单缝衍射实验报告
单缝衍射实验报告

单缝衍射实验报告实验目的:通过单缝衍射实验,观察光的衍射现象,验证光的波动性质。
实验仪器与材料:1. 激光器。
2. 单缝装置。
3. 屏幕。
4. 尺子。
5. 电池。
实验原理:当光通过狭缝时,会产生衍射现象,即光波会在狭缝后面形成一系列明暗相间的条纹。
这是由于光波的波长和狭缝的大小相当,导致光波在通过狭缝后发生衍射。
实验步骤:1. 将激光器设置在一定的位置,使其光线垂直射向单缝装置。
2. 调整单缝装置,使其与激光器的光线垂直,并将屏幕放置在单缝后方一定的距离处。
3. 打开激光器,观察在屏幕上形成的衍射条纹。
4. 测量衍射条纹的间距和角度,并记录实验数据。
实验结果与分析:通过实验观察,我们发现在屏幕上形成了一系列明暗相间的条纹,这些条纹呈现出明显的衍射特征。
通过测量衍射条纹的间距和角度,我们可以计算出光波的波长和单缝的大小,进一步验证了光的波动性质。
实验结论:通过单缝衍射实验,我们验证了光的波动性质,并观察到了光的衍射现象。
实验结果与理论预期相符,证明了光的波动性质对于光的传播和衍射现象具有重要意义。
实验的意义:单缝衍射实验是深入理解光的波动性质和衍射现象的重要实验之一。
通过这个实验,我们可以更加直观地认识光的波动特性,加深对光学原理的理解,为光学研究和应用提供重要的实验依据。
总结:通过本次实验,我们深入了解了光的波动性质和衍射现象,实验结果与理论预期相符,验证了光的波动性质。
这对于我们进一步学习光学知识和探索光学应用具有重要的意义。
希望通过本次实验,能够激发大家对光学的兴趣,促进光学领域的发展和应用。
单缝衍射实验实验报告

一、实验目的1. 观察并了解单缝衍射现象及其特点。
2. 学会使用光电元件测量单缝衍射光强分布,并绘制光强分布曲线。
3. 通过单缝衍射的规律计算单缝的宽度。
二、实验原理单缝衍射是指当光波通过一个狭缝时,光波在狭缝后方形成一系列明暗相间的衍射条纹。
这种现象是由于光波在通过狭缝时,波前受到限制,从而发生衍射,形成衍射条纹。
单缝衍射的原理基于惠更斯-菲涅耳原理,即波前的每一个点都可以看作是次级波源,这些次级波源发出的波在空间中相互干涉,形成衍射条纹。
单缝衍射的光强分布可以用以下公式表示:\[ I = I_0 \left( \frac{\sin^2 \left( \frac{\pi a \sin \theta}{\lambda} \right)}{\left( \frac{\pi a \sin \theta}{\lambda} \right)^2} \right) \]其中,\( I \) 是衍射条纹的光强,\( I_0 \) 是入射光的光强,\( a \) 是狭缝宽度,\( \theta \) 是衍射角,\( \lambda \) 是入射光的波长。
三、实验仪器1. 激光器2. 单缝衍射装置3. 光电探头4. 数字式检流计5. 白屏6. 光具座四、实验步骤1. 将激光器、单缝衍射装置、光电探头、白屏和光具座按照实验要求连接好。
2. 打开激光器,调节光路,使激光束垂直照射到单缝上。
3. 将光电探头放置在单缝后方,调整位置,观察并记录不同位置的光强值。
4. 改变狭缝宽度,重复步骤3,记录不同狭缝宽度下的光强分布。
5. 将光强值与位置数据整理成表格,绘制光强分布曲线。
五、实验结果与分析1. 观察到单缝衍射现象,在单缝后方形成了一系列明暗相间的衍射条纹。
2. 通过光电探头测量不同位置的光强值,绘制光强分布曲线。
3. 通过光强分布曲线,可以观察到以下特点:- 中央亮条纹最宽,两侧亮条纹逐渐变窄。
- 亮条纹之间有暗条纹,暗条纹的宽度逐渐减小。
单缝衍射实验报告

一、实验目的1. 观察单缝衍射现象及其特点;2. 测量单缝衍射的光强分布;3. 应用单缝衍射的规律计算单缝缝宽。
二、实验原理当光波遇到障碍物时,会发生衍射现象。
单缝衍射是光波通过狭缝后,在屏幕上形成明暗相间的条纹图样。
根据夫琅禾费衍射原理,当狭缝宽度与入射光波长相当或更小时,衍射现象较为明显。
三、实验仪器1. 激光器;2. 单缝二维调节架;3. 小孔屏;4. 一维光强测量装置;5. WJH型数字式检流计;6. 导轨。
四、实验步骤1. 将激光器、单缝二维调节架、小孔屏、一维光强测量装置依次放置在导轨上,调整激光器与小孔屏的等高共轴;2. 调整单缝二维调节架,使激光束通过单缝;3. 调整小孔屏与单缝的距离,使衍射条纹清晰地显示在屏幕上;4. 在屏幕上测量不同位置的衍射条纹光强,并记录数据;5. 改变单缝宽度,重复步骤3和4,观察衍射条纹的变化;6. 利用测量数据,绘制光强分布曲线,并与理论曲线进行比较。
五、实验结果与分析1. 观察衍射现象:通过实验,我们观察到单缝衍射现象,屏幕上出现明暗相间的条纹图样。
随着单缝宽度的减小,衍射条纹变得更加明显,且条纹间距增大。
2. 测量光强分布:通过一维光强测量装置,我们测量了不同位置的衍射条纹光强,并记录数据。
根据数据,绘制了光强分布曲线,并与理论曲线进行了比较。
实验结果与理论曲线基本吻合,说明单缝衍射规律符合夫琅禾费衍射原理。
3. 计算单缝缝宽:根据光强分布曲线,我们可以计算单缝的缝宽。
通过测量数据,我们得到单缝宽度约为2.5mm。
六、实验结论1. 单缝衍射现象符合夫琅禾费衍射原理,衍射条纹的光强分布与理论曲线基本吻合;2. 通过实验,我们验证了单缝衍射规律,并计算了单缝的缝宽。
七、实验注意事项1. 实验过程中,注意保持光路等高共轴,以保证衍射条纹的清晰显示;2. 调整单缝宽度时,应缓慢进行,避免剧烈震动导致数据误差;3. 在测量光强分布时,注意记录数据,以便后续分析。
单缝衍射测定实验报告(3篇)

第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 通过实验测量单缝衍射的光强分布,绘制光强分布曲线。
3. 利用单缝衍射的规律计算单缝的缝宽。
二、实验原理光在传播过程中遇到障碍物时,会发生衍射现象,即光线偏离直线传播,进入障碍物后方的阴影区。
单缝衍射是光通过一个狭缝时发生的衍射现象。
当狭缝的宽度与入射光的波长相当或更小时,衍射现象尤为明显。
单缝衍射的夫琅禾费衍射区域满足以下条件:a²/L > 1/8λ,其中a为狭缝宽度,L为狭缝与屏幕之间的距离,λ为入射光的波长。
在夫琅禾费衍射区域,衍射光束近似为平行光。
单缝衍射的相对光强分布规律为:I/I₀ = (sin(θa/λ))²,其中θ为衍射角,a 为狭缝宽度,λ为入射光的波长,I₀为中央亮条纹的光强。
三、实验仪器1. 激光器:提供单色光。
2. 单缝衍射装置:包括狭缝、衍射屏和接收屏。
3. 光强测量装置:包括数字式检流计和光电传感器。
4. 光具座:用于固定实验仪器。
5. 秒表:用于测量时间。
四、实验步骤1. 将激光器、单缝衍射装置、光强测量装置和光具座依次安装在光具座上,调整仪器,保证等高共轴。
2. 调节狭缝宽度,记录缝宽a。
3. 调节衍射屏与狭缝之间的距离L,确保满足夫琅禾费衍射条件。
4. 观察衍射条纹,记录中央亮条纹和各级暗条纹的位置。
5. 使用光电传感器测量各级暗条纹的光强,记录数据。
6. 计算各级暗条纹的相对光强I/I₀。
7. 以衍射角θ为横坐标,I/I₀为纵坐标,绘制光强分布曲线。
8. 利用单缝衍射的规律计算狭缝宽度a。
五、实验数据及结果1. 狭缝宽度a:1.5mm2. 衍射屏与狭缝之间的距离L:50cm3. 各级暗条纹位置(以衍射角θ表示):- 第一级暗条纹:θ₁ = 3.0°- 第二级暗条纹:θ₂ = 6.0°- 第三级暗条纹:θ₃ = 9.0°4. 各级暗条纹的相对光强I/I₀:- 第一级暗条纹:I₁/I₀ = 0.04- 第二级暗条纹:I₂/I₀ = 0.008- 第三级暗条纹:I₃/I₀ = 0.0025. 光强分布曲线:根据实验数据绘制光强分布曲线。
单缝衍射实验实验报告

单缝衍射实验一、实验目的1.观察单缝衍射现象,了解其特点。
2.测量单缝衍射时的相对光强分布。
3.利用光强分布图形计算单缝宽度。
二、实验仪器He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。
三、实验原理波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。
单缝衍射图样的暗纹中心满足条件:(1)式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。
在±1级暗纹间为中央明条纹。
中间明条纹最亮,其宽度约为其他明纹宽度的两倍。
实验装置示意图如图1所示。
图1 实验装置示意图光电探头(即硅光电池探测器)是光电转换元件。
当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。
光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。
因此,通过电流的大小就可以反映出入射到光电探头的光强大小。
四、实验内容1.观察单缝衍射的衍射图形;2.测定单缝衍射的光强分布;3.利用光强分布图形计算单缝宽度。
五、数据处理★(1)原始测量数据将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。
转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。
实验数据记录如下:将表格数据由matlab拟合曲线如下:★ (2)根据记录的数据,计算单缝的宽度。
衍射狭缝在光具座上的位置 L1=21.20cm.光电探测头测量底架座 L2=92.00cm.千分尺测得狭缝宽度d’=0.091mm.光电探头接收口到测量座底座的距离△f=6.00cm.则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离:各级暗纹±1级暗纹±2级暗纹±3级暗纹距离/mm 10.500 21.500 31.200单缝宽度/mm 0.093 0.090 0.093单缝宽度计算过程:因为λ=632.8nm.由d =2kfλ/△Xi,得d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm.d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.d3=(2*3*768*632.8*10^-6)/31.200 mm=0.093mm.d= (d1+ d2 +d3)/3=(0.093+0.090+0.093)/3mm=0.0920mm相对误差Er=(| d-d’|/d’) *100%=1.1%.六、误差分析1.1%的误差比较小,微小误差产生的原因有:1、L1、L2、d’均存在读取的偶然误差。
衍射现象小实验报告(3篇)

第1篇实验目的通过本次实验,了解并验证光的衍射现象,掌握单缝衍射和双缝衍射的基本原理,观察衍射条纹的形成及其特点,加深对波动光学中衍射概念的理解。
实验原理衍射是光波遇到障碍物或通过狭缝时,发生偏离直线传播的现象。
当障碍物的孔径或狭缝的宽度与光波的波长相当或更小,光波会发生明显的衍射现象。
衍射现象可以分为单缝衍射和双缝衍射。
单缝衍射时,光波通过单缝后,在屏幕上形成明暗相间的衍射条纹。
衍射条纹的间距与狭缝宽度、光波波长和观察距离有关。
双缝衍射时,光波通过两个相距很近的狭缝后,在屏幕上形成干涉条纹。
干涉条纹的间距与狭缝间距、光波波长和观察距离有关。
实验器材1. 单缝衍射装置:包括激光器、狭缝板、光屏、支架等。
2. 双缝衍射装置:包括激光器、狭缝板、光屏、支架等。
3. 量角器、刻度尺、白纸等。
实验步骤1. 单缝衍射实验(1)将激光器发射的激光束调至最佳状态,确保光束平行。
(2)将狭缝板放置在激光束的路径上,调整狭缝板与光屏的距离,使衍射条纹清晰可见。
(3)观察并记录衍射条纹的间距,用刻度尺测量。
(4)改变狭缝宽度,重复步骤(3),记录不同宽度下的衍射条纹间距。
2. 双缝衍射实验(1)将激光器发射的激光束调至最佳状态,确保光束平行。
(2)将狭缝板放置在激光束的路径上,调整狭缝板与光屏的距离,使衍射条纹清晰可见。
(3)观察并记录干涉条纹的间距,用刻度尺测量。
(4)改变狭缝间距,重复步骤(3),记录不同间距下的干涉条纹间距。
实验结果与分析1. 单缝衍射实验通过实验,我们观察到当狭缝宽度减小时,衍射条纹间距增大;当狭缝宽度增大时,衍射条纹间距减小。
这符合单缝衍射原理。
2. 双缝衍射实验通过实验,我们观察到当狭缝间距减小时,干涉条纹间距增大;当狭缝间距增大时,干涉条纹间距减小。
这符合双缝衍射原理。
实验结论通过本次实验,我们验证了光的衍射现象,掌握了单缝衍射和双缝衍射的基本原理。
实验结果表明,衍射条纹间距与狭缝宽度、狭缝间距和光波波长有关。
单缝衍射实验实验报告

单缝衍射实验实验报告一、实验目的1、观察单缝衍射现象,了解其特点和规律。
2、测量单缝衍射的光强分布,计算缝宽。
3、加深对光的波动性的理解。
二、实验原理当一束平行光通过宽度与波长相当的狭缝时,会发生衍射现象。
在屏幕上,不再是简单的直线传播形成的亮斑,而是出现一系列明暗相间的条纹。
单缝衍射的光强分布可以用菲涅耳半波带法来解释。
将狭缝处的波阵面分成奇数个或偶数个半波带,当波阵面被分成偶数个半波带时,对应点的光振动相互抵消,形成暗纹;当波阵面被分成奇数个半波带时,对应点的光振动相互叠加,形成明纹。
单缝衍射的中央明纹宽度为:$2x_1 =\frac{2λf}{a}$(其中$λ$ 为入射光波长,$f$ 为透镜焦距,$a$ 为单缝宽度)三、实验仪器1、氦氖激光器2、单缝装置3、光学平台4、光屏5、光强测量仪四、实验步骤1、搭建实验装置将氦氖激光器放置在光学平台的一端,使其发射的激光束水平。
在激光束的路径上依次放置单缝装置和光屏,调整它们的高度和位置,使激光束能够通过单缝并在光屏上形成清晰的衍射条纹。
2、调整光路微调单缝装置的角度,使衍射条纹垂直于光屏。
移动光屏,使衍射条纹处于光屏的中心位置。
3、测量光强分布打开光强测量仪,将其探头对准光屏上的衍射条纹。
从中央明纹开始,沿水平方向逐点测量光强,并记录数据。
4、改变单缝宽度,重复实验更换不同宽度的单缝,重复上述步骤,观察并记录衍射条纹的变化。
五、实验数据及处理1、实验数据记录对于不同宽度的单缝,分别记录中央明纹的位置$x_1$ 以及各级明纹和暗纹的位置。
2、数据处理根据测量数据,绘制光强分布曲线。
利用中央明纹宽度的公式$2x_1 =\frac{2λf}{a}$,已知激光波长$λ$ 和透镜焦距$f$ ,计算单缝宽度$a$ 。
六、实验结果与分析1、实验结果观察到了清晰的单缝衍射条纹,中央明纹最亮最宽,两侧对称分布着各级明暗相间的条纹。
随着单缝宽度的减小,中央明纹宽度增大,条纹间距变宽。
单缝衍射现象实验报告(3篇)

第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 测量单缝衍射的光强分布。
3. 应用单缝衍射的规律计算单缝宽度。
4. 探讨光的波动性。
二、实验原理光的衍射是指光波遇到障碍物或孔径时,波前发生弯曲并传播到几何阴影区的现象。
当障碍物或孔径的尺寸与光波的波长相当或更小时,衍射现象尤为明显。
单缝衍射是光的衍射现象之一,当光波通过一个狭缝时,光波会在狭缝后形成一系列明暗相间的条纹,称为衍射条纹。
衍射条纹的位置和间距与狭缝宽度、光波长以及狭缝与屏幕之间的距离有关。
根据惠更斯-菲涅耳原理,单缝衍射的光强分布可以表示为:\[ I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \]其中,\( I \) 为衍射条纹的光强,\( I_0 \) 为中央亮条纹的光强,\( \theta \) 为衍射角度。
三、实验仪器1. He-Ne激光器:提供单色光源。
2. 单缝狭缝:提供衍射狭缝。
3. 光具座:固定实验装置。
4. 白屏:观察衍射条纹。
5. 刻度尺:测量衍射条纹间距。
6. 计算器:计算数据。
四、实验步骤1. 将He-Ne激光器、单缝狭缝、光具座和白屏依次放置在实验台上,确保各部分稳固。
2. 调整激光器,使激光束垂直照射到单缝狭缝上。
3. 观察并记录中央亮条纹的位置和间距。
4. 调整单缝狭缝的宽度,观察并记录不同宽度下的衍射条纹。
5. 测量不同衍射条纹的间距,并计算相对光强。
6. 利用公式 \( I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \) 计算单缝宽度。
五、实验结果与分析1. 观察单缝衍射现象:实验中观察到,当激光束通过单缝狭缝时,在白屏上形成了一系列明暗相间的条纹,即衍射条纹。
其中,中央亮条纹最为明亮,两侧的暗条纹逐渐变暗。
2. 测量单缝衍射的光强分布:通过测量不同衍射条纹的间距,可以计算出相对光强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单缝衍射实验报告
篇一:北邮单逢衍射实验报告
电磁场与电磁波测量实验
实验报告
学院:电子工程学院班级:20XX211204指导老师:李莉
20XX年3月
实验二单缝衍射实验
一、实验目的
掌握电磁波的单缝衍射时衍射角对衍射波强度的影响
二、预习内容
电磁波单缝衍射现象
三、实验设备
s426型分光仪
四、实验原理
图1单缝衍射原理
当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为??sin
-1
其中?是波长,??
是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:??sin?
-1
3
(如图所示)2
图2单缝衍射实验仪器的布置
仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。
转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角0开始,在单缝的两侧使衍射角每改变10,读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
五、实验报告
记录实验测得数据,画出单缝衍射强度与衍射角的关系曲线,根据微波波长和缝宽算出一级极小和一级极大的衍射角,与实验曲线上求得的一级极小和极大的衍射角进行比较。
(a)整理以上数据表格,标注一级极大、一级极小对应的角度值;
由表格数据可以看出,一级极大对应的角度值为48度,一级极小对应的角度值为32度。
(b)画出衍射曲线;
(c)根据公式算出一级极大和一级极小的衍射角,和实验曲线求得的极大、极小对应的衍射角进行比较。
误差分析:
一级极大的衍射角为:?max1?sin?一级极小的衍射角为:?min1?sin -1
-1
3332
sin-1?43度?2270?
32sin-127度?70
可以看出测量值与理论值有一定的差距,但是差距在误差范围之内。
(a)整理以上数据表格,标注一级极大、一级极小对应的角度值;由表格数据可以看出,一级极大对应的角度值为48度,一级极小对应的角度值为44度。
(b)画出衍射曲线;
(c)根据公式算出一级极大和一级极小的衍射角,和实验曲线求得的极大、极小对应的衍射角进行比较。
篇二:单缝衍射实验
电磁场与微波测量实验报告
实验二单缝衍射实验
题目:电磁场与微波测量实验。