 13.843 3 7 11 0.9 2.75 4.0 22.065 24.517 26.968 27.701 8 24.516 7 8 11 1.0 2.25 4.4 16.032 17.813 19.594 24.927 3 17.813 0 9 11 1.1 2.50 3.6 10.946 12.162 13.378 21.612 7 1 2.162 02)试验数据总和的修正项CT.3)自由度fT.(4)误差平方和Se与自由度fe.式中:Sb,St,SR,Sl分别为各设计变量的偏差平方和;ST为总偏差平方和;CT为修正项;fT为自由度;Se为误差平方和;fb,ft,fR,fl分别为各设计变量的自由度;fe为误差平方和的自由度;yi表示每个试验结果的信噪比;表示所有试验结果信噪比的平均值;N表示试验次数.通过方差分析计算出各可控因素的贡献率,对各贡献率大小进行了定量分析.由方差计算公式汇总得到表4.从表5方差分析计算结果可知,各个可控因素对铰链柔度稳健有着不同程度的影响:柔性铰链最小厚度t影响最为显著,其贡献率为76.2%;其次宽度b贡献率为10.6%;直梁长度l与倒圆角半径R贡献率各占8.5%,4.7%.表4 方差计算公式Table 4 Calculation formula of variance离差来源平方和S 自由度f 均方V 统计量F 贡献率ρ b Sb fb Vb=Sb/fb Fb=Vb/Ve ρb=Sb-fbVe S T t St ft Vt=St/ft Ft=Vt/Ve ρt=St-ftVe S T R SR fR VR=SR/fR FR=VR/Ve ρR=SR-fRVe S T l Sl fl Vl=Sl/fl Fl=Vl/Ve ρl=Sl-flVe S T e Se fe Ve=Se/fe //总平方和 ST ///100%表5 方差数据分析表Table 5 The table of variance data analysisb 4.797 5 2 2.398 75 56.641 1 10.6%t 33.959 6 2 16.984 79 401.057 5 76.2%R 1.720 0 2 0.86 16.568 6 4.7%l 3.871 8 2 1.935 9 20.306 9 8.5%e 0.084 3 2 0.042 35 //总平方和 44.4332 ///100%2.4 柔性铰链最佳可控因素水平组合确定在完成对柔性铰链柔度试验数据分析后,选择各可控因素最佳水平值以形成稳健设计解.由图3可知柔性铰链柔度望大目标函数的各可控因素的参数水平组合为b1t1R3l3,该组合为柔度综合稳健性能最优方案.3 预测与验证根据柔性铰链正交表试验设计获得可控因素最佳水平参数组合b1t1R3l3,在此基础上进行柔度信噪比预测.其预测公式[11-13]为式中:为柔度信噪比预测值,为信噪比总和均值,为相应最优水平,q为可控因子数.通过对最佳水平参数组合信噪比预测计算,可知其信噪比为30.270 2dB.比较柔性铰链初始设计的参数水平组合与田口稳健优化后的参数最佳水平组合的信噪比.计算可知传统优化设计的信噪比为图3 柔性铰链可控因素最佳水平组合图Fig.3 The best level combination chart of flexible hinge's controllable factors田口稳健设计的信噪比为传统优化设计与田口稳健设计对比增益为式中:表示传统设计的信噪比,表示试验数据信噪比均值;分别为各结构尺寸在水平2时的信噪比均值;为田口稳健优化后的信噪比;分别为结构尺寸b和t在水平1时的信噪比均值;分别为结构尺寸R和l在水平3时信噪比均值;Δ为传统优化设计与田口稳健优化设计信噪比对比增益.采用田口稳健优化后的参数组合的质量损失得到大幅度降低,其质量损失效果对比如下式计算得到:式中:Lopt为田口稳健优化后质量损失值,Lini为传统优化后质量损失值,δopt 为田口稳健优化后的质量损失系数,δini为传统优化后的质量损失系数.由田口稳健优化设计的参数水平组合经过验证表明柔性铰链柔度信噪比水平确实提高了4.68 dB,并且降低了其质量损失,实现了柔性铰链柔度稳定性优化.4 结论本文采用田口方法对柔性铰链主要结构参数最小厚度t、宽度b、直梁长度l与倒圆角半径R进行分析,这4个结构参数对柔性铰链柔度稳健可靠性[14-15]皆有显著影响,其中柔性铰链最小厚度影响最为显著,其贡献率为76.2%,其次宽度b贡献率为10.6%,直梁长度l贡献率为8.5%,倒圆角半径R贡献率为4.7%.在所研究实例的设计范围内,柔性铰链的最佳参数水平组合是:铰链宽度为9mm,最小厚度为0.9mm,倒圆角半轴为2.75mm,直梁长度为4.4mm.通过实例验证表明了柔性铰链柔度的田口稳健优化设计比传统优化设计信噪比提高了4.68dB,其质量损失大幅度降低.同时,该田口稳健优化设计方法具有普适性,可以对不同类型柔性铰链进行稳健设计,在实际工程应用中具有重要参考价值.参考文献:[1]占金青,张宪民.基于基础结构法的柔顺机构可靠性拓扑优化[J].机械工程学报,2010,46(13):42-47.ZHAN Jin-qing,ZHANG Xian-min.Reliability-based topology optimization of compliant mechanisms by using foundation structure approach[J].Chinese Journal of Mechanical Engineering,2010,46(13):42-47.[2]李冬梅,张宪民,王念峰,等.基于可靠性约束的热固耦合结构拓扑优化[J].华南理工大学学报:自然科学版,2011,39(6):42-47.LI Dong-mei,ZHANG Xian-min,WANG Nian-feng,et al.Topology optimization of thermo-mechanical coupling structures based on reliability constraint [J].Journal of South China University of Technology:Natural Science Edition,2011,39(6):42-47.[3]HOWELL L L,RAO S S,MIDHA A.Reliabilitybased optimal design ofa bistable compliant mechanism[J].Journal of Mechanical Design,1994,116(4):1115-1121.[4]张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51.ZHANG Xian-min.Topology optimization of compliant mechanisms [J].Chinese Journal of Mechanical Engineering,2003,39(11):47-51.[5]李兆坤,张宪民,陈金英,等.柔顺机构几何非线性多目标拓扑优化设计[J].机械强度,2011,33(4):548-553.LI Zhao-kun,ZHANG Xian-min,CHEN Jin-ying,et al.Multiobjective topology optimization of compliant mechanisms with geometrical nonlinearity[J].Journal of Mechanical Strength,2011,33(4):548-553.[6]张宪民,汪启亮.柔顺机构疲劳可靠性及损伤识别眼研究进展[J].华南理工大学学报:自然科学版,2012,40(10):190-197.ZHANG Xian-min,WANG Qi-liang.Research progress of fatigue reliability and damage identification of compliant mechanisms[J].Journal of South China University of Technology:Natural Science Edition,2012,40(10):190-197.[7]HOWELL L pliant mechanisms[M].New York:Wiley Interscience,2001:45-70.[8]李兆坤,张宪民.基于可靠性的柔顺微夹持机构几何非线性拓扑优化[J].华南理工大学学报:自然科学版,2008,36(8):110-116.LI Zhao-kun,ZHANG Xian-min.Reliability-based topology optimization of compliant micro-gripper with geometrical nonlinearity[J].Journal of South China University of Technology:Natural Science Edition,2008,36(8):110-116.[9]郭宏,钱浩.永磁同步电机低转矩脉动的稳健设计[J].中国电机工程学报,2012,32(24):88-95.GUO Hong,QIAN Hao.Robust design for reducing torque ripple in permanent magnet synchronous motor[J].Proceedings of the Chinese Society for Electrical Engineering,2012,32(24):88-95.[10]任宁,田国豪,欧开良,等.倒圆角直梁型柔性铰链刚度研究[J].机械强度,2012,34(3):366-370.REN Ning,TIAN Guo-hao,OU Kai-liang,et al.Research on rigidity of corner-filleted flexural hinges[J].Journal of Mechanical Strength,2012,34(3):366-370.[11]汪先送,程佩,张卫文,等.基于田口方法的Al-Cu合金挤压铸造工艺参数优化[J].特种铸造及有色合金,2012,32(5):447-450.WANG Xian-song,CHENG Pei,ZHANG Wei-wen,et al.Optimization of processing parameters of squeezing casting Al-Cu alloy based on the Taguchi methods[J].Special Casting &Nonferrous Alloys,2012,32(5):447-450.[12]CHANG Chung-shang,LIAO Ren-chieh,WEN Kunli,et al.A grey -based taguchi method to optimize design of muzzle flash restraint device[J].The International Journal of Advanced Manufacturing Technology,2004,24(11/12):860-864.[13]SHIN Wae-gyeong,LEE Soo-hong.Determination of accelerated condition for brush wear of small brushtype DC motor in using Design of Experiment(DOE)based on the Taguchi method[J].Journal of Mechanical Science and Technology,2011,25(2):317-322.[14]王东,陈建康,王启智.Monte-carlo随机有限元结构可靠度分析新方法[J].四川大学学报:工程科学版,2008,40(3):20-26.WANG Dong,CHEN Jian-kang,WANG Qi-zhi.The new method of structural reliability analysis by Montecarlo stochastic finite element[J].Journal of Sichuan University:Engineering Science Edition,2008,40(3):20-26.[15]李世峻.柔性铰链静动力学、疲劳寿命及可靠性分析研究[D].西安:西安电子科技大学机电工程学院,2006:44-50.LI Shi-jun.Research on statics,dynamics,fatigue life and reliability of the flexure hinge[D].Xi′an:Xidian University,School of Electro-Mechanical Engineering,2006:44-50.。
圆弧型柔性球铰柔度设计计算

圆弧型柔性球铰柔度设计计算
杨春辉;刘平安
【期刊名称】《工程设计学报》
【年(卷),期】2014(000)004
【摘要】通过研究圆弧型柔性球铰的柔度性能,使该柔性球铰可代替传统的双轴柔性铰链应用于空间多自由度柔顺机构.根据《材料力学》中的卡氏第二定理,圆弧型柔性球铰柔度的解析公式被推导出,然后利用 ANSYS12.0软件对其进行有限元分析,结果表明有限元分析与解析式的计算结果基本一致.通过改变圆弧型柔性球铰的各结构参数来分析其性能,得出各结构参数对其柔度的影响大小依次为:最小截面直径 t、圆弧的圆心角θm 、圆弧半径 R、杨氏模量 E.此设计计算和特性分析为柔性球铰在柔顺机构的应用提供了依据。
【总页数】5页(P389-392,404)
【作者】杨春辉;刘平安
【作者单位】华东交通大学轨道交通学院,江西南昌330013;华东交通大学轨道交通学院,江西南昌330013
【正文语种】中文
【中图分类】TP24
【相关文献】
1.双轴柔性铰链柔度的设计计算 [J], 朱仁胜;沈健;谢祖强;陈长琦
2.直圆柔性球铰柔度矩阵的解析计算 [J], 姚建涛;李立建;杨维;赵永生
3.椭圆型柔性铰链闭式扭转柔度研究 [J], 李立建;张丹
4.倒圆角直梁型柔性球铰柔度计算与分析 [J], 杨春辉
5.S型柔性铰链的柔度计算与分析 [J], 于月民;郝俊才;乔牧
因版权原因,仅展示原文概要,查看原文内容请购买。
英语标题翻译和分析

Precision Positioning Mechanism 复合名词
Bio-engineering 合成词
• 14 Design of 3D precision displacement system (三维精
密位移系统的设计) precision displacement system 精密位移系统 n+n...
• 15 Rotation Precision Calculation and Analysis of Typical Flexure Hinges (典型柔性铰链回转精度性能计算与分析) 中文中的性能是根据意思增译的 Rotation Precision Calculation 名词连用现象 • 16 Design of flexure hinges with space curve notches (空间曲线切口式柔性铰的设计) 介词词组修饰flexure hinges表示特性特征
• 1 Closed Loop Design Method of Micro-driving Displacement Amplifier Module Targeting for Stiffness (以刚度为目标的微位移放大模块闭环设计方法) 1)Displacement amplifier module可改写为
名词+名词(行为名词)名词化结构
2)整个标题使用了偏正结构 ,中心词为Dynamics analysis ,后面的介词短语起修饰限定作用
• 3 On the 2R pseudo-rigid-body model of compliant mechanisms (柔顺机构的 2R 伪刚体模型研究) 采用了英语标题中的动宾结构(介词加宾语) On (关于...)研究 pseudo-rigid-body 伪刚体(复合词) pseudo-rigid-body model (复合名词)名词化结构 • 4 Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design (基于正交设计的3RPS并联机构精度分析与综合) Accuracy analysis n+n (行为名词)名词化结构 Accuracy analysis and synthesis 并列结构
材料 外文翻译 外文文献 英文文献 圆弧型柔性铰链刚度特性分析

作者:Chunhui Yang Shimin Luo国籍:China出处:2010 Intemational Conference on System,Engineering Drdign and Manufacturing InformatizationCircular are flexible hinge stiffness character analysis Abstract-Flexible hinges are widely used in micro robotic. Its tigidity directly influences an organization’s terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper. We analayzed the rotation rigidity of a ellliptical flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical result. Though the graph of the flexible hinge parameters on the performance of a elliptical flexible hinge was carried out. The key manufacture parameters that affect the performance of an elliptical flexible hinge the most and rules of design are given, which can provide directions of design precision for the flexible hinge.Keywords-flexible hinge; elllipse; finite element analysisl;rigidityⅠ.INTRODUCTIONFlexible hinge have some characteristics, such as small volume, without tubs, ceaseless, good rigidity and high sensitivity. With micocomputer electrical system series (MEMS) technical rapidly expanding, flexible hinge are widely applied in the displacement which requests small angular and high-precision rotation, such as gyroscopes,accelerometers, percision instruments and so on. It has broad application prospects in the micron level domain.The common flexible hinge is in two kinds:beam-shape flexible hinge and arc-shaped flexible hinge. The beam-shaped flexible hinge has a big slewing area, but the movement precision is bad. The arc-shaped flexible hinge’s movement percision is bad. The arc-shaped flexible hinge is relatively small. In order to take into account the movement ptecision and scope, the following several rotation flexible hinges have been generated: parabolic flexure hinge, an elliptical flexure hinge and a hyperbola-shaped hinge, etc. The properties of flexible hinges are rigidity precision and stress characteristic etc. the rigidityperformance reflects the stress ability and also manifests movement to a vice-flexible degree. In 1965, Parosetal announced his design development of the circular flexible hinge for the first time, and gave the rigidity formula.Smithetal used the similar method to obtain an elliptic flexible hinge mechanics expression. Nicolae Lodonitu inferred the parabola and the hyperbolic flexible hinge’s rigidity formula. Wei Xu and Tim king analyzed the tectang ular and elllipse flexible hinge’s rigidity and rotarion precision using the finite element method.In this paper the elliptical flexible hinge stiffness to different geometrical parameters is analyzed with software ANSYs10.0. Compared with ressults of theoretical analysis and finite element analysis(FEA), the errors are analyzed. Theough the graph of the flexible hinge parameters and its performanve, an analysis of changes of parameters on the performance of the elliptical fexible hinge was carried out. The key manufacture parameters that affect the performances of an elliptical flexible hinge the most and rules of design are given, which can guve direcrions of design precision for the flexible hinge.Ⅱ.RIGIDITY FORMULA OF THE ELLIPTICAL FLEXIBLE HINGEAn elliptical flexible hing,as shown in Figure 1, is a particular type of flexure that consists of a neckde down section. Parameters t,h,b are flexible hinge’s smallest thickness,height and width ,resoectively, Parameter x α is the semimajor axis of ellipse, and y α is the semimajor axis of elllipse.As shown in Figure 1(a), the infinitesimal is intercepted in the abscissa axis. To begin, the infinitesimal section is vertical to the abscissa axis. The flexible hinge’s angular deformation z α is generated under torque z M as given in Equation(1).()()θθθαππd a t Eba a M dx x EI x M y y x z a a z z xz ⎰⎰--⎪⎪⎭⎫ ⎝⎛-+==233cos 22cos 12(1))12()14()1416(214arctan )14()12(12cos 22cos 2234223++++++++=⎪⎪⎭⎫ ⎝⎛-+=⎰-s s s s s s s s s d a t f y θθθππ(2)Where t a s y= The rotation rigidity fotmula is given by Euation(3)1312f a Eba K x y=(3)When y x αα=, the flexible hinge is the circular flexible hinge. Its rotantion rigidity formula is given by Equatuin(4)fEba K 122=(4) The rorarion rigidity formula of circular flexible hinge is consistent with thereference[2].(a)(b)Figure 1 Model of elliptical flexible hingeⅢ. FEA MODEL OF ELLIPTOCAL FLEXIBLE HINGEAnsys has some characteristics that the general finite element analysis technologt, powerful computing, and reliable result. The elliptical flexible hinge’s basic srtuture size is mm R mm t mm b m 5.2,90,1,100====θ. The materical is bertllium copper alloy, GPa E 210=,3.0=v . The FEA model is shown in Figure2(a). The model left end surface is restrained completely, the right end surface exerts bending moment Nm M 1.0=. The special node 1 of the grid model right end surface represents the output displacement. The unit type chooses 3_D the entity SOLID92 unit model, the entire model usrs Smartsize to free mesh. The deformation of the FEA model is shown in Figure 2(b). The FEA model and the output displacement have been obtained with chang ing elliptical flexible hinge’s paramters E,b,t and x αas well as y α(a)(b)Figure 2 . FEA model of elliptical flexure hingeThe theoretical calculation and FEA rotational stiffness are obtaoned through changing elliptical flexure hinge’s parameters E,b,t and x αas well as y α, as shown in Figure 3 to 7.Figure 3. Comparison of FEA value and the theoretical value of flexure hinge with changing EFigure 3. Comparison of FEA value and the theoretical value of flexure hingewith changing width bFigure 5. Comparison of FEA value and the theoretical value of flexure hingewith chinging thickness tFigure 6. Comparison of FEA value and the theoretical value of flexure hingewith chinging semimajor axisxFigure 7. Comparison of FEA value and the theoretical value of flexure hingeαwith chinging semimajor axisyFrom Equation (3) and Figures 3 to 7 the following conclusions can be observed.(1)From Figures 3and 4 it can be observed that the rotation stiffness is a linearlyincreasing realtion with material young’s modulus E and width b. The FEA value is bigger than the theoretical value. When E and b are smallerm the FEA value and the theoretical value are closer .(2)From Figure 5 it can observed that the rotantion of the stiffness FEA value and thetheoretical value is a vurve increasing with thickness t, end the speed-up is getting quicker and quicker. When t is bigger, the difference of the theoretical value and the FEA value is bigger. When t<2mm, the FEA value and the theorerical value are close.(3)From Figure 6 it can observed that the rotantion of rotation rigidity and semimajorαis a decreasing curve, and the rate of reduced scope is gradually decreased.axisxα>3mm, the FEA value and the theoretical value are closer.Whenx(4)From Figure 7 it can observed that the rotantion of rotation ridity and semiminor axisαis a linearly increasing, but the increasing scope is small. The FEA value is bigger ythan the theoretical value.From Figure 3 to 7 it can observed that the influence of flexure hinge’s parameter toits rotation stiffness is:the influence of thickness t is biggest, followed by semimajor axis x α, semimajor axis y αwidth b and E.The theoretical value and the FEA value of an elliptical flexible hinge rotation rigidity is not equal, even if has a big differential value. The reasons are:(1) The flexible hinge theoretical model that is eastablished using materials mechanics’bending strain theory is built on the basis of certain assumptions.From Figure 2(b) it can be observed that the FEA model not only has the displancement in the y axis direction, but also has the displacement change on the z axis direcrion, when the torque z M exerted on the z axis for the model. In other words, the flexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. Under certain design parameters, the flexible hinge’s theory and FEA solution achieve a good match.Ⅳ.CONCLUSIONSThe different design parameters to the flexible hinge rotation rigidity influence and the linear relationship are obtained by comparing the rotation rigidity theory solution stiffness is:the influence of thickness is biggest,followed by semimajor axis R,width b and E. The teasons that the theoretical value and the FEA value of an elliptical fexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. It is helpful to further analyze the movement of the mechanical deformation mechanism, using the finite element technology to simulate the flexible hinge performance.圆弧型柔性铰链刚度特性分析摘要:柔性铰链是目前被广泛用于微动机器人的主要部件之一,其刚度性能直接影响微动机器人的终端定位。
大变形柔性铰链的静刚度分析及应用_贾明
收稿日期:2004-10-30 基金项目:国家自然科学基金资助项目(50275004);“211”工程资助项目 作者简介:贾 明(1978-),男,吉林镇赉人,博士生,jiaming 2002@s ohu .com .大变形柔性铰链的静刚度分析及应用贾 明 毕树生 于靖军 徐一村(北京航空航天大学机械工程及自动化学院,北京100083) 摘 要:大变形柔性铰链可由弹性较大的橡胶材料制成,而橡胶材料的应变-应力关系不符合胡克定律,其关系可由应变-能量函数关系式导出,为此,采用Mooney -Rivlin 模型对形变能量函数进行简化,通过适当选取材料常数的比值,对其非线性的应力-应变关系进行分段线性化,导出圆角型柔性铰链在大变形时转角刚度的近似计算公式.通过有限元仿真对近似计算公式进行了验证.在此基础上,应用大变形柔性铰链构造扑翼式微型飞行器中的柔性胸腔,由转动电机作为驱动器,利用柔性铰链的变形实现翅膀的扇翅运动,实际应用效果表明可有效增大扇翅角并提高能量利用率.关 键 词:柔性铰链;变形;刚度中图分类号:TH 112.5文献标识码:A 文章编号:1001-5965(2005)07-0740-04Analysis and application of large -deforma tion flexible hin geJia Ming Bi Shusheng Yu Jingjun Xu Yicun(S c hool of Mechanical Engineering and Automation ,Beijing University of Aeronautics and Astronautics ,Beijing 100083,China )Abstract :Flexible hinge transfers motion and forc e by deformation of flexible element ,the stiffness of whichmade by metal material can be calculated on the premise of Hooke 's law .While the stress -strain relation of hypere -lastic material is unconformable to Hooke 's la w ,it must be derived by stress -ener gy functions .To analysis the stiff -ness of flexible hinge made by hyperelastic material ,a notch flexible hinge was proposed .Approximate for mula for stiffness of such hinge was deduced and its scope of application was analyzed .Analysis result comparison between finite element analysis model and approximate formula shows consistency .Flapping flight is ubiquitous in nature and all birds and insects have compliant thoraxes for activating wings to flap .Flexible hinge using in the construction of mechanism offered impr ovements over rigid hinge on some aspects of large range of motion ,long life and saving in power .Application in compliant thorax of micro aero vehicle with flapping wings was realized .Key words :flexible hinge ;deformation ;stiffness 柔性铰链依靠柔性元素的变形传输运动或力.目前在精密机械、光电子元器件制造以及生物工程等众多领域中的应用日渐广泛.通常情况下,柔性铰链的材质选用金属材料,而金属材料变形小的特点也限制了柔性铰链的变形只能是小变形.柔性铰链刚度的计算公式[1,2]适用于小变形时的情况,其分析以材料符合广义胡克定律为前提.为了实现柔性铰链的大变形,可以采用橡胶材料制成柔性铰链.橡胶具有承受大弹性形变的能力,在承受少于25%的拉伸或压缩变形时,可以将橡胶的应力-应变曲线关系假设为是线性的.然而,橡胶的某些特性只有在大形变的情况下体现出来,因此,为了更好地分析大变形柔性铰链的特性,需要知道如何表征大形变、非线性弹性材料2005年7月第31卷第7期北京航空航天大学学报Journal of Beijing University of Aeronautics and Astronautics July 2005Vol .31 No .7的力学模型.采用橡胶材料制成的柔性铰链具有无摩擦、变形大、疲劳强度高等特点,适合于在相应的场合应用.如在扑翼式微型飞行器中,其胸腔机构的设计要求具有体积小、重量轻、变形大、能量转换率高、可承受高频率的扇翅等特征.因此,本文将重点对以橡胶材料为基质的大变形柔性铰链的转角刚度进行分析,并讨论如何将其用在扑翼式微小飞行器的胸腔设计中.1 力学模型橡胶材料的应变-应力关系属于大变形,不满足广义胡克定律的小变形假设.尽管如此,描述其力学特性的模型仍然比较多,比较典型的有Mooney-Rivlin模型[3]与Ogden模型[4].本文选用Mooney-Rivlin模型来描述以橡胶材料为基质的柔性铰链力学特性.大弹性形变的通用对称性理论认为:恰当表示应变的方法应与轴的选择无关.为此,可以用以下三个变量来表示[3]:J1=λ21+λ22+λ23-3J2=λ21λ22+λ22λ23+λ23λ21-3J3=λ21λ22λ23-1(1)其中,λ1、λ2、λ3分别表示一个小体积单元三个方向的拉伸长度与未拉伸长度的比值.该体积单元在未拉伸时是个立方体.若定义εi为相应的拉伸后的长度,则λi=1+εi.不可压缩材料的J3等于0,相应的形变能量密度W就只是J1和J2的函数.因此,在特定λ1、λ2、λ3的形变作用下,单位体积材料中所贮存的弹性能量值可表示成W=W(J1,J2)(2) 下面应用Mooney-Rivlin模型进行分析.具体将W进行幂函数展开,则形变能量函数简化为W=W1J1+W2J2(3)式中W1、W2为常数,分别描述橡胶材料的两种性质,它们等同于弹性模量.应力-应变之间的关系可以从式(3)中得到[3].t1=2λ21WJ1-1λ21WJ2+P(4)其中,t1表示应力;P表示一个未知的压力,用于反映橡胶是不可压缩及对压力不敏感的事实.同理,t2和t3也有相似的关系.2 柔性铰链的转角刚度分析图1为圆角型柔性铰链的几何结构,其中宽度为b、最小厚度为t、高度为h、切割半径为R.图1 圆角型柔性铰链几何结构由于柔性铰链的变形集中在柔性铰链的圆弧部分,因此可以忽略柔性铰链圆弧以外部分的变形.在力矩的作用下,柔性铰链的变形表现为绕z轴的转角变化.为计算柔性铰链的转角刚度,在圆心角θ处截取微元,其长度为d x、高度为s、宽度为b,如图2所示.图2 选取微元根据弯曲变形的平面假设理论,变形前后中性层内纤维的长度不变,而与中性层距离为y的纤维的伸长比为λ=y+ρρ(5)式中ρ为中性层的曲率半径,由于此种变形在y、z方向不受约束与外力的作用,所以可用简单拉伸与压缩变形进行求解.这样,在变形时,将x、y、z方向分别定义为1、2、3方向的拉伸变形方向,即λ1=λ=y+ρρλ2=λ3=λ-12=y+ρρ-12(6) 由于变形时在方向2和方向3上没有应力,则t2=t3=0.将式(4)中的t1替换为t2,则可得到压力P为P=-2λ-1WJ1-λWJ2(7) 应用Mooney-Rivlin模型,得到在x方向截面上与中性层距离为y处的应力t1.t1=2W1+ρy+ρW2·(y+ρ)2ρ2-ρy+ρ(8) 由此可知,应力t1沿截面高度的变化呈现出非线性,且中性层不通过截面的形心.当铰链厚度相对于变形曲率半径很小时,材741第7期 贾 明等:大变形柔性铰链的静刚度分析及应用料常数W 2 W 1取为0.88[5],则应力t 1可用线性关系式近似,由式(8)得t 1≈16.12W 1y -0.5<y ρ≤010.08W 1y ρ 0<y ρ<1(9) 应当指出,当W 2 W 1的比值不同时,应用线性关系式进行近似时的常数是不同的.在x 截面上积分,可得到中性层到距离y 之间的部分截面A 上的法向合力N及产生的力矩M .图3所示为截面上的应力随y ρ的变化曲线,由近似值与理论值的比较可以看出:在-0.5<y ρ<1范围内,应力曲线近似为线性.由此可知,在此范围内可以采用近似的线性关系式对柔性铰链进行大变形分析与设计,这样会使计算简单、快速.图3 近似值与理论值比较弯曲变形时,由截面上的合力为零可知,压应力的合力与拉应力的合力应相等.设处于压缩状态的截面高度为y 1,处于拉伸状态的截面高度为y 2,将式(9)积分,则有8.06y 21=5.04y 22y 1+y 2=s(10) 由此可得y 1=0.44s y 2=0.56s(11) y 1不等于y 2表明中性层不通过截面的形心.由式(9)得到截面上的合力矩为M z 的计算公式,代入y 1与y 2,得M z =bW 15.37y 31ρ+3.36y 32ρ=Cbs3ρ(12)其中C =1.05W 1.由几何条件知微元的转角变形为d α=d xρ=M z Cbs 3d x =M z R sin θCb (2R -2R sin θ+t )3d θ(13) 经积分求得在力矩M z 作用下柔性铰链的转角变形α.α=M zCbR2∫π0sin θ(2-2sin θ+t R )3d θ=M z L CbR2(14)其中系数L =∫πsin θ(2-2sin θ+t R )3d θ.从而求得柔性铰链的转角刚度K z .K z =M z α=CbR 2L(15) 由分析可知,柔性铰链的变形集中在铰链的中间部分,最大变形发生在铰链的最小厚度处,t R 越小,最小厚度处的变形相对越大.由上面的推导可以知道1ρmin =M z Cbt3(16) 为了使柔性铰链各处的变形均满足先前的假设条件-0.5<y ρ<1,应有t ρmin <1,由此可得M zCbt2<1(17) 代入柔性铰链的转角计算公式(14)得α=M z L CbR2<tR 2L (18) 由此可知,近似公式(15)的适用范围要求对柔性铰链的转角最大值进行αmax 一定的限制,αmax 与参数t R 的关系如图4所示.图4 转角最大值与t R 关系曲线3 有限元分析利用商用有限元软件ANSYS8.1对上述柔性铰链进行有限元分析.模型(如图5)中,取b =4mm ,R =2mm ,t R 分别等于0.2、0.5、1,选择单元类型为hyperelastic Solid187,并选择Mooney -Riv -lin 的材料模型,材料常数以Treloar 发表的试验数据[5]为基础,取W 1=0.1151MPa ,W 2=0.1013MPa .通过加载分析,可得到柔性铰链的转角刚度.通过比较转角变形的结果(如图6)可以发现:大角度的转角变形与加载力矩之间有很好742北京航空航天大学学报 2005年的线性,而由近似公式求得的转角刚度较好地符合有限元分析的结果.由于在分析时加载位置不在柔性铰链处,所以柔性铰链外的部分也会产生较小的转角变形,所以有限元仿真得出的转角会有些偏大.这样,在满足转角小于αmax 条件下,可以采用近似公式对这种非线性的大变形柔性铰链进行转角刚度的估算.图5 有限元模型图6 分析结果比较4 在扑翼式微型飞行器中的应用扑翼式微型飞行器的胸腔采用大变形的柔性铰链进行设计,实现扑翼动作的机构原理如图7所示,由电机驱动两侧翅膀实现对称的往复上下扇翅运动.图7 机构原理图根据非定常空气动力学理论及相关经验公式[6]可知,翅膀的扇翅角 越大,产生的升力越大.考虑到扑翼机构的空间限制及柔性铰链的最大转角限制,确定翅膀的扇翅角为60°,而柔性铰链的各项参数分别取为b =4mm ,H =4mm ,R =2mm ,t R =0.2,最终构造的柔性胸腔样机如图8所示.实际应用效果表明,大变形柔性铰链的应用实现了翅膀的大角度扇翅,在10Hz 扇翅频率的情况下,实际的扇翅角约为70°,比静态的设计值要大,其原因是柔性胸腔的动力放大效应.同时,柔性铰链转角刚度值与近似计算值接近.通过测量电机的功率可知,相对于采用刚性连杆的胸腔机构,柔性胸腔的能量利用率得到明显的提高.图8 柔性胸腔5 结束语当前柔性铰链的应用多集中在高精度、小变形领域,而柔性铰链大变形的性能并没有得到足够多的应用.本文以橡胶材料为例,对非线性材料的圆角型柔性铰链的转角刚度进行了分析,导出计算转角刚度的近似公式;并通过有限元软件仿真,对近似公式进行了验证.在大变形柔性铰链的各项应用中,比较典型的一种是用于扑翼式微型飞行器的柔性胸腔设计中.扑动翅膀要求胸腔具有较大的变形能力,同时重量与功率的限制也使大变形柔性铰链在这里体现出了非常好的应用价值.参考文献(References )[1]Paros J M ,Weisboro L .Ho w to design flexure hinges [J ].M achineDesign ,1965,37(27):151~157[2]刘 伟.单轴柔性铰链转角刚度的计算机辅助计算[J ].光学精密工程,2000,8(2):178~180Liu Wei .Computer aided calculation of angle stiffnes s of singl e axis flexible hinge [J ].Optics and Precision Engineering ,2000,8(2):178~180(in Chines e )[3]Ki m B K ,Youn S K ,Lee W S .A cons titutive model and FEA ofrubber under small oscillatory load superi mpos ed on large static de -formati on [J ].Archive of Applied Mechanics ,2004,73(11 12):781~798[4]Duan H ,Hu Z W ,Fang Z C .Study on deformation characters of alarge rubber circular plate [J ].Modelling and Si mul ation in Materials S cience and Engineering ,2004,12(2):245~253[5]詹特A N .橡胶工程[M ].北京:北京化学工业出版社,2002Gent A N .Engineering with rubber [M ].Beijing :Beijing Chemical Industry Publis hing Company ,2002(in Chines e )[6]Sanjay Prafullachandra Sane .The aerodyna mics of flapping wings[D ].Berkeley :Depart ment of Integrative Biology ,University of California ,2001743第7期 贾 明等:大变形柔性铰链的静刚度分析及应用。
柔性铰链的计算和分析
关 键 词 : 性 铰 链 ; 圆 柔性 铰 链 ; 密 定 位 柔 直 精 中 图 分 类 号 : H1 3 T 0 T 2 ; HT 3 文献标 识码 : A
柔性铰链作 为一种特殊 的传动结 构 , 应用 于沿转轴 的转
由于柔性铰链 的 中部较 为薄 弱 , 力矩作 用下 可 以产生 在
维普资讯
第 1 8卷 第 3期 20 0 2年 6月
机 械 设 计 与 研 究
M a h n sg n s a c c i e De i n a d Re e r h
Vo . 8 文章编号 :0 62 4 ( 0 2 0 —0 90 10 —3 3 2 0 )30 2 —2
吴 鹰 飞 。 兆 英 周
( 华 大 学 精 密仪 器 与机 械 学 系 , 京 1 0 8 ) 清 北 0 0 4
摘 要 : 对常 用的直 圆柔性铰链 进行 力学分析 , 针 与迄 今 一直 沿 用 由 J M. A OS给 出的 柔性铰链 绕 2轴 的 . PR 转动 刚度 ( 柔度 ) 算公式相 比 , 出了更为 简洁、 确 的转动 刚度 计 算公 式 , 计 提 精 使其 有利 于柔性铰 链 的设 计和 分析 。 对直 圆柔性铰 链所 能承受的 最大力矩和 最 大 角位 移 进行 了分析 , 出 了它们 在 不考 虑 应 力集 中影 响 下的计 算 公 给 式 。讨论 了直 圆柔性铰链各 个参数对其 性能的影 响。为 柔性铰 链 在精 密 定位 系统 中的 应 用提 供 了一 定 的理论 基
为 了便 于分 析 , 圆心 角 0 在
处 截 取 微 元 如 图 2所 示 , 受 力 在
前微元截 面垂 直 于 z轴 。其 中 , 微元 的高 度为 :
S-LET复合型柔性铰链设计与性能研究
等效 刚度 的分 析 ,得 出弯 曲等 效 刚度 修 正 系数 ,并 验 证 了 该 系 数 的 有 效 性 。 最后 ,通 过 对 s型 、LET型 及 S—LET复
合 型 铰链 弯 曲 变形 及扭 转 变 形 的 有 限 元 仿 真 结 果 的 比较 ,得 出 S—LET弯 曲变 形 能 力 在 S型 与 LET型 铰链 之 间 ,而
problem is how to design and accomplish the flexible hinges with fine performance and high accuracy. Analysis on bending deformation of S—shaped flexible hinge and LET—shaped flexure hinge was compared to find a higher precision f lexure hinge which was m ore stable in working status. A new type of flexure hinge was designed which combined the features of LET-shaped hinge with S—shaped hinge. It was named as S — LET—shaped flexure hinge. The structure of the S— LET-shaped flexure hinge was designed and the bending stiffness equivalent was presented. According to the characteristics of the bending stiffness,the bending stiffness equivalent correction coefi cient of S — LET—shaped flexure hinge was proposed. By analyzing of bending equivalent stiffness for different dim ensions of S — LET—shaped flexure hinges, the correction coefficient of bending equivalent stiffness was obtained and the effectiveness of bending equivalent stiffness was verified. Finally, the results of the finite elem ent sim ulation of hinge bending deformation and torsion deform ation were compared among S—shaped. LET-shaped and S — LET—shaped hinges. The bending deformation capacity of S — LET-shaped hinge was between S—shaped and LET— shaped hinges and the torsional deform ation capacity of S——LET—shaped hinge was the sm allest among the three kinds of hinges. K ey words: lam ina emergent m echanisms; S — LET—shaped flexure hinge; equivalent stiffness;
文献检索报告,作业,模版
课题名称:柔性铰链的设计方法研究一.分析研究课题1.背景分析二十世纪六十年代前后,由于航空航天技术的发展,对实现小范围内偏转的支撑结构,不仅提出了高分辨率的要求,还要求结构上具有微小型化的要求。
人们在经过对各类型的弹性支撑实验探索后,逐步开发出体积小、无机械摩擦、无间隙的柔性铰链。
柔性铰链机构利用了弹性材料微小变形及其自回复的特性,消除了传动过程中的空程和机械摩擦,能获得超高的位移分辨率。
随后,柔性铰链被广泛的应用于陀螺仪、加速度计、精密天平、导弹控制等仪器仪表中,并获得了前所未有的高精度和稳定性。
摘要一种柔性铰链是在一矩形立方体相对的两个面分别制有半径为R的圆弧底的凹槽,两圆弧顶点间距为柔性厚度t,两圆弧圆心轴与厚度t垂直,与两圆心连线平行的立方体二侧边为铰链的宽度h,h≥2R+t,此构成一个组成单元,柔性铰链是由1—5个单元组成的整体。
其可完成一维、二维、三维方向的角度调整,具有运动方程简单、一体化好、精度高、灵敏性和稳定性好的特点,还有结构简单、无机械空回、制作容易、使用方便的优点,适用于智能控制机构。
2.需解决的问题柔性机构历经20年的发展已成为现代机构学一个重要分支,并在精密工程、机器人等领域得到了广泛应用。
虽然涌现了一系列柔性机构设计方法与理论,但柔性机构的设计问题仍面临着挑战。
主要针对柔性机构在精微领域的应用,从方法和技术的角度全面地概述柔性机构的研究进展。
从宏观上对当前几种主流的柔性机构分析与及设计方法(包括伪刚体模型法、结构矩阵法、约束设计法、旋量理论拓扑综合法、模块法、结构优化设计法等)进行总结与比较,按照柔性机构的设计流程详述柔性机构在单元建模、构型综合、机构分析以及尺度综合等方面的国内外研究进展,对柔性机构设计理论的发展进行展望。
3.文件检索的要求(1)所需的文献内容、水平。
紧贴本课题的要求的文献,文献能够代表当今该技术领域的研究水平。
(2)所需文献的时间、地域、类型、文种:原文发表时间(年代):为近十年发表的文献;原文发表地域:不限国别;原文文献语种:中英文;原文出版类型:不限文献类型,重点检索“期刊论文、学位论文、会议文献、专利(科技成果)、标准”等文献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:Chunhui Yang Shimin Luo国籍:China出处:2010 Intemational Conference on System,Engineering Drdign and Manufacturing InformatizationCircular are flexible hinge stiffness character analysis Abstract-Flexible hinges are widely used in micro robotic. Its tigidity directly influences an organization’s terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper. We analayzed the rotation rigidity of a ellliptical flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical result. Though the graph of the flexible hinge parameters on the performance of a elliptical flexible hinge was carried out. The key manufacture parameters that affect the performance of an elliptical flexible hinge the most and rules of design are given, which can provide directions of design precision for the flexible hinge.Keywords-flexible hinge; elllipse; finite element analysisl;rigidityⅠ.INTRODUCTIONFlexible hinge have some characteristics, such as small volume, without tubs, ceaseless, good rigidity and high sensitivity. With micocomputer electrical system series (MEMS) technical rapidly expanding, flexible hinge are widely applied in the displacement which requests small angular and high-precision rotation, such as gyroscopes,accelerometers, percision instruments and so on. It has broad application prospects in the micron level domain.The common flexible hinge is in two kinds:beam-shape flexible hinge and arc-shaped flexible hinge. The beam-shaped flexible hinge has a big slewing area, but the movement precision is bad. The arc-shaped flexible hinge’s movement percision is bad. The arc-shaped flexible hinge is relatively small. In order to take into account the movement ptecision and scope, the following several rotation flexible hinges have been generated: parabolic flexure hinge, an elliptical flexure hinge and a hyperbola-shaped hinge, etc. The properties of flexible hinges are rigidity precision and stress characteristic etc. the rigidityperformance reflects the stress ability and also manifests movement to a vice-flexible degree. In 1965, Parosetal announced his design development of the circular flexible hinge for the first time, and gave the rigidity formula.Smithetal used the similar method to obtain an elliptic flexible hinge mechanics expression. Nicolae Lodonitu inferred the parabola and the hyperbolic flexible hinge’s rigidity formula. Wei Xu and Tim king analyzed the tectang ular and elllipse flexible hinge’s rigidity and rotarion precision using the finite element method.In this paper the elliptical flexible hinge stiffness to different geometrical parameters is analyzed with software ANSYs10.0. Compared with ressults of theoretical analysis and finite element analysis(FEA), the errors are analyzed. Theough the graph of the flexible hinge parameters and its performanve, an analysis of changes of parameters on the performance of the elliptical fexible hinge was carried out. The key manufacture parameters that affect the performances of an elliptical flexible hinge the most and rules of design are given, which can guve direcrions of design precision for the flexible hinge.Ⅱ.RIGIDITY FORMULA OF THE ELLIPTICAL FLEXIBLE HINGEAn elliptical flexible hing,as shown in Figure 1, is a particular type of flexure that consists of a neckde down section. Parameters t,h,b are flexible hinge’s smallest thickness,height and width ,resoectively, Parameter x α is the semimajor axis of ellipse, and y α is the semimajor axis of elllipse.As shown in Figure 1(a), the infinitesimal is intercepted in the abscissa axis. To begin, the infinitesimal section is vertical to the abscissa axis. The flexible hinge’s angular deformation z α is generated under torque z M as given in Equation(1).()()θθθαππd a t Eba a M dx x EI x M y y x z a a z z xz ⎰⎰--⎪⎪⎭⎫ ⎝⎛-+==2233cos 22cos 12(1))12()14()1416(214arctan )14()12(12cos 22cos 223423++++++++=⎪⎪⎭⎫ ⎝⎛-+=⎰-s s s s s s s s s d a t f y θθθππ(2)Where t a s y= The rotation rigidity fotmula is given by Euation(3)1312f a Eba K x y=(3)When y x αα=, the flexible hinge is the circular flexible hinge. Its rotantion rigidity formula is given by Equatuin(4)fEba K 122=(4) The rorarion rigidity formula of circular flexible hinge is consistent with thereference[2].(a)(b)Figure 1 Model of elliptical flexible hingeⅢ. FEA MODEL OF ELLIPTOCAL FLEXIBLE HINGEAnsys has some characteristics that the general finite element analysis technologt, powerful computing, and reliable result. The elliptical flexible hinge’s basic srtuture size is mm R mm t mm b m 5.2,90,1,100====θ. The materical is bertllium copper alloy, GPa E 210=,3.0=v . The FEA model is shown in Figure2(a). The model left end surface is restrained completely, the right end surface exerts bending moment Nm M 1.0=. The special node 1 of the grid model right end surface represents the output displacement. The unit type chooses 3_D the entity SOLID92 unit model, the entire model usrs Smartsize to free mesh. The deformation of the FEA model is shown in Figure 2(b). The FEA model and the output displacement have been obtained with chang ing elliptical flexible hinge’s paramters E,b,t and x αas well as y α(a)(b)Figure 2 . FEA model of elliptical flexure hingeThe theoretical calculation and FEA rotational stiffness are obtaoned through changing elliptical flexure hinge’s parameters E,b,t and x αas well as y α, as shown in Figure 3 to 7.Figure 3. Comparison of FEA value and the theoretical value of flexure hinge with changing EFigure 3. Comparison of FEA value and the theoretical value of flexure hingewith changing width bFigure 5. Comparison of FEA value and the theoretical value of flexure hingewith chinging thickness tFigure 6. Comparison of FEA value and the theoretical value of flexure hingewith chinging semimajor axisxFigure 7. Comparison of FEA value and the theoretical value of flexure hingeαwith chinging semimajor axisyFrom Equation (3) and Figures 3 to 7 the following conclusions can be observed.(1)From Figures 3and 4 it can be observed that the rotation stiffness is a linearlyincreasing realtion with material young’s modulus E and width b. The FEA value is bigger than the theoretical value. When E and b are smallerm the FEA value and the theoretical value are closer .(2)From Figure 5 it can observed that the rotantion of the stiffness FEA value and thetheoretical value is a vurve increasing with thickness t, end the speed-up is getting quicker and quicker. When t is bigger, the difference of the theoretical value and the FEA value is bigger. When t<2mm, the FEA value and the theorerical value are close.(3)From Figure 6 it can observed that the rotantion of rotation rigidity and semimajorαis a decreasing curve, and the rate of reduced scope is gradually decreased.axisxα>3mm, the FEA value and the theoretical value are closer.Whenx(4)From Figure 7 it can observed that the rotantion of rotation ridity and semiminor axisαis a linearly increasing, but the increasing scope is small. The FEA value is bigger ythan the theoretical value.From Figure 3 to 7 it can observed that the influence of flexure hinge’s parameter toits rotation stiffness is:the influence of thickness t is biggest, followed by semimajor axis x α, semimajor axis y αwidth b and E.The theoretical value and the FEA value of an elliptical flexible hinge rotation rigidity is not equal, even if has a big differential value. The reasons are:(1) The flexible hinge theoretical model that is eastablished using materials mechanics’bending strain theory is built on the basis of certain assumptions.From Figure 2(b) it can be observed that the FEA model not only has the displancement in the y axis direction, but also has the displacement change on the z axis direcrion, when the torque z M exerted on the z axis for the model. In other words, the flexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. Under certain design parameters, the flexible hinge’s theory and FEA solution achieve a good match.Ⅳ.CONCLUSIONSThe different design parameters to the flexible hinge rotation rigidity influence and the linear relationship are obtained by comparing the rotation rigidity theory solution stiffness is:the influence of thickness is biggest,followed by semimajor axis R,width b and E. The teasons that the theoretical value and the FEA value of an elliptical fexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. It is helpful to further analyze the movement of the mechanical deformation mechanism, using the finite element technology to simulate the flexible hinge performance.圆弧型柔性铰链刚度特性分析摘要:柔性铰链是目前被广泛用于微动机器人的主要部件之一,其刚度性能直接影响微动机器人的终端定位。