2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷(解析版)

合集下载

2017-2018学年深圳市福田区七(上)期末数学试卷(含答案解析)

2017-2018学年深圳市福田区七(上)期末数学试卷(含答案解析)

2017-2018学年广东省深圳市福田区七(上)期末数学试卷一.选择题(每小题3分)1.(3分)下列选项中,比﹣3小的数是()A.﹣1B.0C.12D.﹣52.(3分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.3.(3分)下列各式符合代数式书写规范的是()A.baB.a×7C.2m﹣1元D.312x4.(3分)2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元5.(3分)下列计算正确的是()A.4a+2a=6a2B.7ab﹣6ba=ab C.4a+2b=6ab D.5a﹣2a=36.(3分)如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.(3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.2010.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣311.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.(3分)已知3x2m y3和﹣2x2y n是同类项,则式子m+n的值是.14.(3分)在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.15.(3分)某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.(3分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(15分)计算:(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣16+712﹣38)×24﹣35(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|18.(4分)先化简,再求值:(3a 2﹣5a )﹣12(4a 2﹣4a ﹣2),其中a=13.19.(8分)解方程:(1)2(x +2)=1﹣(x +3) (2)2y−13﹣y+24=﹣120.(8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=,n=;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.21.(5分)如图,∠AOC=12∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.22.(5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A 移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2017-2018广东省深圳市福田区七(上)期末数学参考答案与试题解析一.选择题(每小题3分)1.(3分)下列选项中,比﹣3小的数是( ) A .﹣1B .0C .12D .﹣5【解答】解:A 、﹣1>﹣3,故本选项不符合题意; B 、0>﹣3,故本选项不符合题意;C 、12>﹣3,故本选项不符合题意;D 、﹣5<﹣3,故本选项符合题意; 故选:D .2.(3分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是( )A .B .C .D .【解答】解:由立体图形可得其俯视图为:.故选:C .3.(3分)下列各式符合代数式书写规范的是( ) A .baB .a ×7C .2m ﹣1元D .312x【解答】解:A 、代数式书写规范,故A 符合题意;B 、数字与字母相乘时,数字要写在字母的前面,故B 不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.4.(3分)2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元 B.3.95×1010元C..95×109元D.39.5×109元【解答】解:39500000000=3.95×1010故选:B.5.(3分)下列计算正确的是()A.4a+2a=6a2B.7ab﹣6ba=ab C.4a+2b=6ab D.5a﹣2a=3【解答】解:A、4a+2a=6a,故此选项错误;B、7ab﹣6ba=ab,正确;C、4a+2b无法计算,故此选项错误;D、5a﹣2a=3a,故此选项错误;故选:B.6.(3分)如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:D.8.(3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.9.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.20【解答】解:∵AB=24,点C为AB的中点,∴BC=12AB=12×24=12,∵AD:CB=1:3,∴AD=13×12=4,∴DB=AB﹣AD=24﹣4=20.故选:D.10.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣3【解答】解:把x=2代入4x+2m﹣14=0,得4×2+2m﹣14=0,解得m=3.故选:C.11.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.101【解答】解:设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,那么,这四个数的和为x+x+7+x+14+x+21=4x+42.A、如果4x+42=86,那么x=11,不符合题意;B、如果4x+42=78,那么x=9,符合题意;C、如果4x+42=60,那么x=4.5,不符合题意;D、如果4x+42=101,那么x=14.75,不合题意.故选:B.12.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5【解答】解:①最小的正整数是1,此结论错误;②6πx3的系数是6π,此结论正确;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④若AC=BC,且点C在线段AB上,则点C是线段AB的中点,此结论错误;⑤三角形是多边形,此结论正确;⑥绝对值等于本身的数是正数和0,此结论错误;故选:A.二、填空题(每小题3分)13.(3分)已知3x2m y3和﹣2x2y n是同类项,则式子m+n的值是4.【解答】解:∵3x2m y3和﹣2x2y n是同类项,∴2m=2,n=3,解得:m=1,则m+n=4.故答案为:4.14.(3分)在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【解答】解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2. 故答案为﹣4或2.15.(3分)某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为 65 元.【解答】解:设标价是x 元,根据题意有:0.8x=40(1+30%), 解得:x=65.故答案为:65.16.(3分)如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为 2 .【解答】解:根据运算程序得到:除去前3个结果48、24、12,剩下的以6,3,8,4,2,1循环,∵(2018﹣3)÷6=335…5,则第2018次输出的结果为2,故答案为:2.三、解答题17.(15分)计算:(1)16﹣(﹣18)+(﹣9)﹣15(2)(﹣16+712﹣38)×24﹣35(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|【解答】解:(1)16﹣(﹣18)+(﹣9)﹣15 =16+18﹣9﹣15 =10;(2)(﹣16+712﹣38)×24﹣35=﹣4+14﹣9﹣35=25;(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6| =﹣9+4×(﹣5)﹣6 =﹣9﹣20﹣6 =﹣35.18.(4分)先化简,再求值:(3a 2﹣5a )﹣12(4a 2﹣4a ﹣2),其中a=13.【解答】解:原式=3a 2﹣5a ﹣2a 2+2a +1=a 2﹣3a +1,当a=13时,原式=19﹣1+1=19.19.(8分)解方程:(1)2(x +2)=1﹣(x +3)(2)2y−13﹣y+24=﹣1【解答】解:(1)去括号得:2x +4=1﹣x ﹣3, 移项合并得:3x=﹣6, 解得:x=﹣2;(2)去分母得:8y ﹣4﹣3y ﹣6=﹣12, 移项合并得:5y=﹣2, 解得:x=﹣0.4.20.(8分)为了解某校学生对A 《最强大脑》、B 《朗读者》、C 《中国诗词大会》、D 《出彩中国人》四个电视节目的喜爱情况,随机抽取了m 学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题; (1)m= 50 ,n= 30 ;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是 72 度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.【解答】解:(1)由题意可得,m=5÷10%=50,n%=15÷50×100%=30%, 故答案为:50,30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是:360°×1050=72°,故答案为:72;(3)喜爱B 的有:50×40%=20(人) 补全的条形统计图如右图所示;(4)6000×30%=1800,答:该校6000名学生中有1800名学生最喜欢《中国诗词大会》节目.21.(5分)如图,∠AOC=12∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.【解答】解:∵∠AOC=12∠BOC=50°,∴∠BOC=100°,∴∠AOB=∠AOC+∠BOC=150°,∵OD平分∠AOB,∴∠AOD=12∠AOB=75°,∴∠COD=∠AOD﹣∠AOC=75°﹣50°=25°.22.(5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为50﹣x(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?【解答】解:(1)∵停车场共有50辆车,中型汽车有x辆,∴小型汽车有(50﹣x)辆.(2)根据题意得:15x+10(50﹣x)=580,解得:x=16,∴50﹣x=34.答:中型汽车有16辆,小型汽车有34辆23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为6或﹣42.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A 移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【解答】解:(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×21+2=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为{−6(0<t≤6)3(t−6)−6(6<t≤36),(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.。

2017-2018学年广东省深圳市福田区七年级(上)期末数学试卷及详细解析

2017-2018学年广东省深圳市福田区七年级(上)期末数学试卷及详细解析

2017-2018学年广东省深圳市福田区七年级(上)期末数学试卷一.选择题(每小题3分)1.(3分)下列选项中,比﹣3小的数是()A.﹣1B.0C.D.﹣52.(3分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.3.(3分)下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x4.(3分)2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元5.(3分)下列计算正确的是()A.4a+2a=6a2B.7ab﹣6ba=ab C.4a+2b=6ab D.5a﹣2a=3 6.(3分)如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.(3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.2010.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣311.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.(3分)已知3x2m y3和﹣2x2y n是同类项,则式子m+n的值是.14.(3分)在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.15.(3分)某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.(3分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(15分)计算:(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|18.(4分)先化简,再求值:(3a2﹣5a)﹣(4a2﹣4a﹣2),其中a=.19.(8分)解方程:(1)2(x+2)=1﹣(x+3)(2)﹣=﹣120.(8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=,n=;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.21.(5分)如图,∠AOC=∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.22.(5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A 移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2017-2018学年广东省深圳市福田区七年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题3分)1.(3分)下列选项中,比﹣3小的数是()A.﹣1B.0C.D.﹣5【考点】有理数大小比较【分析】先比较数的大小,再得出选项即可.【解答】解:A、﹣1>﹣3,故本选项不符合题意;B、0>﹣3,故本选项不符合题意;C、>﹣3,故本选项不符合题意;D、﹣5<﹣3,故本选项符合题意;故选:D.【点评】本题考查了有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.2.(3分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.【考点】简单组合体的三视图【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.3.(3分)下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x【考点】代数式【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故A符合题意;B、数字与字母相乘时,数字要写在字母的前面,故B不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4.(3分)2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元【考点】科学记数法—表示较大的数【分析】科学记数法就是把一个数写成a×10n的形式,其中1≤a<10.根据a 的取值范围可得正确结论.【解答】解:39500000000=3.95×1010故选:B.【点评】本题考查了用科学记数法表示较大的数.解决本题的关键是掌握科学记数法的特点.注意:a×10n中,1≤a<10,n等于整数位数减一.5.(3分)下列计算正确的是()A.4a+2a=6a2B.7ab﹣6ba=ab C.4a+2b=6ab D.5a﹣2a=3【考点】合并同类项【分析】直接利用合并同类项法则化简得出答案.【解答】解:A、4a+2a=6a,故此选项错误;B、7ab﹣6ba=ab,正确;C、4a+2b无法计算,故此选项错误;D、5a﹣2a=3a,故此选项错误;故选:B.【点评】此题主要考查了合并同类项法则,正确掌握运算法则是解题关键.6.(3分)如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.【考点】角的概念【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.【点评】本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【考点】线段的性质:两点之间线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.8.(3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图【考点】统计图的选择【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.20【考点】两点间的距离【分析】根据线段中点的定义可得BC=AB,再求出AD,然后根据DB=AB﹣AD 代入数据计算即可得解.【解答】解:∵AB=24,点C为AB的中点,∴BC=AB=×24=12,∵AD:CB=1:3,∴AD=×12=4,∴DB=AB﹣AD=24﹣4=20.故选:D.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,以及数形转化的思想.10.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣3【考点】一元一次方程的解【分析】把x=2代入已知方程得到m的新方程,通过解新方程求得m的值.【解答】解:把x=2代入4x+2m﹣14=0,得4×2+2m﹣14=0,解得m=3.故选:C.【点评】本题考查了一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.11.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.101【考点】一元一次方程的应用【分析】由于表中竖列上相邻两列的数相差7,所以可设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,然后根据这四个数的和分别等于四个选项中的数列出方程,求出方程的解,然后根据实际意义取值即可.【解答】解:设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,那么,这四个数的和为x+x+7+x+14+x+21=4x+42.A、如果4x+42=86,那么x=11,不符合题意;B、如果4x+42=78,那么x=9,符合题意;C、如果4x+42=60,那么x=4.5,不符合题意;D、如果4x+42=101,那么x=14.75,不合题意.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5【考点】有理数;绝对值;单项式;截一个几何体;直线、射线、线段【分析】对各语句逐一判断即可得.【解答】解:①最小的正整数是1,此结论错误;②6πx3的系数是6π,此结论正确;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④若AC=BC,且点C在线段AB上,则点C是线段AB的中点,此结论错误;⑤三角形是多边形,此结论正确;⑥绝对值等于本身的数是正数和0,此结论错误;故选:A.【点评】本题主要考查数、式、几何图形的综合问题,解题的关键是熟练掌握有理数的概念、单项式的定义、中点的定义等知识点.二、填空题(每小题3分)13.(3分)已知3x2m y3和﹣2x2y n是同类项,则式子m+n的值是4.【考点】同类项【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:∵3x2m y3和﹣2x2y n是同类项,∴2m=2,n=3,解得:m=1,则m+n=4.故答案为:4.【点评】此题主要考查了同类项,正确得出m,n的值是解题关键.14.(3分)在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【考点】数轴【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1的距离为3,那么应有两个点,记为A1,A2,分别位于﹣1两侧,且到﹣1的距离为3,这两个点对应的数分别是﹣1﹣3和﹣1+3,在数轴上画出A1,A2点如图所示.【解答】解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.15.(3分)某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为65元.【考点】一元一次方程的应用【分析】根据题意,实际售价=进价+利润,八折即标价的80%;可得一元一次的等量关系式,求解可得答案.【解答】解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.16.(3分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为2.【考点】代数式求值【分析】分别计算出前10次输出的结果,据此得出除去前3个结果48、24、12,剩下的以6,3,8,4,2,1循环,根据“(2018﹣3)÷6=335…5”可得答案.【解答】解:根据运算程序得到:除去前3个结果48、24、12,剩下的以6,3,8,4,2,1循环,∵(2018﹣3)÷6=335…5,则第2018次输出的结果为2,故答案为:2.【点评】此题考查了代数式求值及数字的变化规律,弄清题中的规律是解本题的关键.三、解答题17.(15分)计算:(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|【考点】有理数的混合运算【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先利用乘法分配律计算,再根据有理数的加法法则计算即可;(3)先算乘方与绝对值,再算乘法,最后算加减即可.【解答】解:(1)16﹣(﹣18)+(﹣9)﹣15=16+18﹣9﹣15=10;(2)(﹣+﹣)×24﹣=﹣4+14﹣9﹣=;(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35.【点评】本题考查了有理数的混合运算,其顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(4分)先化简,再求值:(3a2﹣5a)﹣(4a2﹣4a﹣2),其中a=.【考点】整式的加减—化简求值【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a2﹣5a﹣2a2+2a+1=a2﹣3a+1,当a=时,原式=﹣1+1=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(8分)解方程:(1)2(x+2)=1﹣(x+3)(2)﹣=﹣1【考点】解一元一次方程【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:2x+4=1﹣x﹣3,移项合并得:3x=﹣6,解得:x=﹣2;(2)去分母得:8y﹣4﹣3y﹣6=﹣12,移项合并得:5y=﹣2,解得:x=﹣0.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=50,n=30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是72度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.【考点】用样本估计总体;扇形统计图;条形统计图【分析】(1)根据统计图中的数据可以求得m和n的值;(2)根据统计图中的数据可以求得扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数;(3)根据统计图中的数据可以求得喜爱B的人数;(4)根据统计图中的数据可以求得该校6000名学生中有多少名学生最喜欢《中国诗词大会》节目.【解答】解:(1)由题意可得,m=5÷10%=50,n%=15÷50×100%=30%,故答案为:50,30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是:360°×=72°,故答案为:72;(3)喜爱B的有:50×40%=20(人)补全的条形统计图如右图所示;(4)6000×30%=1800,答:该校6000名学生中有1800名学生最喜欢《中国诗词大会》节目.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(5分)如图,∠AOC=∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.【考点】角平分线的定义;角的计算【分析】先求出∠BOC,求出∠AOB,根据角平分线求出∠AOD,即可求出∠COD.【解答】解:∵∠AOC=∠BOC=50°,∴∠BOC=100°,∴∠AOB=∠AOC+∠BOC=150°,∵OD平分∠AOB,∴∠AOD=∠AOB=75°,∴∠COD=∠AOD﹣∠AOC=75°﹣50°=25°.【点评】本题考查了角平分线定义和角的有关计算,能求出各个角的度数是解此题的关键.22.(5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为50﹣x(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?【考点】一元一次方程的应用【分析】(1)根据停车场汽车的总数结合中型汽车的辆数,即可得出小型汽车的辆数;(2)根据停车总费用=12×中型汽车辆数+8×小型汽车辆数,即可得出关于x 的一元一次方程,解之即可得出结论【解答】解:(1)∵停车场共有50辆车,中型汽车有x辆,∴小型汽车有(50﹣x)辆.故答案为:50﹣x.(2)根据题意得:15x+10(50﹣x)=580,解得:x=16,∴50﹣x=34.答:中型汽车有16辆,小型汽车有34辆【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据汽车总辆数及中型汽车辆数,表示出小型车辆数;(2)根据停车总费用=12×中型汽车辆数+8×小型汽车辆数,列出关于x的一元一次方程.23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为6或﹣42.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A 移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【考点】非负数的性质:绝对值;非负数的性质:偶次方;实数与数轴【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为<<,(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点评】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.第21页(共21页)。

2017-2018学年广东省深圳高中七年级(下)期末数学试卷(解析版)

2017-2018学年广东省深圳高中七年级(下)期末数学试卷(解析版)

2017-2018学年广东省深圳高中七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.-3的倒数为()A. B. C. 3 D.2.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A. B. C. D.3.如图所示的几何体的主视图是()A. B. C. D.4.下列图形中是轴对称图形的是()A. B. C. D.5.下列运算正确的是()A. B. C. D.6.标号为A、B、C、D的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是()A. 12个黑球和4个白球B. 10个黑球和10个白球C. 4个黑球和2个白球D. 10个黑球和5个白球7.下列调查中,最适合采用全面调查(普查)方式的是()A. 对重庆市初中学生每天阅读时间的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某批次手机的防水功能的调查D. 对某校九年级3班学生肺活量情况的调查8.如图,在△ABC中,∠ABC和∠ACB的平分线交于点D,过点D作EF∥BC交AB于E,交AC于F,若AB=12,BC=8,AC=10,则△AEF的周长为()A. 15B. 18C. 20D. 229.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. B. :::2:3C. D. a:b::4:610.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A. 赚了10元B. 亏了10元C. 赚了20元D. 亏了20元11.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A. 景点离小明家180千米B. 小明到家的时间为17点C. 返程的速度为60千米每小时D. 10点至14点,汽车匀速行驶12.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有()A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤二、填空题(本大题共4小题,共12.0分)13.若(a+3)2+|b-2|=0,则(a+b)2011=______.14.如果多项式x2+(m+1)x+16是一个完全平方式,则m的值是______.15.在长方形纸片ABCD中,AD=3cm,AB=9cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=______cm.16.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则第6辐图形中“●”的个数a6的值为______.三、解答题(本大题共7小题,共52.0分)17.(1)计算:2-1-()0+22015×(-0.5)2016(2)解方程:2x-(x+3)=-x+318.先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=.19.国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C 组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为______人,并补全条形统计图;(2)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是______;(3)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有______人.20.麒麟区第七中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.(1)求出空地ABCD的面积?(2)若每种植1平方米草皮需要300元,问总共需投入多少元?21.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.22.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n-p)(2m-n+p)23.探究题:如图:(1)△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.答案和解析1.【答案】B【解析】解:∵(-3)×(-)=1,∴-3的倒数是-,故选:B.据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】C【解析】解:167000=1.67×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于167000有6位,所以可以确定n=6-1=5.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【答案】B【解析】解:从正面看易得第一层有2个正方形,第二层也有2个正方形.故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【答案】C【解析】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.根据轴对称图形的概念求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】C【解析】解:A、应为a2•a3=a2+3=a5,故本选项错误;B、应为a2+a2=2a2,故本选项错误;C、(-a2)3=-a2×3=-a6,正确;D、应为a3÷a=a3-1=a2,故本选项错误.故选:C.根据同底数幂相乘,底数不变指数相加;合并同类项的法则,只把系数相加减,字母与字母的次数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题综合考查了合并同类项、同底数幂的乘法和除法、幂的乘方的运算性质,需熟练掌握且区分清楚,才不容易出错.6.【答案】A【解析】解:A、摸到黑球的概率为=0.75,B、摸到黑球的概率为=0.5,C、摸到黑球的概率为=,D、摸到黑球的概率为=,故选:A.分别计算出每个选项中摸到黑球的概率可得答案.此题主要考查了可能性的大小问题,要熟练掌握,解答此题的关键是分别求出从4个盒子中摸到黑球的可能性各是多少.7.【答案】D【解析】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C 错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.【答案】D【解析】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=22,即△AEF的周长为22,故选:D.利用平行和角平分线的定义可得到∠EBD=∠EDB,所以可得ED=EB,同理可得DF=FC,所以△AEF的周长即为AB+AC,可得出答案.本题主要考查等腰三角形的判定和性质,由条件得到ED=EB,DF=FC是解题的关键.9.【答案】D【解析】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2-b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.由三角形内角和定理及勾股定理的逆定理进行判断即可.本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.【答案】B【解析】【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设第一件衣服的进价为x元,第二件的进价为y元,根据售价-成本=利润,即可得出关于x(y)的一元一次方程,解之即可求出x(y)的值,再将其代入400-x-y中即可得出结论.【解答】解:设第一件衣服的进价为x元,第二件的进价为y元,根据题意得:200-x=25%x,200-y=-20%y,解得:x=160,y=250,∴400-x-y=400-160-250=-10(元),答:商店在这次交易中亏了10元.故选B.11.【答案】D【解析】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出返回时1小时行驶了180-120=60千米,180÷60=3,由横坐标看出14+3=17,故B正确;C、由纵坐标看出返回时1小时行驶了180-120=60千米,故C正确;D、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D错误;故选:D.根据函数图象的纵坐标,可判断A;根据待定系数法,可得返回的函数解析式,根据函数值与自变量的对应关系,可判断B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数图象的纵坐标,可判断D.本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.12.【答案】C【解析】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故选:C.①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.13.【答案】-1【解析】解:根据题意得:,解得:,则(a+b)2011=-1.故答案是:-1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【答案】7或-9【解析】解:∵多项式x2+(m+1)x+16是一个完全平方式,∴(m+1)x=±2•x•4,解得:m=7或-9,故答案为:7或-9.根据完全平方式得出(m+1)x=±2•x•4,求出即可.本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.15.【答案】5【解析】解:如图,连接BD,交EF于点O;由题意得:DE=BE(设为x),DO=BO;∵四边形ABCD为矩形,∴BE∥DF,∴∠EBO=∠FDO;在△EOB与△FOD中,,∴△EOB≌△FOD(ASA),∴DF=BE=x;∵AB=9,DE=BE=x,∴AE=9-x;根据勾股定理:DE2=AD2+AE2,∴x2=32+(9-x)2,解得:x=5(cm),即DE=5cm,故答案为:5首先根据题意结合图形得到DE=BE;通过△EOB≌△FOD得到DF=BE;运用勾股定理求出DE的长度问题即可解决.此题考查翻折问题,该题以矩形为载体,以图形的翻折变换为手段,以考查勾股定理、折叠的性质及其应用为核心构造而成;对综合的分析问题解决问题的能力提出了较高的要求.16.【答案】48【解析】解:由图知a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2),当n=6时,a6=6×8=48,故答案为:48.由点的分布情况得出a n=n(n+2),据此求解可得.本题主要考查图形的变化类,解题的关键是得出a n=n(n+2).17.【答案】解:(1)2-1-()0+22015×(-0.5)2016=-1+[2×(-0.5)]2015×(-0.5)=-1-0.5=-1;(2)2x-(x+3)=-x+32x-x-2+x-3=0,则x=5,解得:x=.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则计算得出答案;(2)直接去括号进而合并同类项解方程得出答案.此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.18.【答案】解:原式=2b2+a2-b2-(a2+b2-2ab)=2b2+a2-b2-a2-b2+2ab=2ab,当a=-3,b=时,原式=2×(-3)×=-3.【解析】先根据整式混合运算的法则把原式进行化简,再把a=-3,b=代入进行计算即可.本题考查的是整式的化简求出,熟知整式混合运算的法则是解答此题的关键.19.【答案】(1)300(2)0.4(3)720【解析】解:(1)由图可得,此次抽查的学生数为:60÷20%=300(人),故答案为:300;C组的人数=300×40%=120(人),A组的人数=300-100-120-60=20人,补全条形统计图如右图所示;(2)该生当天在校体育活动时间低于1小时的概率是:=0.4,故答案为:0.4;(3)当天达到国家规定体育活动时间的学生有1200×=720人故答案为:720.(1)根据统计图中的数据可以求得此次抽查的学生数和在A和C组的人数;(2)根据统计图中的数据可以求得相应的概率;(3)根据题意可以求得达到国家规定体育活动时间的学生数.本题考查概率公式、条形统计图、扇形统计图,用样本估计总体,解题的关键是明确题意,找出所求问需要的条件.20.【答案】解:(1)连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DAC=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+AD•AC,=×4×3+×12×5=36(m2);答:空地ABCD的面积为36m2.(2)36×300=10800(元),.答:总共需要投入10800元.【解析】本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单,求出四边形ABCD的面积是解题关键.(1)连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,CD为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求出面积;(2)面积乘以单价即可得出结果.21.【答案】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【解析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.22.【答案】(1)a2-b2;(2)a-b;a+b;(a+b)(a-b);(3)(a+b)(a-b)=a2-b2;(4)(2m+n-p)(2m-n+p)=(2m)2-(n-p)2=4m2-(n2-2np+p2)=4m2-n2+2np-p2【解析】解:(1)由图可得,阴影部分的面积=a2-b2;故答案为:a2-b2;(2)由图可得,矩形的宽是a-b,长是a+b,面积是(a+b)(a-b);故答案为:a-b,a+b,(a+b)(a-b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a-b)=a2-b2;故答案为:(a+b)(a-b)=a2-b2;(4)(2m+n-p)(2m-n+p)=(2m)2-(n-p)2=4m2-(n2-2np+p2)=4m2-n2+2np-p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.23.【答案】解:(1)成立.理由:∵△ABC是等边三角形,∴∠C=∠ABP=60°,AB=BC,根据题意得:CD=BP,在△ABP和△BCD中,,∴△ABP≌△BCD(SAS),∴AP=BD;(2)根据题意,CP=AD,∴CP+BC=AD+AC,即BP=CD,在△ABP和△BCD中,,∴△ABP≌△BCD(SAS),∴∠APB=∠BDC,∵∠APB-∠PAC=∠ACB=60°,∠DAQ=∠PAC,∴∠BDC-∠DAQ=∠BQP=60°;(2)DE=PE.理由:过点D作DG∥AB交BC于点G,∴∠CDG=∠C=∠CGD=60°,∠GDE=∠BPE,∴△DCG为等边三角形,∴DG=CD=BP,在△DGE和△PBE中,,∴△DGE≌△PBE(AAS),∴DE=PE.【解析】(1)由△ABC为等边三角形,可得∠C=∠ABP=60°,AB=BC,又由这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,可得BP=CD,即可利用SAS,判定△ABP≌△BCD,继而证得结论;(2)同理可证得△ABP≌△BCD(SAS),则可得∠APB=∠BDC,然后由∠APB-∠PAC=∠ACB=60°,∠DAQ=∠PAC,求得∠BDC-∠DAQ=∠BQP=60°;(3)首先过点D作DG∥AB交BC于点G,则可证得△DCG为等边三角形,继而证得△DGE≌△PBE(AAS),则可证得结论.此题考查了全等三角形的判定与性质以及等边三角形的性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

广东省深圳市2017-2018学年福田区七年级第二学期数学期末考试题

广东省深圳市2017-2018学年福田区七年级第二学期数学期末考试题

深圳市福田区2017-2018学年第二学期七年级期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列运算正确的是( )A .a 3 ﹣a 2 =aB .a 2•a 3=a 6C .x 4÷x 4=0D .(﹣a 2)3=﹣a 62.下列图形中,不是轴对称图形的是( )A B C D3.以下列所给线段长为三边,能构成三角形的是( )A .3、3、6B .3、5、10C .3、4、5D .2、3、54.如图,点E 在AC 的延长线上,下列条件中不能判断AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠A=∠DCED .∠D +∠ABD=180°5.下列事件中,必然事件是( )A .篮球队员在罚球线投篮一次,投中B .任意画一个三角形,其内角和是180°C .若ab=0,则a=0D .若两条直线被第三条直线所截,则同位角相等6.下列各题中,适合用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(13a +1)(﹣13a ﹣1)C .(2a ﹣3b )(﹣2a +3b )D .(﹣a ﹣2b )(﹣a +2b )7.利用尺规作图,作△ABC 边上的高AD ,正确的是( )‘’A B C D8.已知为等腰三角形,它的两边分别为4和8,则它的周长( )A .16或20B .16C .20D .无法确定9.一列汽车匀速通过一座桥(桥长大于汽车长)时,汽车在桥上的长度y (m )与汽车进入桥的时间x (s )之间的关系用图象描述大致是( )AB C D10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠ACB=∠DBCB .AB=DC C .∠A=∠D D .AC=DB11.已知:x +y=3,x y=2,求x 2+y 2的值.( )A .5B .9C .7D .612.如图,在△ABC 中,AD ,BE 分别为BC 、AC 边上的高,AD=BD ,AD 、BE 相交于点F ,下列结论:①BF=AC ;②S △ABF :S △AFC =BD :CD ;③∠FAE=∠FCE ;④∠DCF=45°.正确的是( )A .①③④B .①②④ C. ①② D .①②③④二、填空题(每小题3分,共12分)13.某病毒成球形,直径约为1.25纳米(1米=1000000000纳米),用科学记数法表示为 米.14.已知一个角的补角等于46°,则这个角等于 .15.计算:(2x ﹣3)(x +2)= .16.如图,等腰△ABC 的底边长为4,腰AB 的垂直平分线EF 分别交AB 、AC 于点E 、F ,若O 为底边BC 的中点,点M 为线段EF 上的一动点,△BOM 的周长最小值为8,则△ABC 的面积是 .三、解答题(共7题,满分52分)17.(8分)计算:(1)−12018+(12)−3÷|−2|+(−23)0(2)3x y (−2x 2y)2÷(﹣2x 2y )18.(6分)先化简,再求值:[(2y +x)2−(3x +y)(−y +3x)−5y 2]÷(﹣4x )其中x =−32,y =219.(6分)一个布袋中有4个红球和8个白球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概,问取走了多少个白球?(要求通过列式或列方程解答)率是3420.(8分)如图,在△ABC中,AB=AC,分别以点A和点B为圆心,大于1AB的长为半径作弧,两弧相2交于点M、N,作直线MN,分别交AB、AC于点D、E,连结BE.(1)若△BEC的周长是14cm,BC=5cm,求AB的长;(2)若∠A=42°,求∠CBE的度数。

2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷

2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷

2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷(考试时间:90分满分:120分)一、选择题(共12小题;共36分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.a2•a3=a5B.a6•a3=a18C.(a3)2=a5D.a5+a5=a103.(3分)有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm4.(3分)空气的密度是0.001293g/cm3,0.001293用科学记数法表示为()A.1.293×103B.1.293×10﹣3C.1.293×10﹣4D.12.93×10﹣4 5.(3分)下列事件中,随机事件是()A.经过有交通信号灯的路口,遇到红灯B.实心铁球投入水中会沉入水底C.一滴花生油滴入水中,油会浮在水面D.两负数的和为正数6.(3分)如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°7.(3分)下列各题中,适合用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(+1)(﹣﹣1)C.(a﹣b)(﹣a+b)D.(﹣a﹣b)(﹣a+b)8.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=()A.50°B.60°C.70°D.80°9.(3分)如图,E、B、F、C四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断△ABC≌△DEF的是()A.∠A=∠D B.DF∥AC C.AC=DF D.AB=DE10.(3分)下列说法:①对顶角相等;②同位角相等;③必然事件发生的概率为1;④等腰三角形的对称轴就是其底边上的高所在的直线,其中正确的有()A.1个B.2个C.3个D.4个11.(3分)某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王去时走上坡路,回家时走下坡路C.小王去时所花时间少于回家所花时间D.小王在朋友家停留了10分12.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点D,交CA的延长线于点E,∠EBC=42°,则∠BAC=()A.159°B.154°C.152°D.138°二、填空题(共4小题;共12分)13.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个红球、3个白球,从布袋中随机摸出一个球,则摸到红球的概率是.14.(3分)如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=5,则D到OA的距离为.15.(3分)若(x﹣y)2=6,xy=2,则x2+y2=.16.(3分)如图,把△ABC的中线CD延长到E,使DE=CD,连接AE,若AC=4且△BCD的周长比△ACD的周长大1,则AE=.三、解答题(共7小题;共52分)17.(7分)计算:(1)20170﹣8×2﹣1﹣210÷28;(2)(4m3n﹣m2n2+2mn2﹣2mn)÷(2mn).18.(7分)先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y)]÷(2x),其中x=,y=.19.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成20个扇形,如图)并规定:顾客在本商场每消费200元,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券.某顾客消费210元,他转动转盘获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?20.(6分)如图,点P与点Q都在y轴上,且关于x轴对称.(1)请画出△ABP关于x轴的对称图形△A′B′Q(其中点A的对称点用A′表示,点B的对称点用B′表示);(2)点P、Q同时都从y轴上的位置出发,分别沿l1、l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得AP+BQ=A′B成立?若存在,请你在图中画出此时PQ的位置(用线段P′Q′表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).21.(8分)如图,在△ABC中,∠C=90°,DB⊥BC于点B,分别以点D和点B为圆心,以大于DB的长为半径作弧,两弧相交于点E和点F,作直线EF,延长AB交EF于点G,连接DG,下面是说明∠A=∠D的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知)所以∠DBC=90°()①因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()②所以=③(两直线平行,同位角相等);由作图法可知:直线EF是线段DB的()④所以GD=GB,线段⑤(上的点到线段两端点的距离相等)所以=()⑥,因为∠A=∠1(已知)所以∠A=∠D(等量代换).22.(8分)如图,AC⊥BD于点C,F是AB上一点,FD交AC于点E,∠B与∠D互余.(1)试说明:∠A=∠D;(2)若AE=1,AC=CD=2.5,求BD的长.23.(10分)如图1,AB∥CD,E是直线CD上的一点,且∠BAE=30°,P是直线CD上的一动点,M是AP的中点,直线MN⊥AP且与CD交于点N,设∠BAP=x°,∠MNE=y°.(1)在图2中,当x=12时,∠MNE=;在图3中,当x=50时,∠MNE=;(2)研究表明:y与x之间关系的图象如图4所示(y不存在时,用空心点表示,请你根据图象直接估计当y=100时,x=.(3)探究:当x=时,点N与点E重合;(4)探究:当x>105时,求y与x之间的关系式.2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题;共36分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列运算正确的是()A.a2•a3=a5B.a6•a3=a18C.(a3)2=a5D.a5+a5=a10【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=a9,故B错误;(C)原式=a6,故C错误;(D)原式=2a5,故D错误;故选:A.【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3.(3分)有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选:A.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.(3分)空气的密度是0.001293g/cm3,0.001293用科学记数法表示为()A.1.293×103B.1.293×10﹣3C.1.293×10﹣4D.12.93×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001293=1.293×10﹣3,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)下列事件中,随机事件是()A.经过有交通信号灯的路口,遇到红灯B.实心铁球投入水中会沉入水底C.一滴花生油滴入水中,油会浮在水面D.两负数的和为正数【分析】在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.【解答】解:∵经过有交通信号灯的路口,遇到红灯是随机事件,∴选项A符合题意;∵实心铁球投入水中会沉入水底是必然事件,∴选项B不符合题意;∵一滴花生油滴入水中,油会浮在水面是必然事件,∴选项C不符合题意;∵两负数的和为正数是不可能事件,∴选项D不符合题意.故选:A.【点评】此题主要考查了随机事件,要熟练掌握,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6.(3分)如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】根据平行线的判定得∠4=∠5时,AB∥CD,由于∠3+∠5=180°,所以∠3+∠4=180°时,AB∥CD.【解答】解:∵∠3+∠5=180°,而当∠4=∠5时,AB∥CD,当∠3+∠4=180°,而∠3+∠5=180°,所以∠4=∠5,则AB∥CD.故选:D.【点评】本题考查了平行线的判定:同位角相等,两直线平行.7.(3分)下列各题中,适合用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(+1)(﹣﹣1)C.(a﹣b)(﹣a+b)D.(﹣a﹣b)(﹣a+b)【分析】根据平方差公式的特点判断即可.【解答】解:A、不能用平方差公式进行计算,故本选项不符合题意;B、不能用平方差公式进行计算,故本选项不符合题意;C、不能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项符合题意;故选:D.【点评】本题考查了平方差公式,能熟记平方差公式的特点是解此题的关键,(a+b)(a﹣b)=a2﹣b2.8.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=()A.50°B.60°C.70°D.80°【分析】由“两直线平行,同旁内角互补”推知∠EDC=80°,然后结合平角的定义和平行线的性质求得∠A的度数即可.【解答】解:∵DE∥CF,∠DCF=100°,∴∠EDC+∠DCF=180°,即∠EDC+100°=180°,∴∠EDC=80°,∵∠1=∠2,∴∠1=∠2=(180°﹣80°)=50°,∵DE∥CF,∴∠A=∠2=50°.故选:A.【点评】本题考查了平行线的性质.注意找准图中“三线八角”是解题的难点.9.(3分)如图,E、B、F、C四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断△ABC≌△DEF的是()A.∠A=∠D B.DF∥AC C.AC=DF D.AB=DE【分析】由EB=CF可得出BC=EF,A、由∠A=∠D、∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理AAS即可证出△ABC≌△DEF;B、由DF∥AC可得出∠ACB=∠DFE,结合BC=EF、∠ABC=∠DEF,利用全等三角形的判定定理ASA即可证出△ABC≌△DEF;C、由AC=DF结合∠ABC=∠DEF、BC=EF,无法证出△ABC ≌△DEF;D、由AB=DE结合∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理SAS即可证出△ABC≌△DEF.综上即可得出结论.【解答】解:∵EB=CF,∴BC=EF.A、在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);B、∵DF∥AC,∴∠ACB=∠DFE.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);C、在△ABC和△DEF中,,无法证出△ABC≌△DEF;D、在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故选:C.【点评】本题考查了全等三角形的判定定理,熟练掌握全等三角形的五种判定定理是解题的关键.10.(3分)下列说法:①对顶角相等;②同位角相等;③必然事件发生的概率为1;④等腰三角形的对称轴就是其底边上的高所在的直线,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据对顶角的性质,同位角的定义,概率的定义以及等腰三角形的性质进行判断.【解答】解:①由对顶角的性质知:对顶角相等,故正确;②同位角不一定相等,故错误;③必然事件发生的概率为1,故正确;④由等腰三角形的“三线合一”的性质知:等腰三角形的对称轴就是其底边上的高所在的直线,故正确.故选:C.【点评】本题考查了概率的定义,对顶角的性质,等腰三角形的性质等知识点,属于基础题,熟记定义或性质即可解题.11.(3分)某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王去时走上坡路,回家时走下坡路C.小王去时所花时间少于回家所花时间D.小王在朋友家停留了10分【分析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、题干中未给出路况如何,故B不正确;C、先求出小王回家所用时间,比较后可得出C不正确;D、观察函数图象,求出小王在朋友家停留的时间,故D正确.综上即可得出结论.【解答】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40﹣30)=200(米/分),∵100<200,∴小王去时的速度小于回家的速度,A不正确;B、∵题干中未给出小王去朋友家的路有坡度,∴B不正确;C、40﹣30=10(分),∵20>10,∴小王去时所花时间多于回家所花时间,C不正确;D、∵30﹣20=10(分),∴小王在朋友家停留了10分,D正确.故选:D.【点评】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.12.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点D,交CA的延长线于点E,∠EBC=42°,则∠BAC=()A.159°B.154°C.152°D.138°【分析】根据等腰三角形的性质得到∠ABC=∠C,由三角形外角的性质得到∠EAB=2∠ABC,根据线段垂直平分线的性质得到∠EBA=∠EAB=2∠ABC,得到∠ABC=14°,根据三角形的内角和即可得到结论.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠EAB=∠ABC+∠C,∴∠EAB=2∠ABC,∵DE垂直平分AB,∴∠EBA=∠EAB=2∠ABC,∴∠EBC=3∠ABC=42°,∴∠ABC=14°,∴∠BAC=180°﹣2∠ABC=152°,故选:C.【点评】此题考查了线段垂直平分线的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共4小题;共12分)13.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个红球、3个白球,从布袋中随机摸出一个球,则摸到红球的概率是.【分析】根据概率公式解答即可.【解答】解:从中随机摸出一个小球,恰好是红球的概率P=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.(3分)如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=5,则D到OA的距离为 5 .【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为5.【解答】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=5,∴D到OA的距离等于DE的长,即为5.故答案为:5.【点评】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.15.(3分)若(x﹣y)2=6,xy=2,则x2+y2=10 .【分析】根据完全平方公式展开,代入即可求出答案.【解答】解:∵(x﹣y)2=6,xy=2,∴x2+y2﹣2xy=6,∴x2+y2=6+2xy=6+2×2=10,故答案为:10.【点评】本题考查了完全平方公式,能熟记完全平方公式是解此题的关键.16.(3分)如图,把△ABC的中线CD延长到E,使DE=CD,连接AE,若AC=4且△BCD的周长比△ACD的周长大1,则AE= 5 .【分析】先利用“SAS”证明△ADE≌△BDE得到AE=BC,再利用△BCD的周长比△ACD的周长大1得到BC =AC+1=5,所以AE=5.【解答】解:∵CD为△ABC的中线,∴AD=BD,在△ADE和△BDE中,∴△ADE≌△BDE,∴AE=BC,∵△BCD的周长比△ACD的周长大1,∴CD+BD+BC=AC+AD+CD+1,∴BC=AC+1=4+1=5,∴AE=5.故答案为5.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.三、解答题(共7小题;共52分)17.(7分)计算:(1)20170﹣8×2﹣1﹣210÷28;(2)(4m3n﹣m2n2+2mn2﹣2mn)÷(2mn).【分析】(1)直接利用零指数幂的性质和负指数幂的性质化简,再利用同底数幂的乘法运算法则计算得出答案;(2)直接利用多项式除法运算法则计算得出答案.【解答】解:(1)20170﹣8×2﹣1﹣210÷28=1﹣4﹣22=﹣7;(2)(4m3n﹣m2n2+2mn2﹣2mn)÷(2mn)=2m2﹣mn+n﹣1.【点评】此题主要考查了实数运算以及整式的除法运算,正确掌握相关运算法则是解题关键.18.(7分)先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y)]÷(2x),其中x=,y=.【分析】原式先计算括号内的平方差、完全平方式、单项式乘多项式,再将括号内合并同类项,然后计算除法即可化简原式,继而将y的值代入计算可得.【解答】解:原式=(x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2)÷2x=xy÷2x=y,当y=时,原式=.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是掌握整式混合运算顺序和运算法则.19.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成20个扇形,如图)并规定:顾客在本商场每消费200元,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券.某顾客消费210元,他转动转盘获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?【分析】找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率;分别找到红色、黄色或绿色区域的份数占总份数的多少即为得到100元,50元、20元购物券的概率.【解答】解:∵210元>200元,∴P(获得购物券)==;P(获得100元购物券)=;P(获得50元购物券)==;P(获得20元购物券)==.【点评】此题考查了概率公式,本题的易错点在于准确无误的找到红色、黄色或绿色区域的份数和总份数.20.(6分)如图,点P与点Q都在y轴上,且关于x轴对称.(1)请画出△ABP关于x轴的对称图形△A′B′Q(其中点A的对称点用A′表示,点B的对称点用B′表示);(2)点P、Q同时都从y轴上的位置出发,分别沿l1、l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得AP+BQ=A′B成立?若存在,请你在图中画出此时PQ的位置(用线段P′Q′表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).【分析】(1)画出A、B、P的对应点A′、B′、Q即可;(2)连接A′B交直线l2于Q′,再画出P′即可解决问题;【解答】解:(1)△A′B′Q如图1中所示.(2)如图2中,P′Q′的位置如图所示.【点评】本题考查轴对称数据图案问题,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,在△ABC中,∠C=90°,DB⊥BC于点B,分别以点D和点B为圆心,以大于DB的长为半径作弧,两弧相交于点E和点F,作直线EF,延长AB交EF于点G,连接DG,下面是说明∠A=∠D的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知)所以∠DBC=90°(垂直的定义)①因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC(内错角相等,两直线平行)②所以∠A =∠1 ③(两直线平行,同位角相等);由作图法可知:直线EF是线段DB的(垂直平分线)④所以GD=GB,线段垂直平分线⑤(上的点到线段两端点的距离相等)所以∠1 =∠D (等边对等角)⑥,因为∠A=∠1(已知)所以∠A=∠D(等量代换).【分析】先利用平行线的判定方法证明DB∥AC,则根据平行线的性质得到∠A=∠1;由作图法可知直线EF是线段DB的垂直平分线,则GD=GB,所以∠1=∠D,然后利用等两代换得到∠A=∠D.【解答】解:因为DB⊥BC(已知)所以∠DBC=90°(垂直的定义)①因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC(内错角相等,两直线平行)②所以∠A=∠1③(两直线平行,同位角相等);由作图法可知:直线EF是线段DB的(垂直平分线)④所以GD=GB(线段垂直平分线上的点到线段两端点的距离相等)⑤所以∠1=∠D(等边对等角)⑥,因为∠A=∠1(已知)所以∠A=∠D(等量代换).故答案为垂直的定义;内错角相等,两直线平行;∠A,∠1;垂直平分线;垂直平分线;∠1,∠D;等边对等角.【点评】本题考查了作图﹣法则作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.(8分)如图,AC⊥BD于点C,F是AB上一点,FD交AC于点E,∠B与∠D互余.(1)试说明:∠A=∠D;(2)若AE=1,AC=CD=2.5,求BD的长.【分析】(1)根据同角的余角相等即可证明.(2)由△ACB≌△DCE(ASA),推出BC=CE,由AC=CD=2.5,AE=1,推出BC=EC=2.5﹣1=1.5,即可解决问题.【解答】(1)证明:∵AC⊥BD,∴∠ACB=90°,∴∠A+∠B=90°,∵∠B+∠D=90°,∴∠A=∠D.(2)∵∠ACB=∠ECD=90°,AC=CD,∠A=∠D,∴△ACB≌△DCE(ASA),∴BC=CE,∵AC=CD=2.5,AE=1,∴BC=EC=2.5﹣1=1.5,∴BD=BC+CD=1.5+2.5=4.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10分)如图1,AB∥CD,E是直线CD上的一点,且∠BAE=30°,P是直线CD上的一动点,M是AP的中点,直线MN⊥AP且与CD交于点N,设∠BAP=x°,∠MNE=y°.(1)在图2中,当x=12时,∠MNE=102°;在图3中,当x=50时,∠MNE=40°;(2)研究表明:y与x之间关系的图象如图4所示(y不存在时,用空心点表示,请你根据图象直接估计当y=100时,x=10或170 .(3)探究:当x=15或105 时,点N与点E重合;(4)探究:当x>105时,求y与x之间的关系式.【分析】(1)当x=12时,根据三角形外角的性质可:∠MNE=90°+12°=102°;当x=50°,根据直角三角形两锐角互余可得结论;(2)由图象直接得出结论;(3)分两种情况:①P在E的左侧,②P在E的右侧,根据平行线的性质和中垂线的性质可得结论;(4)如图7,根据三角形外角和为360°列式可得结论.【解答】解:(1)如图2,∵AB∥CD,∴∠BAP=∠APN=x°,∵MN⊥AP,∴∠PMN=90°,∴∠MNE=∠PMN+∠APN=90°+x°,当x=12时,∠MNE=(90+12)°=102°;即y=102°,如图3中,当x=50时,∠APN=50°,∴y=∠MNE=90°﹣x°=90°﹣50°=40°,故答案为:102°,40°;(2)如图2,当0<x<30时,y=90+x,此时,y=100时,90+x=100,x=10,由图4可知:y=100时,还有x=170,∴当y=100时,x=10或170,故答案为:10或170;(3)①P在E的左侧时,当N与E重合时,如图5,∠BAE=∠AEP=30°,∵MN是AP的中垂线,∴AE=PE,∴∠AEM=∠PEM=15°,∴∠EAP=90°﹣15°=75°,∴∠BAP=x=30°+75°=105°,②P在E的右侧时,当N与E重合时,如图6,∵AB∥CD,∴∠BAP=∠APE=x,同理得:AE=PE,∴∠EAM=∠EPM=x,∵∠BAE=30°,∴∠BAP=x=∠EAP==15°,综上所述,当x=15或105时,点N与点E重合;故答案为:15或105;(4)当x>105时,如图7,∵AB∥CD,∴∠APC=∠BAP=x,∵∠APC+∠MNE+∠AMN=360°,∠AMN=90°,∴∠APC+∠MNE=360°﹣90°=270°,∴∠MNE=270°﹣∠APC=270°﹣∠BAP,即y=270﹣x.【点评】本题考查了平行线的性质、等腰三角形三线合一的性质、中垂线的性质、三角形外角定理、一次函数,属于动点问题的函数图象,有难度,并采用了分类讨论,数形结合思想解决问题。

新北师大版2017-2018学年广东省深圳高中七年级(下)期末数学试卷

2017-2018学年广东省深圳高中七年级(下)期末数学试卷一、单项选择题(每题3分,共36分1.(3分)3-的倒数为( )A .3-B .13-C .3D .132.(3分)我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .61.671010⨯3.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)下列图形中是轴对称图形的是( )A .B .C .D .5.(3分)下列运算正确的是( )A .236a a a =B .224a a a +=C .236()a a -=-D .3a a a ÷=6.(3分)标号为A 、B 、C 、D 的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是( )A .12个黑球和4个白球B .10个黑球和10个白球C .4个黑球和2个白球D .10个黑球和5个白球 7.(3分)下列调查中,最适合采用全面调查(普查)方式的是( )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查8.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线交于点D ,过点D 作//EF BC 交AB 于E ,交AC 于F ,若12AB =,8BC =,10AC =,则AEF ∆的周长为( )A .15B .18C .20D .229.(3分)ABC ∆中,A ∠,B ∠,C ∠的对边分别记为a ,b ,c ,由下列条件不能判定ABC∆为直角三角形的是( )A .ABC ∠+∠=∠B .::1:2:3A BC ∠∠∠= C .222a c b =-D .::3:4:6a b c =10.(3分)某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中( )A .赚了10元B .亏了10元C .赚了20元D .亏了20元11.(3分)端午节三天假期的某一天, 小明全家上午 8 时自架小汽车从家里出发, 到某著名旅游景点游玩 . 该小汽车离家的距离S (千 米) 与时间t (小 时) 的关系如图所示 . 根据图象提供的有关信息, 下列说法中错误的是( )A . 景点离小明家 180 千米B . 小明到家的时间为 17 点C . 返程的速度为 60 千米每小时D . 10 点至 14 点, 汽车匀速行驶12.(3分)如图,C 为线段AE 上一动点(不与A 、E 重合),在AE 同侧分别作等边ABC∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,以下五个结论:①AD BE =;②//PQ AE ;③CP CQ =;④BO OE =;⑤60AOB ∠=︒,恒成立的结论有( )A .①③⑤B .①③④⑤C .①②③⑤D .①②③④⑤二、填空题(每题3分,共6分)13.(3分)若2(3)|2|0a b ++-=,则2011()a b += .14.(3分)如果多项式2(1)16x m x +++是一个完全平方式,则m 的值是 .三、解答题(每题4分,共8分)15.(8分)(1)计算:102015201612()2(0.5)2--+⨯- (2)解方程:22(3)33x x x -+=-+ 四、填空题(每题3分,共6分)16.(3分)在长方形纸片ABCD 中,3AD cm =,9AB cm =,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = cm .17.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a ,第2幅图形中“●”的个数为2a ,第3幅图形中“●”的个数为3a ,⋯,以此类推,则第6辐图形中“●”的个数6a 的值为 .五、解答题(共44分)18.(4分)先化简,再求值:222()()()b a b a b a b ++---,其中3a =-,12b =. 19.(7分)国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (小时)进行分组(A 组:0.5t <,B 组:0.51t <…,C 组:1 1.5t <…,D 组: 1.5)t …,绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为 人,并补全条形统计图;(2)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是 ;(3)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.20.(8分)麒麟区第七中学现有一块空地ABCD 如图所示,现计划在空地上种草皮,经测量,90B ∠=︒,3AB m =,4BC m =,13CD m =,12AD m =.(1)求出空地ABCD 的面积?(2)若每种植1平方米草皮需要300元,问总共需投入多少元?21.(8分)如图,A B ∠=∠,AE BE =,点D 在AC 边上,12∠=∠,AE 和BD 相交于点O .(1)求证:AEC BED ∆≅∆;(2)若142∠=︒,求BDE ∠的度数.22.(8分)乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2)(2)+--+m n p m n p23.(9分)探究题:如图:(1)ABC∆为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP BD=成立吗?请证明你的结论;(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中BQP∠的大小保持不变.请你利用图(2)的情形,求证:60∠=︒;BQP(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017-2018学年广东省深圳市福田区七年级(上)期末数学试卷

(20172018 学年广东省深圳市福田区七年级(上)期末数学试卷一.选择题(每小题 3 分)1.(3 分)下列选项中,比﹣3 小的数是( )A .﹣1B .0C .D .﹣52.(3 分)第 14 届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A .B .C .D .3.(3 分)下列各式符合代数式书写规范的是( )A .B .a ×7C .2m ﹣1 元D .3 x4. 3分)2017 年 12 月 11 日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁 14 号线,该项目估算资金总额约为 39500000000 元,将39500000000 元用科学记数法表示为()A .0.395×1011 元C ..95×109 元B .3.95×1010 元D .39.5×109 元5.(3 分)下列计算正确的是( )A .4a +2a=6a 2B .7ab ﹣6ba=abC .4a +2b=6abD .5a ﹣2a=36.(3 分)如图所示,能用∠AOB ,∠O ,∠1 三种方法表示同一个角的图形的是()((A.B.C.D.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.2010.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣311.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.(3分)已知3x2m y3和﹣2x2y n是同类项,则式子m+n的值是.14.(3分)在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.15.(3分)某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.(3分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.(,三、解答题17.(15分)计算:(1)16﹣(﹣18)+(﹣9)﹣15(2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|18.(4分)先化简,再求值:(3a2﹣5a)﹣(4a2﹣4a﹣2),其中a=.19.(8分)解方程:(1)2(x+2)=1﹣(x+3)(2)﹣=﹣120.8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目)并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=,n=;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.(21.(5分)如图,∠AOC=∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.22.5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A 移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?20172018学年广东省深圳市福田区七年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题3分)1.(3分)下列选项中,比﹣3小的数是()A.﹣1B.0C.D.﹣5【分析】先比较数的大小,再得出选项即可.【解答】解:A、﹣1>﹣3,故本选项不符合题意;B、0>﹣3,故本选项不符合题意;C、>﹣3,故本选项不符合题意;D、﹣5<﹣3,故本选项符合题意;故选:D.【点评】本题考查了有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.2.(3分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.或 (故选:C .【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.3.(3 分)下列各式符合代数式书写规范的是( )A .B .a ×7C .2m ﹣1 元D .3 x【分析】根据代数式的书写要求判断各项.【解答】解:A 、代数式书写规范,故 A 符合题意;B 、数字与字母相乘时,数字要写在字母的前面,故 B 不符合题意;C 、代数式作为一个整体,应该加括号,故 C 不符合题意;D 、带分数要写成假分数的形式,故 D 不符合题意;故选:A .【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“” 者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4. 3分)2017 年 12 月 11 日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁 14 号线,该项目估算资金总额约为 39500000000 元,将39500000000 元用科学记数法表示为()A .0.395×1011 元C ..95×109 元B .3.95×1010 元D .39.5×109 元【分析】科学记数法就是把一个数写成 a ×10n 的形式,其中 1≤a <10.根据 a的取值范围可得正确结论.【解答】解:39500000000=3.95×1010故选:B .【点评】本题考查了用科学记数法表示较大的数.解决本题的关键是掌握科学记数法的特点.注意:a ×10n 中,1≤a <10,n 等于整数位数减一.5.(3 分)下列计算正确的是( )A .4a +2a=6a 2B .7ab ﹣6ba=abC .4a +2b=6abD .5a ﹣2a=3【分析】直接利用合并同类项法则化简得出答案.【解答】解:A、4a+2a=6a,故此选项错误;B、7ab﹣6ba=ab,正确;C、4a+2b无法计算,故此选项错误;D、5a﹣2a=3a,故此选项错误;故选:B.【点评】此题主要考查了合并同类项法则,正确掌握运算法则是解题关键.6.(3分)如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.【点评】本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.7.(3分)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离(B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.8.3分)深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.(3分)如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.20【分析】根据线段中点的定义可得BC=AB,再求出AD,然后根据DB=AB﹣AD 代入数据计算即可得解.【解答】解:∵AB=24,点C为AB的中点,∴BC=AB=×24=12,∵AD:CB=1:3,∴AD=×12=4,∴DB=AB﹣AD=24﹣4=20.故选:D.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,以及数形转化的思想.10.(3分)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.3D.﹣3【分析】把x=2代入已知方程得到m的新方程,通过解新方程求得m的值.【解答】解:把x=2代入4x+2m﹣14=0,得4×2+2m﹣14=0,解得m=3.故选:C.【点评】本题考查了一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.11.(3分)在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.101【分析】由于表中竖列上相邻两列的数相差7,所以可设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,然后根据这四个数的和分别等于四个选项中的数列出方程,求出方程的解,然后根据实际意义取值即可.【解答】解:设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,那么,这四个数的和为x+x+7+x+14+x+21=4x+42.A、如果4x+42=86,那么x=11,不符合题意;B、如果4x+42=78,那么x=9,符合题意;C、如果4x+42=60,那么x=4.5,不符合题意;D、如果4x+42=101,那么x=14.75,不合题意.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.(3分)下列叙述:①最小的正整数是0;②6πx3的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5【分析】对各语句逐一判断即可得.【解答】解:①最小的正整数是1,此结论错误;②6πx3的系数是6π,此结论正确;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④若AC=BC,且点C在线段AB上,则点C是线段AB的中点,此结论错误;⑤三角形是多边形,此结论正确;⑥绝对值等于本身的数是正数和0,此结论错误;故选:A.【点评】本题主要考查数、式、几何图形的综合问题,解题的关键是熟练掌握有理数的概念、单项式的定义、中点的定义等知识点.二、填空题(每小题3分)( 13.(3 分)已知 3x 2m y 3 和﹣2x 2y n 是同类项,则式子 m +n 的值是 4 .【分析】直接利用同类项的定义得出 m ,n 的值,进而得出答案.【解答】解:∵3x 2m y 3 和﹣2x 2y n 是同类项,∴2m=2,n=3,解得:m=1,则 m +n=4.故答案为:4.【点评】此题主要考查了同类项,正确得出 m ,n 的值是解题关键.14. 3分)在数轴上与表示数﹣1 的点的距离为 3 个单位长度的点所表示的数是﹣4 或 2 .【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1 的距离为 3,那么应有两个点,记为 A 1,A 2,分别位于﹣1 两侧,且到﹣1 的距离为 3,这两 个点对应的数分别是﹣1﹣3 和﹣1+3,在数轴上画出 A 1,A 2 点如图所示.【解答】解:因为点与﹣1 的距离为 3,所以这两个点对应的数分别是﹣1﹣3 和﹣1+3,即为﹣4 或 2.故答案为﹣4 或 2.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.15.(3 分)某书店把一本新书按标价的八折出售,仍获利 30%,若该书的进价为 40 元,则标价为 65 元.【分析】根据题意,实际售价=进价+利润,八折即标价的 80%;可得一元一次的等量关系式,求解可得答案.【解答】解:设标价是 x 元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为 65 元.故答案为:65.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据( 等量关系列出方程解答.16.(3 分)如图所示的运算程序中,若开始输入的 x 值为 96,我们发现第 1 次输出的结果为 48,第 2 次输出的结果为 24,……,第 2018 次输出的结果为 2 .【分析】分别计算出前 10 次输出的结果,据此得出除去前 3 个结果 48、24、12,剩下的以 6,3,8,4,2,1 循环,根据“(2018﹣3)÷6=335…5” 可得答案.【解答】解:根据运算程序得到:除去前 3 个结果 48、24、12,剩下的以 6,3,8,4,2,1 循环,∵(2018﹣3)÷6=335…5,则第 2018 次输出的结果为 2,故答案为:2.【点评】此题考查了代数式求值及数字的变化规律,弄清题中的规律是解本题的关键.三、解答题17.(15 分)计算:(1)16﹣(﹣18)+(﹣9)﹣15(2)(﹣ +﹣ )×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|【分析】 1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先利用乘法分配律计算,再根据有理数的加法法则计算即可;(3)先算乘方与绝对值,再算乘法,最后算加减即可.【解答】解:(1)16﹣(﹣18)+(﹣9)﹣15=16+18﹣9﹣15=10;((2)(﹣ +﹣ )×24﹣=﹣4+14﹣9﹣= ;(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35.【点评】本题考查了有理数的混合运算,其顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(4 分)先化简,再求值:(3a 2﹣5a )﹣ (4a 2﹣4a ﹣2),其中 a= .【分析】原式去括号合并得到最简结果,把 a 的值代入计算即可求出值.【解答】解:原式=3a 2﹣5a ﹣2a 2+2a +1=a 2﹣3a +1,当 a= 时,原式= ﹣1+1= .【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(8 分)解方程:(1)2(x +2)=1﹣(x +3)(2)﹣ =﹣1【分析】 1)方程去括号,移项合并,把 x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项合并,把 y 系数化为 1,即可求出解.【解答】解:(1)去括号得:2x +4=1﹣x ﹣3,移项合并得:3x=﹣6,解得:x=﹣2;(,((2)去分母得:8y﹣4﹣3y﹣6=﹣12,移项合并得:5y=﹣2,解得:x=﹣0.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目)并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=50,n=30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是72度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.【分析】1)根据统计图中的数据可以求得m和n的值;(2)根据统计图中的数据可以求得扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数;(3)根据统计图中的数据可以求得喜爱B的人数;(4)根据统计图中的数据可以求得该校6000名学生中有多少名学生最喜欢《中国诗词大会》节目.【解答】解:(1)由题意可得,m=5÷10%=50,n%=15÷50×100%=30%,故答案为:50,30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是:360°×=72°,故答案为:72;(3)喜爱B的有:50×40%=20(人)补全的条形统计图如右图所示;(4)6000×30%=1800,答:该校6000名学生中有1800名学生最喜欢《中国诗词大会》节目.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(5分)如图,∠AOC=∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.【分析】先求出∠BOC,求出∠AOB,根据角平分线求出∠AOD,即可求出∠COD.【解答】解:∵∠AOC=∠BOC=50°,∴∠BOC=100°,∴∠AOB=∠AOC+∠BOC=150°,∵OD平分∠AOB,∴∠AOD=∠AOB=75°,((((∴∠COD=∠AOD﹣∠AOC=75°﹣50°=25°.【点评】本题考查了角平分线定义和角的有关计算,能求出各个角的度数是解此题的关键.22.5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,其中中型汽车有x辆.(1)则小型汽车的车辆数为50﹣x(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?【分析】1)根据停车场汽车的总数结合中型汽车的辆数,即可得出小型汽车的辆数;(2)根据停车总费用=12×中型汽车辆数+8×小型汽车辆数,即可得出关于x 的一元一次方程,解之即可得出结论【解答】解:(1)∵停车场共有50辆车,中型汽车有x辆,∴小型汽车有(50﹣x)辆.故答案为:50﹣x.(2)根据题意得:15x+10(50﹣x)=580,解得:x=16,∴50﹣x=34.答:中型汽车有16辆,小型汽车有34辆【点评】本题考查了一元一次方程的应用,解题的关键是:1)根据汽车总辆数及中型汽车辆数,表示出小型车辆数;2)根据停车总费用=12×中型汽车辆数+8×小型汽车辆数,列出关于x的一元一次方程.23.(8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为6或﹣42.( (3)现有动点 P 、Q 都从 B 点出发,点 P 以每秒 1 个单位长度的速度向终点 A移动;当点 P 移动到 O 点时,点 Q 才从 B 点出发,并以每秒 3 个单位长度的速度向右移动,且当点 P 到达 A 点时,点 Q 就停止移动,设点 P 移动的时间为 t 秒,问:当 t 为多少时,P 、Q 两点相距 4 个单位长度?【分析】 1)根据偶次方以及绝对值的非负性即可求出 a 、b 的值,可得点 A 表示的数,点 B 表示的数,再根据两点间的距离公式可求线段 AB 的长;(2)分两种情况:点 C 在线段 AB 上,点 C 在射线 AB 上,进行讨论即可求解;(3)分 0<t ≤6、6<x ≤9 和 9<t ≤30 三种情况考虑,根据两点间的距离公式结合 PQ=4 即可得出关于 t 的一元一次方程,解之即可得出结论.【解答】解:(1)∵|a ﹣30|+(b +6)2=0,∴a ﹣30=0,b +6=0,解得 a=30,b=﹣6,AB=30﹣(﹣6)=36.故点 A 表示的数为 30,点 B 表示的数为﹣6,线段 AB 的长为 36.(2)点 C 在线段 AB 上,∵AC=2BC ,∴AC=36×=24,点 C 在数轴上表示的数为 30﹣24=6;点 C 在射线 AB 上,∵AC=2BC ,∴AC=36×2=72,点 C 在数轴上表示的数为 30﹣72=﹣42.故点 C 在数轴上表示的数为 6 或﹣42;(3)经过 t 秒后,点 P 表示的数为 t ﹣6,点 Q 表示的数为(i )当 0<t ≤6 时,点 Q 还在点 A 处,∴PQ=t ﹣6﹣(﹣6)=t=4;(ii )当 6<x ≤9 时,点 P 在点 Q 的右侧,∴(t ﹣6)﹣[3(t ﹣6)﹣6]=4,,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点评】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.。

深圳深圳市福田区皇岗中学七年级下册数学期末试卷检测题(Word版 含答案)

深圳深圳市福田区皇岗中学七年级下册数学期末试卷检测题(Word 版 含答案)一、解答题1.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.2.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.3.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 4.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.5.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.二、解答题6.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.7.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).8.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明. 9.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = 又∵∠EAB +∠BAC +∠DAC =180° ∴∠B +∠BAC +∠C =180° 解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决. 方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.10.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠.三、解答题11.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 12.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时, ∵∠ACD -∠ABD =∠______ ∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD )∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.13.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 14.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.15.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、解答题1.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】证明:(1)∵AB ∥CD ,EF ∥CD , ∴AB ∥EF , ∴∠ABF =∠BFE , ∵EF ∥CD , ∴∠DCF =∠EFC ,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.2.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒, 又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)见解析;(2)当点E 在CA 的延长线上时,∠BED=∠D-∠B ;当点E 在AC 的延长线上时,∠BED=∠BET-∠DET=∠B-∠D ;(3) 【分析】(1)如图1中,过点E 作ET ∥AB .利用平行解析:(1)见解析;(2)当点E 在CA 的延长线上时,∠BED =∠D -∠B ;当点E 在AC 的延长线上时,∠BED =∠BET -∠DET =∠B -∠D ;(3)()12m n n-【分析】(1)如图1中,过点E 作ET ∥A B .利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E 在CA 的延长线上时,如图2-2中,当点E 在AC 的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD =∠ABM +∠CDM ,∠BFD =∠ABF +∠CDF ,由此解决问题即可. 【详解】解:(1)证明:如图1中,过点E 作ET ∥A B .由平移可得AB ∥CD ,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 4.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 5.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.二、解答题6.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP 或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN∥EF∴MN∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC-∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP交射线AQ于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.7.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂;(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.8.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒;(2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.9.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D=∠FCD ,∠B=∠BCF ,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.10.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得,最 解析:(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(120)1n AOE n -+∠=︒. 【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒, ∴1302COD BOC ∠=∠=︒, ∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=, ∴260403BOD ∠=︒⨯=︒, ∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=, ∴6060()11n n BOD n n ∠=︒⨯=︒++, ∴60()1n EOC BOD n ∠=∠=︒+,∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+, ∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+. 【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.三、解答题11.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N=30°可得MN ∥CB ,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N =30°可得MN ∥CB ,再根据两直线平行,同旁内角互补即可求出∠CEN 的度数.(3)画出图形,求出在MN ⊥CD 时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN 中,∠CEN =180°-∠ECN -∠CNE =180°-45°-30°=105°;(2)∵∠BON =30°,∠N =30°,∴∠BON =∠N ,∴MN ∥CB .∴∠OCD +∠CEN =180°,∵∠OCD =45°∴∠CEN =180°-45°=135°;(3)如图,MN ⊥CD 时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN 恰好与直线CD 垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 12.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.13.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n ︒-, ∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD -∠AED =140°-1802n ︒-=1002n ︒+, ∵∠BAC =100°,∠DAC =n ,∴∠BAD =100°+n ,∴∠BAD =2∠CDE .【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.14.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.15.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年广东省深圳市福田区七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. B. C. D.3.有下列长度的三条线段,能组成三角形的是()A. 2cm,3cm,4cmB. 1cm,4cm,2cmC. 1cm,2cm,3cmD. 6cm,2cm,3cm4.空气的密度是0.001293g/cm3,0.001293用科学记数法表示为()A. B. C. D.5.下列事件中,随机事件是()A. 经过有交通信号灯的路口,遇到红灯B. 实心铁球投入水中会沉入水底C. 一滴花生油滴入水中,油会浮在水面D. 两负数的和为正数6.如图,能判断直线AB∥CD的条件是()A.B.C.D.7.下列各题中,适合用平方差公式计算的是()A. B.C. D.8.如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=( )A. B. C. D.9.如图,E、B、F、C四点在同一条直线上,EB=CF,∠DEF=∠ABC,添加以下哪一个条件不能判断△ABC≌△DEF的是()A. B. C. D.10.下列说法:①对顶角相等;②同位角相等;③必然事件发生的概率为1;④等腰三角形的对称轴就是其底边上的高所在的直线,其中正确的有()A. 1个B. 2个C. 3个D. 4个11.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)关系的图象,根据图象信息,下列说法正确的是()A. 小王去时的速度大于回家的速度B. 小王去时走上坡路,回家时走下坡路C. 小王去时所花时间少于回家所花时间D. 小王在朋友家停留了10分12.如图,△ABC中,AB=AC,AB的垂直平分线交AB于点D,交CA的延长线于点E,∠EBC=42°,则∠BAC=()A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.一个不透明的布袋里装有7个只有颜色不同的球,其中4个红球、3个白球,从布袋中随机摸出一个球,则摸到红球的概率是______.14.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=5,则D到OA的距离为______.15.若(x-y)2=6,xy=2,则x2+y2=______.16.如图,把△ABC的中线CD延长到E,使DE=CD,连接AE,若AC=4且△BCD的周长比△ACD的周长大1,则AE=______.三、计算题(本大题共1小题,共7.0分)17.先化简,再求值:[(x+y)(x-y)-(x-y)2-y(x-2y)]÷(2x),其中x=,y=.四、解答题(本大题共6小题,共45.0分)18.计算:(1)20170-8×2-1-210÷28;(2)(4m3n-m2n2+2mn2-2mn)÷(2mn).19.某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成20个扇形,如图)并规定:顾客在本商场每消费200元,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券.某顾客消费210元,他转动转盘获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?20.如图,点P与点Q都在y轴上,且关于x轴对称.(1)请画出△ABP关于x轴的对称图形△A′B′Q(其中点A的对称点用A′表示,点B 的对称点用B′表示);(2)点P、Q同时都从y轴上的位置出发,分别沿l1、l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得AP+BQ=A′B成立?若存在,请你在图中画出此时PQ的位置(用线段P′Q′表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).21.如图,在△ABC中,∠C=90°,DB⊥BC于点B,分别以点D和点B为圆心,以大于DB的长为半径作弧,两弧相交于点E和点F,作直线EF,延长AB交EF于点G,连接DG,下面是说明∠A=∠D的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知)所以∠DBC=90°(______)①因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC(______)②所以______=______③(两直线平行,同位角相等);由作图法可知:直线EF是线段DB的(______)④所以GD=GB,线段______⑤(上的点到线段两端点的距离相等)所以______=______(______)⑥,因为∠A=∠1(已知)所以∠A=∠D(等量代换).22.如图,AC⊥BD于点C,F是AB上一点,FD交AC于点E,∠B与∠D互余.(1)试说明:∠A=∠D;(2)若AE=1,AC=CD=2.5,求BD的长.23.如图1,AB∥CD,E是直线CD上的一点,且∠BAE=30°,P是直线CD上的一动点,M是AP的中点,直线MN⊥AP且与CD交于点N,设∠BAP=x°,∠MNE=y°.(1)在图2中,当x=12时,∠MNE=______;在图3中,当x=50时,∠MNE=______;(2)研究表明:y与x之间关系的图象如图4所示(y不存在时,用空心点表示,请你根据图象直接估计当y=100时,x=______.(3)探究:当x=______时,点N与点E重合;(4)探究:当x>105时,求y与x之间的关系式.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:(B)原式=a9,故B错误;(C)原式=a6,故C错误;(D)原式=2a5,故D错误;故选:A.根据整式的运算法则即可求出答案.本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3.【答案】A【解析】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选:A.根据三角形的三边关系进行分析判断.本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.【答案】B【解析】解:0.001293=1.293×10-3,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】A【解析】解:∵经过有交通信号灯的路口,遇到红灯是随机事件,∴选项A符合题意;∵实心铁球投入水中会沉入水底是必然事件,∴选项B不符合题意;∵一滴花生油滴入水中,油会浮在水面是必然事件,∴选项C不符合题意;∵两负数的和为正数是不可能事件,∴选项D不符合题意.故选:A.在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.此题主要考查了随机事件,要熟练掌握,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6.【答案】D【解析】解:∵∠3+∠5=180°,而当∠4=∠5时,AB∥CD,当∠3+∠4=180°,而∠3+∠5=180°,所以∠4=∠5,则AB∥CD.故选:D.根据平行线的判定得∠4=∠5时,AB∥CD,由于∠3+∠5=180°,所以∠3+∠4=180°时,AB∥CD.本题考查了平行线的判定:同位角相等,两直线平行.7.【答案】D【解析】解:A、不能用平方差公式进行计算,故本选项不符合题意;B、不能用平方差公式进行计算,故本选项不符合题意;C、不能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项符合题意;故选:D.根据平方差公式的特点判断即可.本题考查了平方差公式,能熟记平方差公式的特点是解此题的关键,(a+b)(a-b)=a2-b2.8.【答案】A【解析】【分析】本题考查了平行线的性质;注意找准图中“三线八角”是解题的难点;由“两直线平行,同旁内角互补”推知∠EDC=80°,然后结合平角的定义和平行线的性质求得∠A的度数即可.【解答】解:∵DE∥CF,∠DCF=100°,∴∠EDC+∠DCF=180°,即∠EDC+100°=180°,∴∠EDC=80°,∵∠1=∠2,∴∠1=∠2=(180°-80°)=50°,∵DE∥CF,∴∠A=∠2=50°.故选A.9.【答案】C【解析】解:∵EB=CF,∴BC=EF.A、在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);B、∵DF∥AC,∴∠ACB=∠DFE.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);C、在△ABC和△DEF中,,无法证出△ABC≌△DEF;D、在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故选:C.由EB=CF可得出BC=EF,A、由∠A=∠D、∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理AAS即可证出△ABC≌△DEF;B、由DF∥AC可得出∠ACB=∠DFE,结合BC=EF、∠ABC=∠DEF,利用全等三角形的判定定理ASA 即可证出△ABC≌△DEF;C、由AC=DF结合∠ABC=∠DEF、BC=EF,无法证出△ABC≌△DEF;D、由AB=DE结合∠ABC=∠DEF、BC=EF,利用全等三角形的判定定理SAS即可证出△ABC≌△DEF.综上即可得出结论.本题考查了全等三角形的判定定理,熟练掌握全等三角形的五种判定定理是解题的关键.10.【答案】C【解析】解:①由对顶角的性质知:对顶角相等,故正确;②同位角不一定相等,故错误;③必然事件发生的概率为1,故正确;④由等腰三角形的“三线合一”的性质知:等腰三角形的对称轴就是其底边上的高所在的直线,故正确.故选:C.根据对顶角的性质,同位角的定义,概率的定义以及等腰三角形的性质进行判断.本题考查了概率的定义,对顶角的性质,等腰三角形的性质等知识点,属于基础题,熟记定义或性质即可解题.11.【答案】D【解析】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40-30)=200(米/分),∵100<200,∴小王去时的速度小于回家的速度,A不正确;B、∵题干中未给出小王去朋友家的路有坡度,∴B不正确;C、40-30=10(分),∵20>10,∴小王去时所花时间多于回家所花时间,C不正确;D、∵30-20=10(分),∴小王在朋友家停留了10分,D正确.故选:D.A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、题干中未给出路况如何,故B不正确;C、先求出小王回家所用时间,比较后可得出C不正确;D、观察函数图象,求出小王在朋友家停留的时间,故D正确.综上即可得出结论.本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.12.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠C,∵∠EAB=∠ABC+∠C,∴∠EAB=2∠ABC,∵DE垂直平分AB,∴∠EBA=∠EAB=2∠ABC,∴∠EBC=3∠ABC=42°,∴∠ABC=14°,∴∠BAC=180°-2∠ABC=152°,故选:C.根据等腰三角形的性质得到∠ABC=∠C,由三角形外角的性质得到∠EAB=2∠ABC,根据线段垂直平分线的性质得到∠EBA=∠EAB=2∠ABC,得到∠ABC=14°,根据三角形的内角和即可得到结论.此题考查了线段垂直平分线的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.13.【答案】【解析】解:从中随机摸出一个小球,恰好是红球的概率P=.故答案为.根据概率公式解答即可.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.【答案】5【解析】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=5,∴D到OA的距离等于DE的长,即为5.故答案为:5.从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为5.本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.15.【答案】10【解析】解:∵(x-y)2=6,xy=2,∴x2+y2-2xy=6,∴x2+y2=6+2xy=6+2×2=10,故答案为:10.根据完全平方公式展开,代入即可求出答案.本题考查了完全平方公式,能熟记完全平方公式是解此题的关键.16.【答案】5【解析】解:∵CD为△ABC的中线,∴AD=BD,在△ADE和△BDE中,∴△ADE≌△BDE,∴AE=BC,∵△BCD的周长比△ACD的周长大1,∴CD+BD+BC=AC+AD+CD+1,∴BC=AC+1=4+1=5,∴AE=5.故答案为5.先利用“SAS”证明△ADE≌△BDE得到AE=BC,再利用△BCD的周长比△ACD 的周长大1得到BC=AC+1=5,所以AE=5.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.17.【答案】解:原式=(x2-y2-x2+2xy-y2-xy+2y2)÷2x=xy÷2x=y,当y=时,原式=.【解析】原式先计算括号内的平方差、完全平方式、单项式乘多项式,再将括号内合并同类项,然后计算除法即可化简原式,继而将y的值代入计算可得.本题主要考查整式的混合运算-化简求值,解题的关键是掌握整式混合运算顺序和运算法则.18.【答案】解:(1)20170-8×2-1-210÷28=1-4-22=-7;(2)(4m3n-m2n2+2mn2-2mn)÷(2mn)=2m2-mn+n-1.【解析】(1)直接利用零指数幂的性质和负指数幂的性质化简,再利用同底数幂的乘法运算法则计算得出答案;(2)直接利用多项式除法运算法则计算得出答案.此题主要考查了实数运算以及整式的除法运算,正确掌握相关运算法则是解题关键.19.【答案】解:∵210元>200元,∴P(获得购物券)==;P(获得100元购物券)=;P(获得50元购物券)==;P(获得20元购物券)==.【解析】找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率;分别找到红色、黄色或绿色区域的份数占总份数的多少即为得到100元,50元、20元购物券的概率.此题考查了概率公式,本题的易错点在于准确无误的找到红色、黄色或绿色区域的份数和总份数.20.【答案】解:(1)△A′B′Q如图1中所示.(2)如图2中,P′Q′的位置如图所示.【解析】(1)画出A、B、P的对应点A′、B′、Q即可;(2)连接A′B交直线l2于Q′,再画出P′即可解决问题;本题考查轴对称数据图案问题,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】垂直的定义内错角相等,两直线平行∠A∠1 垂直平分线垂直平分线∠1 ∠D等边对等角【解析】解:因为DB⊥BC(已知)所以∠DBC=90°(垂直的定义)①因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC(内错角相等,两直线平行)②所以∠A=∠1③(两直线平行,同位角相等);由作图法可知:直线EF是线段DB的(垂直平分线)④所以GD=GB(线段垂直平分线上的点到线段两端点的距离相等)⑤所以∠1=∠D(等边对等角)⑥,因为∠A=∠1(已知)所以∠A=∠D(等量代换).故答案为垂直的定义;内错角相等,两直线平行;∠A,∠1;垂直平分线;垂直平分线;∠1,∠D;等边对等角.先利用平行线的判定方法证明DB∥AC,则根据平行线的性质得到∠A=∠1;由作图法可知直线EF是线段DB的垂直平分线,则GD=GB,所以∠1=∠D,然后利用等两代换得到∠A=∠D.本题考查了作图-法则作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.【答案】(1)证明:∵AC⊥BD,∴∠ACB=90°,∴∠A+∠B=90°,∵∠B+∠D=90°,∴∠A=∠D.(2)∵∠ACB=∠ECD=90°,AC=CD,∠A=∠D,∴△ACB≌△DCE(ASA),∴BC=CE,∵AC=CD=2.5,AE=1,∴BC=EC=2.5-1=1.5,∴BD=BC+CD=1.5+2.5=4.【解析】(1)根据同角的余角相等即可证明.(2)由△ACB≌△DCE(ASA),推出BC=CE,由AC=CD=2.5,AE=1,推出BC=EC=2.5-1=1.5,即可解决问题.本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.【答案】102°40°10或170 15或105【解析】解:(1)如图2,∵AB∥CD,∴∠BAP=∠APN=x°,∵MN⊥AP,∴∠PMN=90°,∴∠MNE=∠PMN+∠APN=90°+x°,当x=12时,∠MNE=(90+12)°=102°;即y=102°,如图3中,当x=50时,∠APN=50°,∴y=∠MNE=90°-x°=90°-50°=40°,故答案为:102°,40°;(2)如图2,当0<x<30时,y=90+x,此时,y=100时,90+x=100,x=10,由图4可知:y=100时,还有x=170,∴当y=100时,x=10或170,故答案为:10或170;(3)①P在E的左侧时,当N与E重合时,如图5,∠BAE=∠AEP=30°,∵MN是AP的中垂线,∴AE=PE,∴∠AEM=∠PEM=15°,∴∠EAP=90°-15°=75°,∴∠BAP=x=30°+75°=105°,②P在E的右侧时,当N与E重合时,如图6,∵AB∥CD,∴∠BAP=∠APE=x,同理得:AE=PE,∴∠EAM=∠EPM=x,∵∠BAE=30°,∴∠BAP=x=∠EAP==15°,综上所述,当x=15或105时,点N与点E重合;故答案为:15或105;(4)当x>105时,如图7,∵AB∥CD,∴∠APC=∠BAP=x,∵∠APC+∠MNE+∠AMN=360°,∠AMN=90°,∴∠APC+∠MNE=360°-90°=270°,∴∠MNE=270°-∠APC=270°-∠BAP,即y=270-x.(1)当x=12时,根据三角形外角的性质可:∠MNE=90°+12°=102°;当x=50°,根据直角三角形两锐角互余可得结论;(2)由图象直接得出结论;(3)分两种情况:①P在E的左侧,②P在E的右侧,根据平行线的性质和中垂线的性质可得结论;(4)如图7,根据三角形外角和为360°列式可得结论.本题考查了平行线的性质、等腰三角形三线合一的性质、中垂线的性质、三角形外角定理、一次函数,属于动点问题的函数图象,有难度,并采用了分类讨论,数形结合思想解决问题.。

相关文档
最新文档