2020年武汉市九年级元月调考试题答案

合集下载

2020年-武汉市元月调考语文试卷(含答案)

2020年-武汉市元月调考语文试卷(含答案)

2019-2020 学年度武汉市部分学校九年级质量检测语文试卷第 I 卷( 选择题共 30 分)一、( 共 9 分,每小题 3 分)1. 依次填人下面横线处的词语,恰当..的一组是()在双方难分伯仲的实力较量中,若能赢得竞争固然是一件 _ 的事情,然而更 的是, 贏得友谊和尊重——赢得对手的心,贏得世人的 ,赢在“灵魂的卓越”。

A. 激动人心 重要 感动B. 大快人心 关键 感动C. 大快人心 重要 感激D. 激动人心 关键 感激2. 下列各句中有.语.病.的一项是()A. 不少市民特意购买首发车票,目的是第一时间感受汉十高铁带来的速度与便利。

B. 全年减税降费的政策红利,让企业不但可以轻装上阵,也点燃了投资者的热情。

C. 中国支持世贸组织进行改革,希望它在扩大开放、促进发展方面发挥更大作用。

D. 面对百年未有之大变局 , 我们应顺应时代潮流,在追求发展的道路上矢志不移。

3. 下列各句标点符号使..的一项是() A 不同国家、地区、民族,不同历史、宗教、习俗彼此交相辉映、相因相生 , 共同擘画出这个精彩纷呈的世界。

B. 故事一定要贯穿节目的每一个环节 : 从标题、片子开场,到主持人、评论员的每一个问题 , 都要跟这个故事配套。

C. 灿烂的阳光一扫冬日的阴霾,天空顿时湛蓝如洗。

山川河流早已解冻 , 泥土中散 发出草芽萌发的新鲜气息。

D. 无数黑骑在远处来回驰骋,长河上 , 一轮浑圆的血色落日挂在天际;孤城中 , 狼烟直直刺向昏黄的天空。

二、( 共 9 分,每小题 3 分) 阅读下面的文章,完成 4— 6 题。

小说的语言①我初学写作时喜欢把人物的对话写得很漂亮 , 有诗意,有哲理 , 有时甚至很“玄”。

沈从文先生对我说 : “你这是两个聪明脑壳打架 ! ”他的意思是说这不像真人说的话。

托尔斯泰说过 : “人是不能用警句交谈的。

②张岱写两个老者去逛一处园林 , 一老者说 : “真是蓬莱仙境了也 ! ”另一个老 者说: “个边哪有这样 ! ”生动之至,而且一听就是绍兴话。

湖北省武汉市市新观察2020年九年级数学元月调考复习交流卷(一) (解析版)

湖北省武汉市市新观察2020年九年级数学元月调考复习交流卷(一)  (解析版)

武汉市市新观察2020年九年级数学元月调考复习交流卷(一) 一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 2.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=(x﹣3)2﹣2向左平移()个单位后经过点A(2,2)A.1 B.2 C.3 D.44.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球5.(3分)如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为()A.45°B.60°C.70°D.90°6.(3分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.(3分)从甲、乙、丙三人中任选两人参加“武汉军运会志愿者”活动,甲被选中的概率为()A.B.C.D.8.(3分)如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD与AB相交于点P,则CP的长为()A.B.C.D.9.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.410.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)关于x的一元二次方程x2+2x+a=0的一个根为1,则方程的另一根为.12.(3分)已知点A(2,a)、点B(b,﹣3)关于原点对称,则a+b的值为.13.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子颗.14.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为cm.15.(3分)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)16.(3分)如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是.三、解答题(本大题共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.18.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.19.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.(1)他随手拿出一只,恰好是右脚鞋的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.20.(8分)如图,△ABC中,AB=BC,点O为高AD上一点,以OD为半径的⊙O与AB相切于点E.(1)求证:点O在直线CE上;(2)若AE:EB=2:3,AC=,求⊙O的半径.21.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,建立平面直角坐标系A(﹣1,7),B(﹣6,3),C(﹣2,3).(1)将△ABC绕格点P(1,1)顺时针旋转90°,得到△A'B'C',画出△A'B'C',并写出下列各点坐标:A'(,),B'(,),C'(,);(2)找格点M,连CM,使CM⊥AB,则点M的坐标为(,);(3)找格点N,连BN,使BN⊥AC,则点N的坐标为(,).22.(10分)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商店第一次购进多少千克这种商品?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,且每千克的利润不低于10元且不高于18元.①请直接写出自变量x的取值范围;②求该商店某天的最大利润.23.(10分)如图所示,已知正△ABC中射线CM⊥AB于F,射线BA绕B顺时针旋转,旋转后的射线记作a,同时线段AB所在直线绕A顺时针旋转,旋转后的直线记作直线l,当直线l旋转的角度是射线a旋转角度的4倍时,直线l于射线CM相交于E,与射线a相交于D,且∠D=30°.(1)求射线a的旋转角是多少度;(2)求证:DE=AB;(3)探索:线段DE,EF,DB的数量关系.24.(12分)如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.2.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选:D.3.(3分)将抛物线y=(x﹣3)2﹣2向左平移()个单位后经过点A(2,2)A.1 B.2 C.3 D.4【分析】直接利用二次函数平移规律结合二次函数图象上点的坐标特点得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设向左平移a个单位,故y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a1=﹣1(不合题意舍去),a2=3,即将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故选:C.4.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.5.(3分)如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为()A.45°B.60°C.70°D.90°【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B =30°,然后利用∠CAB′=∠CAC′﹣∠C′AB′进行计算.【解答】解:∵以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.6.(3分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.7.(3分)从甲、乙、丙三人中任选两人参加“武汉军运会志愿者”活动,甲被选中的概率为()A.B.C.D.【分析】画出树状图,共有6个等可能的结果,1其中甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,其中甲被选中的结果有4个,则甲被选中的概率为=;故选:A.8.(3分)如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD与AB相交于点P,则CP的长为()A.B.C.D.【分析】如图作PH⊥BC于H.首先证明AP=PH,设PA=PH=x,根据勾股定理构建方程即可解决问题;【解答】解:如图作PH⊥BC于H.∵=,∴∠ACD=∠BCD,∵BC是直径,∴∠BAC=90°,∴PA⊥AC,∵PH⊥BC,∴PA=PH,设PA=PH=x,∵PC=PC,∴Rt△PCA≌Rt△PCH,∴AC=CH=3,∵BC==5,∴BH=2,在Rt△PBH中,∵PB2=PH2+BH2,∴(4﹣x)2=x2+22,解得x=,∴PC==,故选:D.9.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.10.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3【分析】取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ =1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)关于x的一元二次方程x2+2x+a=0的一个根为1,则方程的另一根为﹣3 .【分析】设方程的另一个根为x2,根据韦达定理即可得到结论.【解答】解:设方程的另一个根为x2,根据题意得x2+1=﹣2,解得:x2=﹣3.故方程的另一个根为﹣3.故答案为:﹣3.12.(3分)已知点A(2,a)、点B(b,﹣3)关于原点对称,则a+b的值为 1 .【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点A(2,a)、点B(b,﹣3)关于原点对称,∴b=﹣2,a=3,则a+b的值为:1.故答案为:1.13.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子 4 颗.【分析】首先根据题意得方程组:,解此方程组即可求得答案.【解答】解:根据题意得:,解得:,∴原来盒中有白色棋子4颗.故答案为:4.14.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为 1 cm.【分析】设剪去的小正方形的边长为xcm,根据矩形的面积公式结合方盒的底面积(图中阴影部分)是32cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去的小正方形的边长为xcm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7(不合题意,舍去).故答案为:1.15.(3分)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)【分析】过点O作OD⊥BC于点D,交于点E,则可判断点O是的中点,由折叠的性质可得OD=OE=R=2,在Rt△OBD中求出∠OBD=30°,继而得出∠AOC,求出扇形AOC的面积即可得出阴影部分的面积.【解答】解:过点O作OD⊥BC于点D,交于点E,连接OC,则点E是的中点,由折叠的性质可得点O为的中点,∴S弓形BO=S弓形CO,在Rt△BOD中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S阴影=S扇形AOC==.故答案为:.16.(3分)如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2 .【分析】由于函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与与正方形ABCD有公共点的临界点,求出即可得解.【解答】解:∵点O是边长为2的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(﹣1,1),∵函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x﹣h)2,得1=(﹣1﹣h)2∴h=0(舍)或h=﹣2;把点A坐标代入y=(x﹣h)2,得1=(1﹣h)2∴h=0(舍)或h=2.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2.故答案为:﹣2≤h≤2.三、解答题(本大题共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.【分析】移项后配方得出x2﹣4x+4=7+4,推出(x﹣2)2=11,开方后得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.18.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.【分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则弧CFD=弧AEB,由FD=EB,得,弧FD=弧EB,由等量减去等量仍是等量得:弧CFD﹣弧FD=弧AEB﹣弧EB,即弧FC=弧AE,由等弧对的圆周角相等,得∠D=∠B.【解答】方法(一)证明:∵AB、CD是⊙O的直径,∴弧CFD=弧AEB.∵FD=EB,∴弧FD=弧EB.∴弧CFD﹣弧FD=弧AEB﹣弧EB.即弧FC=弧AE.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.19.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.(1)他随手拿出一只,恰好是右脚鞋的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【解答】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.20.(8分)如图,△ABC中,AB=BC,点O为高AD上一点,以OD为半径的⊙O与AB相切于点E.(1)求证:点O在直线CE上;(2)若AE:EB=2:3,AC=,求⊙O的半径.【分析】(1)连接CE,证明△BEC≌△BDA(SAS),得∠BEC=∠BDA=90°,根据圆的切线垂直于过切点的半径,可得点O在直线CE上;(2)设AE=2x,BE=3x,则AB=BC=5x,根据勾股定理得:AD2=AB2﹣BD2=AC2﹣CD2,列方程可得x的值,设⊙O的半径为r,则AO=8﹣r,由勾股定理列方程可得半径的值.【解答】(1)证明:连接CE,∵AD⊥BC,AD过点O,∴BC为⊙O的切线,∵AB是⊙O的切线,∴BD=BE,在△BEC和△BDA中,∵,∴△BEC≌△BDA(SAS),∴∠BEC=∠BDA=90°,∴CE⊥AB,∴点O在直线CE上;(2)解:设AE=2x,BE=3x,则AB=BC=5x,∴BD=BE=3x,CD=2x,由勾股定理得:AD2=AB2﹣BD2=AC2﹣CD2,,x=2,∴AD=4x=8,设⊙O的半径为r,则AO=8﹣r,在Rt△AEO中,AE2+OE2=AO2,42+r2=(8﹣r)2,r=3,则⊙O的半径是3.21.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,建立平面直角坐标系A(﹣1,7),B(﹣6,3),C(﹣2,3).(1)将△ABC绕格点P(1,1)顺时针旋转90°,得到△A'B'C',画出△A'B'C',并写出下列各点坐标:A'(7 , 3 ),B'( 3 ,8 ),C'( 3 , 4 );(2)找格点M,连CM,使CM⊥AB,则点M的坐标为(﹣6 ,8 );(3)找格点N,连BN,使BN⊥AC,则点N的坐标为(﹣2 , 2 ).【分析】(1)依据△ABC绕格点P(1,1)顺时针旋转90°,即可得到△A'B'C';(2)依据AB的方向和格点C的位置,即可得到格点M的位置;(3)依据AC的方向和格点B的位置,即可得到格点N的位置.【解答】解:(1)如图所示,△A'B'C'即为所求,A'(7,3),B'(3,8),C'(3,4);故答案为:7,3,3,8,3,4;(2)如图所示,M(﹣6,8);故答案为:﹣6,8;(3)如图所示,N(﹣2,2).故答案为:﹣2,2.22.(10分)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商店第一次购进多少千克这种商品?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,且每千克的利润不低于10元且不高于18元.①请直接写出自变量x的取值范围;②求该商店某天的最大利润.【分析】(1)根据“商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克”列出分式方程求解即可;(2)列出函数关系式根据每千克的利润不低于10元且不高于18元得到自变量的取值范围,然后配方后确定最值即可.【解答】(1)设第一次购进m千克,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,m=1000是原方程的解,∴第一次购进1000千克.(2)①该商品的原价为20000÷1000=20元/千克,∵每千克的利润不低于10元且不高于18元,∴10≤x﹣20≤18,∴自变量x的取值范围:30≤x≤38;②设每天的利润为W元,则W=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,当x=35时,W max=2250.23.(10分)如图所示,已知正△ABC中射线CM⊥AB于F,射线BA绕B顺时针旋转,旋转后的射线记作a,同时线段AB所在直线绕A顺时针旋转,旋转后的直线记作直线l,当直线l旋转的角度是射线a旋转角度的4倍时,直线l于射线CM相交于E,与射线a相交于D,且∠D=30°.(1)求射线a的旋转角是多少度;(2)求证:DE=AB;(3)探索:线段DE,EF,DB的数量关系.【分析】(1)根据三角形的一个外角等于与它不相邻的两内角的和,直线a,l的旋转角的关系建立方程4α=30°+α即可;(2)先判断出∠BEC=∠DBE,得出OE=OB,进而判断出△DOE≌△COB(AAS),得出DE =BC,即可得出结论;(3)判断出△BDE≌△ECA,再代换即可.【解答】解:(1)设直线l旋转角为α,∴∠ABD=α∵射线l旋转的角度是射线a旋转角度的4倍,∴∠BAE=4α,∵∠BAE=∠ABD+∠D,∴4α=α+30°,∴α=10°,射线a的旋转角是10°;(2)连接BE,BD与CM的交点记作点O,∵△ABC是正三角形,CM⊥AB,∴CM是AB的垂直平分线,∴AF=BF,EA=EB,∴∠EBA=∠BAE=40°,∴∠BEC=∠AEB=(180°﹣2∠BAE)=50°,∠DBE=∠AEB+∠ABD=40°+10°=50°,∴∠BEC=∠DBE,∴OE=OB,∵∠D=∠BCO=30°,∠DOE=∠COB,∴△DOE≌△COB(AAS),∴DE=BC,∵BC=AB,∴DE=AB,(3)∵∠BAE=40°,∴∠AEC=50°,∵∠ABE=40°,∠ABD=10°,∴∠EBD=∠AEC=50°∵∠BDE=∠ACE=30°,DE=AC,∴△BDE≌△ECA,∴BD=EC=EF+FC=EF+AB=EF+DE.24.(12分)如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?【分析】(1)①点A(4,0),则抛物线的表达式为:y=ax(x﹣4),则顶点B的坐标为:(﹣,﹣),而函数的对称轴为:x=2,即﹣=2,解得:a=﹣1,即可求解;②函数的对称轴为x=2,故:B(2,4),设C(0,t),∠ABC=∠AOC=90°,则AC2=BC2+AB2=OC2+AO2,即:42+t2=(2﹣4)2+(4﹣0)2+22+(4﹣t)2,即可求解;(2)由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0),又y=ax2+4x=a(x+)2﹣,顶点B的坐标为(﹣,﹣),将B(﹣,﹣)代入y=kx+m,得:﹣+m =﹣,解得m=,点C(0,),即OC=,由得x=﹣或x=,故E(,0),即可求解.【解答】解:(1)①点A(4,0),则抛物线的表达式为:y=ax(x﹣4),则顶点B的坐标为:(﹣,﹣),而函数的对称轴为:x=2,即﹣=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x;②函数的对称轴为x=2,故:B(2,4),设C(0,t),∵∠ABC=∠AOC=90°,∴AC2=BC2+AB2=OC2+AO2,∴42+t2=(2﹣4)2+(4﹣0)2+22+(4﹣t)2,∴t=3,∴OC=3,C(0,3),∴BC的解析式为y=x+3;(2)由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0),又y=ax2+4x=a(x+)2﹣,∴顶点B的坐标为(﹣,﹣),将B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣,解得m=,∴点C(0,),即OC=,由得x=﹣或x=,∴E(,0),∴OE=,∴OC:OE==2,∴OC=2OE.。

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷及答案解析

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷及答案解析

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的字母代考涂黑.1.(3分)将方程x2+5x=7化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为()A.5,﹣7B.5,7C.﹣5,7D.﹣5,﹣7 2.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)下列事件中,是随机事件的是()A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180oC.通常加热到100℃时,水沸腾D.太阳从东方升起4.(3分)抛物线y=x2+1先向左平移2个单位长度,再向下平移5个单位长度所得抛物线的解析式是()A.y=(x+2)2+4B.y=(x+2)2﹣4C.y=(x﹣2)2+4D.y=(x﹣2)2﹣4 5.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.8,下列说法正确的是()A.种植10棵幼树,结果一定是“有8棵幼树成活”B.种植1000棵幼树,结果一定是“800操幼树成活“和“200棵幼树不成活”C.种植10n棵幼树,恰好有“2n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.86.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°7.(3分)平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是()A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切8.(3分)如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于()A.30°B.38°C.36°D.45°9.(3分)如图,在€O中,=,BC=6.AC=3,I是△ABC的内心,则线段OI 的值为()A.1B.﹣3C.5﹣D.10.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实。

2020年湖北省武汉市九年级元月调考数学模拟试卷(包含答案)

2020年湖北省武汉市九年级元月调考数学模拟试卷(包含答案)

2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =﹣1,与x 轴的一个交点为(2,0).若于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二.填空题(满分18分,每小题3分)10.已知A (m ,n ),B (m +8,n )是抛物线y =﹣(x ﹣h )2+2036上两点,则n = . 11.如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 .12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.解:∵二次函数y=x2﹣1,∴该函数图象的顶点坐标为(0,﹣1),故选:B.4.解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,并不能说明每次抛出硬币一定向上,即抛掷硬币正面向上的概率不是1,此选项错误;故选:A.5.解:A、原方程可变形为5x2﹣4x+2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x2﹣4x=﹣2无实数根;B、原方程可变形为6x﹣1=0,∴方程(x﹣1)(5x﹣1)=5x2只有一个实数根;C、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x2﹣5x+1=0有两个不相等的实数根;D、∵(x﹣4)2=0,∴x1=x2=4,∴方程(x﹣4)2=0有两个相等的实数根.故选:C.6.解:∵OA=OP=2.5,⊙O的半径为3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选:A.7.解:设比赛组织者应邀请x个队参赛,依题意,得: x(x﹣1)=28.故选:A.8.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.9.解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x2+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)10.解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4, n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.11.解:∵小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,∴S1=S﹣S=﹣××,S2=﹣2×1S3=﹣4×2…发现规律:Sn=﹣×(2n﹣1)×2n﹣2=×22n﹣2﹣22n﹣4×=22n﹣4(﹣)∴S2020的面积为:24036(﹣).故答案为:24036(﹣).12.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.15.解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段==π,第二段==π.故B点翻滚一周所走过的路径长度=π+π=π,三次一个循环,∵40÷3=13……1,若翻滚了40次,则B点所经过的路径长度为13×π+π=18π.故答案为:18π.三.解答题(共8小题,满分72分)16.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x=﹣2+;1x=﹣2﹣.217.解:∵AB是⊙O的弦,OC⊥AB于点C,AB=8,∴AC=BC=4,∠ACO=90°,由勾股定理得:OC===2;18.解:(1)答:不正确,P(抽出“太阳”卡片)=,P(抽出“小花”卡片)=;(2)设“太阳”卡片与“小花”卡片分别为A,B,列表得:(A,B)(B,B)﹣﹣﹣(A,B)﹣﹣﹣﹣(B,B)﹣﹣﹣﹣﹣(B,A)(B,A)∴两张卡片都是“小花”的概率为=;(3)设应添加x张“太阳”卡片,,解得x=3.∴应添加3张“太阳”卡片.19.解:(1)画图形如右图所示:证明:由旋转的性质可得:CS=CN,AS=BN,又∵MN2=BN2+AM2,∴MN2=AS2+AM2=MS2,∴MS=MN,又∵CS=CN,CM=CM,∴△MCN≌△MCS(SSS).(2)由(1)得:△MCN≌△MCS,∴∠NCM=∠MCS=45°.20.证明:∵AE平分∠BAC,∴∠BAD=∠CAD,∵EF∥AC,∴∠FEA=∠CAD,∴∠BAD=∠FEA,∴FA=FE,∵AE⊥BE,∴∠BEF+∠AEF=90°,∵∠ABE+∠BAE=90°,∴∠ABE=∠BEF,∴FB=FE,∴FB=FA,即点F是AB的中点.21.解:(1)y=90﹣3(x﹣50)即y=﹣3x+240;(2)w=(x﹣40)y=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200∵a=﹣3<0,∴当销售价x=60元时,利润w最大.最大利润为1200元.22.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=C O=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).。

2020武汉市九年级元月调考语文试题及答案分析

2020武汉市九年级元月调考语文试题及答案分析

2020-2021学年度武汉市九年级元月调考语文试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共8面,七大题,满分120分,考试用时150分钟。

2. 答题前,请将你的姓名,准考证号写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。

3. 答第Ⅰ卷(选择题)时,选出每小题生案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

不得答在“试卷”上。

4. 答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在“试卷”上无效。

5. 认真阅读答案卡上的注意事项。

预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、(共12分,每小题3分)1、下列各组词语中加点字的书写或注音有误的一项是【C(“绊”的正确读音应为“bàn”。

“荒谬绝纶”中的“纶”的正确写法应该是“伦”)】A.嗔视鹰隼(sǔn)嫡传(dí)不可思议B.颦蹙麾下(huī)膂力(lǚ)如释重负C.褶皱磕绊(pàn)沮丧(jǔ)荒谬绝纶D.葳蕤鞑靼(dá)褴褛(lǚ)巡幽揽胜2.依次填入下面横线处的词语,恰当的一组是【D】社会转型,道德趋于多元化。

一些人精神,价值观扭曲。

在扶起跌倒老人或许惹上官司、爱心捐赠恐被挪作他用的中,善行因利益的考量而。

一个经历着深刻转型的社会,有这样的道德可以理解,但应该主动正视、积极引导。

A.困惑迟疑迷茫疑虑B.迷茫迟疑迷茫困惑C.困惑疑虑迟疑疑虑D.迷茫疑虑迟疑困惑3.下列各句中有语病的一项是【3.B (句式杂糅,“这一结果靠的是三大运营商的共同努力取得的”应该是“这一结果靠的是三大运营商的共同努力”和“这一结果是三大运营商的共同努力取得的”的杂糅。

)】A.如果个人信息保护进入民法典,就为个人信息的商业使用划定了一个明确的法律边界。

B.全国取消长途话费和漫游费,这一结果靠的是三大运行商的共同努力取得的。

2020年武汉市九年级元月调考物理试卷(Word版有答案)

2020年武汉市九年级元月调考物理试卷(Word版有答案)

2019—2020学年度武汉市部分学校九年级调研测试物理试卷武汉市教育科学研究院命制2020、1、9一、选择题(本题包括12小题,每小题只有1个正确选项。

每小题3分,共36分)9.下表归纳了固、液、气三态物质的宏观特性和微观特性,分析表格所填写的信息可知,表格中①②处应分别填写( )物态微观特性宏观特性分子和距离分子间作用力有无形状有无体积固态很小①有固定形状有固定体积液态较大较大无固定形状②气态很大很小无固定形状无固定体积A.很小;有固定体积 B.很小;无固定体积C.很大;有固定体积 D.很大;无固定体积10.关于内能,下列说法正确的是( )A.质量越大的物体内能也越大B.内能越大的物体分子运动越剧烈C.发生扩散现象时,物质只能从内能大的物体进入内能小的物体D.热传递过程中,放出热量的物体的内能可能小于吸收热量的物体的内能11.如图所示,把图钉按在铅笔的一端,手握铅笔使图钉钉帽在粗糙的硬纸板上来回摩擦,然后用手轻触钉帽,感觉钉帽的温度明显升高了,甚至发烫。

关于该实验,下列说法正确的是( )A.图钉的温度升高,内能减小B.图钉的内能增加,纸板的内能也增加C.改变图钉内能的方式是热传递D.图钉内能的大小等于图钉克服摩擦力做功的多少12.如图所示是四冲程汽油机工作时某个冲程的示意图,下列说法正确的是( )A.该冲程是排气冲程B.该冲程汽缸内的物质只有空气C.该冲程中机械能转化为内能D.该冲程汽缸内物质的内能在减小13.如图所示,将与毛衣摩擦过的气球靠近细小的水流,水流被吸引发生弯曲的原因是( )A.气球带电吸引细小水流B.气球和水流带同种电荷C.气球和水流带异种电荷D.气球和水流分子间存在引力14.如右图所示,在武汉举行的第七届世界军人运动会击剑比赛中,中国女子重剑选手孙一文在最后决定胜负的一剑中击中对手,为中国队夺得击剑项目的第一枚金牌。

击剑比赛中,当甲方的剑击中乙方的导电服时,相当于闭合开关S甲,乙方的指示灯L乙就会亮;当乙方的剑击中甲方时,相当于闭合开关S乙,甲方的指示灯L甲就会亮。

武汉市部分学校2020-2021学年度九年级元月调研测试数学试卷答案

武汉市部分学校2020-2021学年度九年级元月调研测试数学试卷答案

2020-2021学年湖北省武汉市部分学校九年级(上)期末数学试卷(元月调考)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)将一元二次方程2x2﹣1=3x化成一般形式后,二次项系数和一次项系数分别是()A.2,﹣1B.2,0C.2,3D.2,﹣3【分析】先化成一般形式,即可得出答案.【解答】解:将一元二次方程2x2﹣1=3x化成一般形式是2x2﹣3x﹣1=0,二次项的系数和一次项系数分别是2和﹣3,故选:D.【点评】本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.(3分)下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的定义进行解答即可.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.(3分)下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A.B.C.D.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:第一个袋子摸到红球的可能性=;第二个袋子摸到红球的可能性==;第三个袋子摸到红球的可能性==;第四个袋子摸到红球的可能性==.故选:A.【点评】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.(3分)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【分析】根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.【点评】本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.(3分)在平面直角坐标系中,抛物线y=(x+2)(x﹣4)经变换后得到抛物线y=(x﹣2)(x+4),则下列变换正确的是()A.向左平移6个单位B.向右平移6个单位C.向左平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+2)(x﹣4)=(x﹣1)2﹣9,顶点坐标是(1,﹣9).y=(x﹣2)(x+4)=(x+1)2﹣9,顶点坐标是(﹣1,﹣9).所以将抛物线y=(x+2)(x﹣4)向左平移2个单位长度得到抛物线y=(x﹣2)(x+4),故选:C.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.(3分)如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.52°【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°﹣∠ACD﹣∠BCE=180°﹣63°﹣63°=54°.故选:C.【点评】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.(3分)三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是=.故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=,则⊙O的半径是()A.B.C.D.【分析】连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH =r,OH=r,利用勾股定理得到(r)2+(r+r)2=(+1)2,然后解方程即可.【解答】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=OA=r,OH=AH=r,在Rt△ACH中,(r)2+(r+r)2=(+1)2,解得r=,即⊙O的半径为.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.(3分)已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023【分析】根据题意得出x=x1+x2=﹣,代入函数的解析式即可求得二次函数的值.【解答】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=﹣,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(﹣)2+2021•(﹣)+2022=2022.故选:C.【点评】本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2).【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.(3分)如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.【分析】用阴影部分的面积除以平行四边形的总面积即可求得答案.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形ABCD,∴点A落在阴影区域内的概率为,故答案为:.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是50%.【分析】设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1﹣x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(3分)已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是125°或145°.【分析】利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+∠BAC,然后把∠BAC的度数代入计算即可.【解答】解:∵O是△ABC的外心,∴∠BAC=∠BOC=×140°=70°(如图1)或∠BAC=180°﹣70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+∠BAC,当∠BAC=70°时,∠BIC=90°+×70°=125°;当∠BAC=110°时,∠BIC=90°+×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.(3分)如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是π.【分析】点O所经过的路径是三个圆周长.【解答】解:点O所经过的路径长=3×=π.故答案为:π.【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.(3分)下列关于二次函数y=x2﹣2mx+1(m为常数)的结论:①该函数的图象与函数y=﹣x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=﹣x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是①③(填写序号).【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=x2﹣2mx+1的对称轴为直线x=﹣=m,二次函数y =﹣x2+2mx的对称轴为直线x=﹣=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(﹣2m)2﹣4×1×1=4m2﹣4≥0,∴m≥1,故结论②错误;③∵y=x2﹣2mx+1=(x﹣m)2+1﹣m2,∴顶点为(m,﹣m2+1),∴该函数的图象的顶点在函数y=﹣x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴<m,∵二次函数y=x2﹣2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.【点评】本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.【解答】解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【点评】此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.(8分)如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.【分析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.【解答】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【点评】本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.【分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.【解答】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为=;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为=.【点评】此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.(8分)如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=F A.【分析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,⊙P 与格线的交点D,连接FR,DR,作DR交⊙P于G,连接FG,可证F A=FR=FG,线段FG即为所求作.【解答】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【点评】本题考查作图﹣应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(8分)如图,正方形ABCD内接于⊙O,E是的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.【分析】(1)欲证明AE=DE,只要证明=.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE=CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵E是的中点,∴=,∴+=+,即=,∴AE=DE.(2)解:连接BD,AO,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=∠EDF﹣∠DEF=90°﹣45°=45°,∴DE=DF,∵∠AED=∠AOD=45°,∴∠AED=∠F=45°,∵∠ADC=∠EDF=90°,∴∠ADE+∠EDC=∠CDF+∠EDC=90°,∴∠ADE=∠CDF在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=DE=EC+DE,EC=1,∴1+DE=DE,∴DE=+1,∴S四边形AECD=S△DEF=DE2=+.【点评】本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.(10分)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).【分析】(1)由顶点坐标为(30,900),可设y=a(x﹣30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.【解答】解:(1)∵顶点坐标为(30,900),∴设y=a(x﹣30)2+900,将(0,0)代入,得:900a+900=0,解得a=﹣1,∴y=﹣(x﹣30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x=﹣(x﹣30)2+900﹣40x=﹣x2+60x﹣900+900﹣40x=﹣x2+20x=﹣(x﹣10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:﹣(4+m)2+60(4+m)﹣40×4﹣(40+12)m=0,整理得:﹣m2+64=0,解得:m1=8,m2=﹣8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.(10分)问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.【分析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD ≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,得出∠BDF=30°,由直角三角形的性质得出BF=DF,则可得出答案;拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE的长,则可得出答案.【解答】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.【点评】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.(12分)如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.【分析】(1)由A为直线y=k(x﹣2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x﹣2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.【解答】解:(1)∵A为直线y=k(x﹣2)+1上的定点,∴A的坐标与k无关,∴x﹣2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点D的坐标为(2,4),∵点A的坐标为(2,1),∴AD⊥x轴.如图(1),分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2,∵△ACD的面积是△ABD面积的两倍,∴CN=2BM,∴x2﹣2=2(2﹣x1),∴2x1+x2=6.联立,得x2+(k﹣4)x﹣2k+1=0,①解得x1=,x2=,∴2×+=6,化简得:=﹣3k,解得k=﹣.另解:接上解,由①得x1+x2=4﹣k,又由2x1+x2=6,得x1=2+k.∴(2+k)2+(k﹣4)(2+k)﹣2k+1=0,解得k=±.∵k<0,∴k=﹣;(3)如图(2),设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a).∵E是AC的中点,∴将线段AE沿AC方向平移与EC重合,∴x E﹣x A=x C﹣x E,y E﹣y A=y C﹣y E,∴x E=(x A+x C),y E=(y A+y C).∴E(1+,).分别过点E,A作x轴,y轴的平行线交于点F,在Rt△AEF中,由勾股定理得:EA2=+=+,过点E作PE⊥GH,垂足为P,连接EH,∴GH=2PH,EP2=,又∵AE=EH,∴GH2=4PH2=4(EH2﹣EP2)=4(EA2﹣EP2)=4[+﹣]=4[﹣a+1+﹣(﹣a2+4a+1)+1﹣+t(﹣a2+4a+1)﹣t2]=4[(﹣t)a2+(4t﹣5)a+1+t﹣t2].∵GH的长为定值,∴﹣t=0,且4t﹣5=0,∴t =.【点评】本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.菁优网APP 菁优网公众号菁优网小程序第21页(共21页)。

武汉市2020年九年级元调试卷附答案

武汉市2020年九年级元调试卷附答案

2019-2020学年度武汉市部分学校九年级质量检测语文试卷武汉市教育科学研究院命制 2020.1.8亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第I卷(选择题)和第1卷(非选择题)两部分组成。

全卷共8页,七大题,满分120分。

考试用时150分钟。

2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。

3.答第I卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答在“试卷”上无效。

4.答第卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上。

答在“试卷”上无效。

5.认真阅读答题卡上的注意事项。

预祝你取得优异成绩!第I卷(选择题共30分)一、(共9分,每小题3分)1.依次填人下面横线处的词语,恰当的一组是( )在双方难分伯仲的实力较量中,若能赢得竞争固然是一件的事情,然而更的是,赢得友谊和尊重一赢得对手的心,贏得世人的,贏在“灵魂的卓越”。

A.激动人心重要感动B.大快人心关键感动C.大快人心重要感激D.激动人心关键感激2.下列各句中有语病的一项是( )A.不少市民特意购买首发车票,目的是第一时间感受汉十高铁带来的速度与便利。

B.全年减税降费的政策红利,让企业不但可以轻装上阵,也点燃了投资者的热情。

C.中国支持世贸组织进行改革,希望它在扩大开放促进发展方面发挥更大作用。

D.面对百年未有之大变局,我们应顺应时代潮流,在追求发展的道路上矢志不移。

3.下列各向标点符号使用不规范的一项是( )A.不同国家地区、民族,不同历史宗教、习俗,彼此交相辉映,相因相生,共同擘画出这个精彩纷呈的世界。

B.故事一定要贯穿节目的每一个环节:从标题、片子开场,到主持人,评论员的每一个问题,都要跟这个故事配套。

C.灿烂的阳光一扫冬日的阴霾,天空顿时湛蓝如洗。

山川河流早已解冻,泥土中散发出草芽萌发的新鲜气息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度武汉市部分学校九年级调研测试英语试卷武汉市教育科学研究院命制2017.1.13第I卷(选择题共85分)第一部分听力部分一、听力测试(共三节)第一节(共5小题,每小题1分, 满分5分)听下面5个问题。

每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。

听完每个问题后, 你都有5秒钟的时间来作答和阅读下一小题。

每个问题仅读一遍。

1. A. He’s my brother. B. He’s outgoing. C. He’s sixteen.2. A. A lovely toy. B. Quite cheap. C. It’s a blue one.3. A. Just a few. B. The new one. C. It’s for Brown.4. A. Very soon. B. With Mr. Black. C. On the wall.5. A. In the meeting hall. B. At two thirty. C. Half an hour.第二节(共7小题,每小题1分, 满分7分)听下面7段对话。

每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

6. When will the woman leave?A. At 7:15.B. At 7:30.C. At 7:45.7. What are they most probably doing?A. Planning a party.B. Having a party.C. Cleaning the room.8. What can we learn about the man?A. He sells flowers in winter.B. He likes his flowers a lot.C. He helps the woman plant flowers.9. Where was Bob yesterday afternoon?A. At home.B. At school.C. At the cinema.10. Who are most probably these two people?A. Husband and wife.B. Teacher and student.C. Boss and secretary.11. What is the woman looking for?A. Her keys.B. Her handbag.C. Both.12. Why is Smith so successful?A. He never makes any mistakes.B. He can quickly solve problems.C. He is always thinking of others.第三节(共13小题,每小题1分,满分13分)听下面4段对话或独白。

每段对话或独白后有几个小题, 从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间, 每段对话或独白读两遍。

听下面一段对话,回答13至15 三个小题。

13. When and where are they talking?A. After dinner in the garden.B. Before dinner at home.C. After lunch in the office.14. What’s the weather like today?A. Fine.B. Cold.C. Hot.15. What’s the weather like in Beijing?A. Much colder.B. much drier.C. Much hotter.听下面一段对话,回答16-18三个小题。

16. Why is Mrs. Green calling?A. To see if Mr. White have come back.B. To invite the Whites home for the party.C. To tell Mr. White his wife is at her home.17. What does Mr. White say to Mrs. Green?A. he will let her know whether they will go or not.B. They have no time next Friday evening.C. He will have a good time in Hong Kong.18. What do you know about Mr. White?A. He is polite and careful.B. He doesn’t care for his wife.C. He is always very busy.听下面一段对话,回答19-22四个小题。

19. What do you think the woman is?A. Paul’s mother.B. Paul’s classmate.C. Paul’s friend.20. What do we know about Paul?A. He is not clever enough to study.B. He can hardly find time to study.C. He is always too tired to study.21. When does Paul usually do his homework?A. In the morning.B. In the afternoon.C. At night.22. What does the woman suggest?A. Paul should stop playing soccer.B. Paul should give up the volunteer work.C. Paul should spend more time on his studies.听下面一段独白,回答23-25三个小题。

23. Why did the man buy a dog for her daughter?A. His daughter has few children to play with.B. His daughter is good at looking after a dog.C. A dog can eat food with her daughter.24. What can we know about the dog?A. It is clean but makes the girl dirty.B. It is easier to look after for the family.C. It doesn’t always eat up it’s food.25. What has happened to the man?A. He is tired of the dog.B. He doesn’t smoke any more.C. He will have to move again.第二部分笔试部分二、选择填空(共15小题,每小题1分;满分15分)从题中所给的A、B、C、D四个选项中,选出一个最佳答案。

26. — May I use your phone?— ________.A. Of course notB. You may, if you likeC. You do itD. No, I don’t mind27. — I wonder whether I will send Tom to do that?— Whom can you trust, if not ________?A. himselfB. heC. himD. his28. My dictionary ________, I have looked for it everywhere but still I ________ it.A. has lost; don’t findB. is missing; hadn’t foundC. had lost; didn’t findD. is missing; haven’t found29. — Can I get you a cup of coffee?— ________ .A. That’s very nice of youB. With pleasureC. You can, pleaseD. Thank you for your coffee30. Would you like some drink ________ shall we set down to business right away?A. andB. thenC. orD. so31. —Jenny’s voice was shaking when she made a speech today.— It was her first speech in public, so it was _______ to be nervous.A. unusualB. properC. naturalD. impossible32. — What did you do at the top of the mountain just now?— We _______ a train until it disappeared in the distance.A. sawB. watchedC. noticedD. found33. — When can I come for the photos? I need them tomorrow.—They _______ be ready by 12:00.A. canB. shouldC. mightD. need34. —What’s it on the board?—It’s a(n) ________ saying that the meeting has been put off.A. sentenceB. messageC. noticeD. poster35. I know you don’t like collecting things, but interest can be ________.A. achievedB. shownC. discoveredD. developed36. —What a nice house you’ve drawn!—_____. I’m glad you like it.A. No, noB. Not at allC. Thank youD. You’re welcome37.Nobody noticed the thief slip into the house because the lights happened to _______.A. be put upB. give inC. be turned onD. go out38.—Why can’t you ever take anything _______?—I can’t agree with you. I have my own way to do things.A. easilyB. seriouslyC. anxiouslyD. badly39.— Shall I sit at the end of the boat or the other end?— You can sit at ________ end if you keep still.A.anyB. eachC. neitherD. either40.—Do you know _________?— At 11:00 in this morning.A. what time does the train leaveB. what time the train leavesC. the train what time leavesD. the train leaves what time三、完形填空(共15分;每小题1分,满分15分)阅读下面短文,从短文后各题所给的四个选项A、B、C、D中、选出可以填入空白处的最佳答案。

相关文档
最新文档