(完整word)五年级下册奥数题
五年级奥数题练习及答案(55题)

五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
(完整版)小学五年级下奥数题

小学五年级奥数题修改版一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
4. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
5. 计算 1.25⨯0.32⨯2.5=_____。
6. 计算 75⨯4.7+15.9⨯25=_____。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
9.。
10.计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23。
二、数的整除性(一)填空题1. 四位数“3AA1”是9的倍数,那么A=_____。
2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。
3. 能同时被2、3、5整除的最大三位数是_____。
4. 能同时被2、5、7整除的最大五位数是_____。
5. 1至100以内所有不能被3整除的数的和是_____。
6. 所有能被3整除的两位数的和是______。
7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____。
(二)解答题8. 173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?9.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?三质数与合数(一)填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____。
小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级下册奥数题精选

小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
(完整word)五年级下册体积提高题及奥数题

长方体和正方体体积容积练习题2.8立方分米=()立方厘米0.8升=()毫升720立方分米=()立方米51000毫升= ( )升32立方厘米=()立方分米2.7立方米=()升1200毫升=()立方厘米4.25立方米=()立方分米=()升1.24立方米=()升=()毫升3.06升=()升()毫升1.一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?2.有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?3.一块正方体的石头,棱长是5分米,每立方米的石头大约重 2.7千克,这块石头重有多少千克?4.学校要砌一道长20米,宽2.4分米、高2米的墙,每立方米需要砖525块,学校需要买多少块砖?5.一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?6.一个长方体油箱,长6分米,宽5分米,高4分米。
做这个油箱需要多少平方分米铁皮?每升油重0.85千克,这个油箱可装油多少千克?5.在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?6.一个正方体被切成24个小长方体(如图)。
这些小长方体的表面积总和为162平方厘米,求这个正方体的表面积。
7.将一个长6厘米、宽4厘米、高3厘米的长方体的六个面都涂上红色,然后把这个长方体切割成一个个边长为1厘米的小正方体。
这些小正方体中恰好有两个面涂上红色的有多少个?8.在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
问水位上升了多少分米?图27—4第一周奥数练习在解答立体图形的表面积问题时,要注意几点: (1)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
小学数学小学五年级的数学下册的奥数必考题目与参考标准答案.doc

一、工程问题1.甲乙两个水管单独开;注满一池水;分别需要20 小时; 16 小时 . 丙水管单独开;排一池水要10 小时;若水池没水;同时打开甲乙两水管; 5 小时后;再打开排水管丙;问水池注满还需要多少小时?2.修一条水渠;单独修;甲队需要20 天完成;乙队需要30 天完成。
如果两队合作;由于彼此施工有影响;他们的工作效率就要降低;甲队的工作效率是原来的五分之四;乙队工作效率只有原来的十分之九。
现在计划16 天修完这条水渠;且要求两队合作的天数尽可能少;那么两队要合作几天?3.一件工作;甲、乙合做需 4 小时完成;乙、丙合做需 5 小时完成。
现在先请甲、丙合做 2 小时后;余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?4.一项工程;第一天甲做;第二天乙做;第三天甲做;第四天乙做;这样交替轮流做;那么恰好用整数天完工;如果第一天乙做;第二天甲做;第三天乙做;第四天甲做;这样交替轮流做;那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成;甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2 时;徒弟完成了120 个。
当师傅完成了任务时;徒弟完成了4/5 这批零件共有多少个?6.一批树苗;如果分给男女生栽;平均每人栽 6 棵;如果单份给女生栽;平均每人栽 10 棵。
单份给男生栽;平均每人栽几棵?7.一个池上装有 3 根水管。
甲管为进水管;乙管为出水管;20 分钟可将满池水放完;丙管也是出水管;30 分钟可将满池水放完。
现在先打开甲管;当水池水刚溢出时;打开乙;丙两管用了18 分钟放完;当打开甲管注满水是;再打开乙管;而不开丙管;多少分钟将水放完?8.某工程队需要在规定日期内完成;若由甲队去做;恰好如期完成;若乙队去做;要超过规定日期三天完成;若先由甲乙合作二天;再由乙队单独做;恰好如期完成;问规定日期为几天?9.两根同样长的蜡烛;点完一根粗蜡烛要 2 小时;而点完一根细蜡烛要 1 小时;一天晚上停电;小芳同时点燃了这两根蜡烛看书;若干分钟后来点了;小芳将两支蜡烛同时熄灭;发现粗蜡烛的长是细蜡烛的 2 倍;问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100 只;鸡的腿数比兔的腿数少28 条;;问鸡与兔各有几只?三.数字数位问题1.把 1 至 2005 这 2005 个自然数依次写下来得到一个多位数123456789.....2005 ;这个多位数除以 9 余数是多少 ?2. A 和 B 是小于100 的两个非零的不同自然数。
小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册奥数题目录第一讲图形的变换(图形的分割与拼接)………………………………3-5第二讲因数与倍数(数的整除特征一)………………………………6-10第三讲因数与倍数(数的整除特征二)……………………………11-12第四讲因数与倍数(奇数与偶数)……………………………13-17第五讲因数与倍数(最小公倍数与最大公因数)……………………18-20第六讲因数与倍数(最小公倍数与最大公因数)……………………21-261第七讲长方体和正方体(巧算表面积)………………………………27-30 第八讲长方体和正方体(巧算体积)……………………………………31-35 第九讲分数的意义和性质……36-40 第十讲分数的加法和减法……41-44 第十一讲平均数问题……………45-49 第十二讲教学广角(追及问题)…………………………………50-54 第十三讲数学广角(还原问题)…55-58 第十四讲容斥原理………………59-62 第十五讲抽屉原理和最不利……63-67 第十六讲综合练习…………… 68-982五年级下册奥数题第一讲图形的变换(图形的分割与拼接)1、把右图分成形状、大小都相同的四块,并且每个图形中要有一个“·”。
2、把下图分成大小、形状相同的三块,使每一块都有一颗星,该怎么分割?33、下图是由一个正方形和一个等腰直角三角形组成的,请把它分成大小、形状相同的四块。
4、将下图分成大小、形状相同的四块、每块中带有一个小圆圈。
5、将图中五个图形拼成一个正方形456、将图中长方形切成两块,拼成一个正方形。
7、将下图(缺两角的长方形)分割成两块,然后拼成一个正方形。
8、将下图“T ”字剪成四块,然后拼成一个正方形。
169第二讲因数与倍数(数的整除特征一)1、五位数73()28能被9整除,()里应该是几?2、一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底,此问题解的组数为多少?3、A8919B能被66整除,这个六位数是多少?64、期末考试六年级一班数学平均分是90分,总分是()95(),这个班有多少名学生?5、任意一个三位数连着写两回得到一个六位数,这个六位数一定能被7,11,13整除。
为什么?76、求无重复数字被75整除的五位数3A6B5有多少个?7、已知一个两位数恰好是它的两个数字之和的6倍,求这个两位数。
8、四位数能被2和3中应填。
9、把789连续写次,所组成的数能被9整除,并且这个数最小。
10、四位数36ab能同时被2,3,4,5,9整除,则36ab=。
811、把1,2,3这三个数字任意排列,可组成若干个三位数,在这些三位数中,能被11整除的是多少?12、七位数22A333A能被4整除,且它的末两位数字组成的两位数3A是6的倍数,那么A等于多少?13、同时能被3,4,5整除的最小的四位数是多少?914、在十进制数中,各位数均是0或1,并且能被225整除的最小自然数是多少?15、有一个1994位数a能被9整除,它的各位数字之和为b,b的各位数之和为c,则c多少?16、从3、5、0、1这四个数字中任选出3个组成没有重复数字且同时能被3,5整除的三位数有那些?10第三讲因数与倍数(数的整除特征二)1、有一类数,每个数都能被11整除,并且各位数字之和是20,问这类数中,最小的数是多少?2、在1~200这200个自然数中,能被6或8整除的数共有几个?3、在小于5000的自然数中,能被11整除,并且各数位的数和为13的数,共有多少个?114、一个六位数,它能被9和11整除,去掉这个六位数的首、尾两个数字,中间的四个数字是1997,问这个六位数是多少?5、一个三位数被9除余7,被7除余5,被5除余3.问:这样的三位数有哪些?6、从0~9这9个数字中选出4个数字,使它能被3,5,7,11整除。
12第四讲因数与倍数(奇数与偶数)1、1+2+3+4+…+2001+2002是奇数还是偶数?2、有一列数:1,1,2,3,5,8,13,21,34,55……从第三个数开始,每个数都是前两个数的和。
那么在前1000个数中,有多少个奇数?133、用0~9这10个数组成5个两位数,每个数只用一次,要求它们的和是奇数,那么这5个两位数的和最大是多少?4、两个四位数相加,第一个四位数的每个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。
某同学做出的答数是16246.试问该同学的答数正确吗?如果正确,写出这两个四位数;如果不正确,请说明理由。
145、若5×3×a×9×b是奇数,则整数a、b的奇偶性适合()。
A.a奇b偶B.a奇b奇C.a偶b偶D.a偶b奇6、a+b+c =奇数,a×b×c =偶数,则a、b、c的奇偶性适合()。
A.三个数都是奇数B.两个奇数一个偶数C.一个奇数两个偶数D.三个都是偶数7、a、b、c是任意给定的三个整数,那么乘积(a+b)(b+c) (c+a)的奇偶性为()。
15A.奇数B.偶数C.不能肯定,取决于a、b、b的奇偶性D.能肯定,取决于a、b、c的具体数值8、有四个互不相同的自然数,最大的数与最小的数之差是4,最大数与最小数之积是奇数,而这四个数的和是最小数之积是奇数,而这四个数的和是最小的两位数奇数,则这四个数的乘积是多少?169、七个连续质数从大到小排列为a,b,c,d,e,f,g,已知它们的和是偶数,那么c等于多少?10、A、B、C、E、F、G七盏灯各自装有一个拉线开关,开始B、D、F亮着,一个小朋友按从A到G,再从A到G,再从A到G的顺序依次拉开关,一共拉了2000次,这时亮着的灯是开着还是闭着?17第五讲因数与倍数(最小公倍数与最大公因数)1、求42,70和105的最小公倍数。
2、能同时被2,3,5整除的最小的三位数是多少?3、能同时被2,3,4,5,6,7,8,9整除的四位数有多少个?184、求下面每组数的最小公倍数54和81 35和36 26和785、求下面每组中三个数的最小公倍数180,150和240 42,168和252 6、求能被2,3,5整除的最小四位数。
197、能同时被3,5,7除余1的最小的数是多少?8、有一个数,同时能被9,10,15整除,满足条件的最大三位数是多少?20第六讲因数与倍数(最小公倍数与最大公因数)1、把长120厘米、宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?2、用某数去除3705余9,去除4759余13,去除5079少3。
求某数最大是几?213、把长132厘米、宽60厘米、厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不许有剩余(耗损不计),能锯成多少块?4、有一批书分给三个小组,平均每人正好分6本。
如果只分给第一组,则平均每人分10本;如果只分给第三组,平均每人分得21本。
第二组人数接近10人,每组各有多少人?225、有一列数5,10,15…,5995,6000共1200个。
其中12的倍数有多少个?6、25和54的最大公约数是(),于是,我们称这两个数互为();最小公倍数是()。
7、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有多少朵花?238、7月6日,宝柱从避暑山庄打电话给乾隆问好,贾六来看望乾隆,春喜在打扫房间。
如果春喜每隔3天打扫一次,宝柱每隔6天打一次电话,贾六每隔5天看望一次,则至少经过几天问好、看望、打扫这三件事才能同时发生?9、65,42,120的最小公倍数是()。
2410、为了搞科学种田的实验,需要将一块长为75米,宽为60米的长方形土地划分为面积相当的小正方形土地,那么小正方形土地的面积最大是多少平方米?11、两个数的最大公约数是18,最小公倍数180,两个数相差54,求这两个数各是多少?2512、有一种新型的电子钟,每到正点和半点都响一次铃,每过9分亮一次,如果中午12点时,它既响了铃,又亮了灯,那么下一次既响铃又亮灯要到什么时间?13、爷爷现在的年龄是明明现在年龄的7倍,过几年之和是他的6倍,再过几年就分别是明明年龄的5倍,3倍,2倍,你能算出爷爷现在的年龄是多少吗?26第七讲长方体和正方体(巧算表面积)1、一个长方形铁箱,长12分米,宽8分米,高6.5米。
如果把它的内外涂上油漆(外底面不涂),每平方米用油漆0.25千克,涂这个铁箱要用油漆多少千克?(厚度忽略不计)2、一个正方形木块,棱长是15厘米,从它的八个顶点处各截去棱长分别为1,2,3,4,5,6,7,8厘米的小正体,这个27木块剩下部分的表面积最少是多少平方厘米?3、建造一个长方体的游泳池,长30米,宽10米,深1.6米,池的四壁和底面用瓷砖铺砌,如果每平方米用瓷砖25块,共需多少块?284、一个火柴盒长4.5厘米,宽3.5厘米,高2厘米,如果材料厚度不计,做这样一个火柴盒外壳和内芯共需多少平方厘米纸板?5、油漆4根柱子,柱子截面是边长0.3米的正方形,柱子长5米,每平方米油漆费8.4元,共要多少元?296、一个长方体是宽的1.5倍,宽是高的2倍,棱长总和是96厘米,这个长方体的表面积是多少平方厘米?7、在一个棱长是3分米的正方体一个面的正和一个顶点处,各挖去一个棱长为1分米的正方体(如下图),剩下形体的表面积是多少?30第八讲长方体和正方体(巧算体积)1、如下图,有一块土地,A地的面积是25平方米,B地的面积是15平方米,A 地比B地高4米。
现要把A地的土推到B地,使A,B两地同样高,这样B地可升高多少米?2、一块长方形铁皮长24厘米,四角剪去边长3厘米的正方形后,然后通过折31叠、焊接,做成一个无盖的长方体铁盒,铁盒的容积是486立方厘米。
求原来长方形铁皮的面积。
3、木工师傅用2厘米厚的木板做成一只有盖的长方体报箱,从外面量长64厘米,宽34厘米,高39厘米,这只报箱的容积是多少?324、一根方钢长5米,它的横截面是一个边长2厘米的正方形,已知1立方米钢重7.8千克,一吨这样的钢材约有多少根?(保留整数)5、底面是正方形的长方体,所有棱长之和是80厘米,已知高10厘米,求体积。
6、长方体棱长之和是60分米,长是7分米,高是3分米,求长方体体积。
337、如下图,有一堆土,甲处比乙处高50厘米,现在要把这堆土推平整,使甲处和乙处一样高,要从甲处取多少厘米厚?8、一正方体木箱,从外面量得棱长52厘米,箱壁厚1厘米,求木箱容积。
349、在一个棱长为3厘米的大立方体的顶部中央挖去一个棱长为1厘米的小立方体,求这个立方体的表面积和体积。
3536第九讲 分数的意义和性质1、一个分数,分子加上1后,其值为23 ,分子减1后,其值为12 ,求这个分数的值。