七年级升八年级数学测试卷

合集下载

2024年人民版七年级数学下册阶段测试试卷108

2024年人民版七年级数学下册阶段测试试卷108

2024年人民版七年级数学下册阶段测试试卷108考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共5题,共10分)1、某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,这次调查一共抽取了______ 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是______(??)A. 12015%B. 12030%C. 20030%D. 1005%2、下列说法中,正确的有()A. 两点之间,直线最短B. 连结两点的线段叫做两点的距离C. 过两点有且只有一条直线D. AB=BC,则点B是线段AC的中点3、下列计算正确的是()A. a2+a2=a4B. a4•a4=a16C. -a4•(-a)2=a6D. (-a2)2=a44、如图;四个有理数在数轴上的对应点分别为M,P,N,Q,若原点在点N与点P之间,则绝对值最大的数表示的点是()A. 点MB. 点PC. 点QD. 点N5、自2010年1月1日起,移动电话在本地拨打长途电话时,将取消现行叠加收取的本地通话费;在国内漫游状态下拨打国际及台港澳电话,取消现行叠加收取的漫游主叫通话费.据有关电信企业测算,这些措施每年可为手机用户减负逾60亿元.60亿元用科学记数法表示为A. 6×10元B. 60×108元C. 6×109元D. 6×1010元评卷人得分二、填空题(共9题,共18分)6、有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,,则第n个单项式(n≥1正整数)可表示为____.7、(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动;小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).。

人教版数学七年级下册第八单元测试试卷(含答案)(2)

人教版数学七年级下册第八单元测试试卷(含答案)(2)

人教版数学7年级下册第8单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知x=―2y=1是关于x,y的方程组ax+by=1bx+ay=7的解,则(a+b)(a﹣b)的值为( )A.―356B.356C.16D.﹣162.(3分)已知二元一次方程组|x|+x+y=10x+|y|―y=12,则x+y的值等于( )A.﹣2B.185C.9D.223.(3分)有m只鸽子和n个鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.下列四个等式:①6n+3=8n﹣5;②6n+3=8n+5;③m36=m58;④m36=m58.其中正确的有( )个.A.1B.2C.3D.44.(3分)《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为( )A.y=8x―3y=7x+4B.x=8y+3 x=7y―4C.y=8x+3y=7x―4D.x=8y―3 x=7y+45.(3分)爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换是一个三位数,它比9:00时看到的两位数中间多了个0了则10:00时看到里程碑上的数是( )A.15B.24C.42D.516.(3分)如图,8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的周长为( )A.2cm B.6cm C.12cm D.16cm7.(3分)我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中,正确的有( )y=100x+3y=100;②x+y=1003x+13y=100;③3x+13(100﹣x)=100;④13y+3(100﹣y)=100.A.0个B.1个C.2个D.3个8.(3分)小刚解出了方程组3x―y=32x+y=△的解为x=4y=□,因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A.17,9B.16,8C.23,15D.15,239.(3分)已知关于x,y的方程组x+y=―a+1x―y=3a+5,给出下列说法:①当a=0时,方程组的解也是方程2x+y=4的一个解;②当x﹣2y>7时,a>0;③不论a取什么实数,2x+y的值始终不变;④若a=1,则x2+4y=0.以上四种说法中正确的有( )个.A.1B.2C.3D.410.(3分)如图,长为y,宽为x的大长方形被分割为5小块,除阴影D,E外,其余3块都是正方形,若阴影E周长为8,下列说法中正确的是( )①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知关于x,y的二元一次方程(3x﹣2y+9)+m(2x+y﹣1)=0,不论m取何值,方程总有一个固定不变的解,这个解是 .12.(3分)根据图中给出的信息,求出当水位上升到50cm,应放入 个大球.13.(3分)中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史,可见其根源的渊远流长.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的15,卖出腊香肠的数量是前两天腊香肠数量和的43,卖出腊肉的数量是第二天腊肉数量的12.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为 元.14.(3分)定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且3*2=6,4*1=7,则5*3= .15.(3分)若x=3y=2是关于x,y的二元一次方程ax﹣by=1的解,则6a﹣4b+3= .三.解答题(共10小题,满分75分)16.(6分)根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.17.(6分)解方程(组):(1)3m12―1=2m23;(2+m n3=3―m n3=―1.18.(6分)已知关于x,y的方程组x―y=2a+12x+3y=9a―8,其中a是常数.(1)若a=2时,求这方程组的解;(2)若x=y,求这方程组的解;(3)若方程组的解也是方程x﹣6y=2的一个解,求α的值.19.(6分)已知y=ax2+bx+c,当x=1时,y=8;当x=0时,y=2;当x=﹣2时,y=4.(1)求a,b,c的值;(2)当x=﹣3时,求y的值.20.(6分)为了推动我市消费市场快速回暖,加快消费水平复苏和振兴,市人民政府决定,举办“春暖瓯越•温享生活”消费券多次投放活动,每期消费券共可减68元,共5张,其中A型1张,B型2张,C型2张,如下表:A型B型C型满168元减38元满50元减10元满20元减5元在此次活动中,小明父母领到多期消费券.(1)若小明妈妈用三种不同类型的消费券共减了199元,已知她用了3张A型消费券,5张B型的消费券,则用了 张C型的消费券.(2)若小明父母使用消费券共减了230元.①若他们用12张三种不同类型的消费券消费,已知C型比A型的消费券多1张,请求出他们用这三种不同类型的消费券各多少张?②若他们共领到6期消费券(部分未使用),用A,B,C型中的两种不同类型的消费券消费,直接写出他们使用哪两种消费券各多少张.21.(6分)某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)22.(6分)某文具店销售A、B两款文具盒,其中A款文具盒的定价为15元/个,B款文具盒的定价为23元/个,A款文具盒的成本为7元/个,B款文具盒的成本为10元/个.(1)开业当月,该文具店按照定价售出A、B两款文具盒共180个,销售总额为3340元,则A款文具盒和B款文具盒分别销售了多少个?(2)根据开业当月试销售的情况,商家决定第二月将A款文具盒的售价在定价的基础上提高a元,第二月A款文具盒的销量比开业当月降低了2a个,同时商家推出买一个B款文具盒赠送一块成本为1元的橡皮擦的活动,第二月B款文具盒的销量比开业当月提高了a个,结果第二月销售A、B两款文具盒的总利润比开业当月获得的总利润多(76a﹣30)元,求a的值.23.(10分)疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:鼻梁条耳带成本90元/箱230元/箱制作配件数目25000只/卷100000只/卷(1)生产110万片口罩需要鼻梁条 卷,耳带 箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务.请你通过计算,为口罩厂做出决策.24.(11分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组2x+y=7x+2y=8,则x﹣y= ,x+y= ;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.25.(12分)阅读探索(1)知识积累解方程组(a―1)+2(b+2)=6 2(a―1)+(b+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为x+2y=62x+y=6,解这个方程组得x=2y=2,即a―1=2b+2=2,所以a=3b=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m3―1)+2(n5+2)=43(m3―1)―(n5+2)=5.(3)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=3y=4,请直接写出关于m、n的方程组a1(m+2)―b1n=c1a2(m+2)―b2n=c2的解是 .参考答案1.D;2.B;3.B;4.A;5.D;6.D;7.D;8.A;9.D;10.B;11.x=―1,y=3;12.4;13.4300;14.13;15.5;16.解:设大头儿子现在的年龄是x岁,爸爸的年龄是y岁,由题意得:y=x+23y+5=2(x+5)+8,解得:x=10 y=33,答:大头儿子现在的年龄为10岁.17.解:(1)3m12―1=2m23,去分母,得3(3m﹣1)﹣6=2(2m+2),去括号,得9m﹣3﹣6=4m+4,移项,得9m﹣4m=3+6+4,合并同类项,得5m=13,系数化为1,得m=13 5;(2+m n3=3―m n3=―1,设m n2=x,m n3=y,则原方程组化为x+y=3①x―y=―1②,①+②,得2x=2,解得x=1,把x=1代入①,得y=2,∴m n2=1,m n3=2,故m+n=2 m―n=6,解得m=4n=―2.18.解:(1)当a=2时,原方程组变为:x―y=5①2x+3y=10②①×3+②得5x=25∴x=5将x=5代入①得y=0∴这个方程组的解为x=5 y=0(2)当x=y时,2a+1=0,得a=―1 2;把a=―12代入②得x=―52,∴方程组的解为x=―52 y=―52(3)①×3﹣②得x﹣6y=﹣3a+11又∵x﹣6y=2∴﹣3a+11=2∴a=319.解:(1)根据题意得:a+b+c=8①c=2②4a―2b+c=4③,把②代入①,得a+b+2=8④,把②代入③,得4a﹣2b+2=4⑤,由④和⑤组成方程组a+b+2=84a―2b+2=4,解得:a=73,b=113,所以a=73,b=113,c=2;(2)由(1)得:y=73x2+113x+2,当x=﹣3时,y=73×(﹣3)2+113×(﹣3)+2=12.20.解:(1)(199﹣38×3﹣5×10)÷5=7(张).故用了7张C型的消费券.故答案为:7;(2)①设A型消费券x张,B型消费券y张,C型消费券z张,依题意有x+y+z=12z―x=138x+10y+5z=230,解得x=5 y=1 z=6.故A型消费券5张,B型消费券1张,C型消费券6张;②6期消费券有A型6张,B型12张,C型12张,∵38×5+10×4=230(元),38×5+5×8=230(元),∴A型消费券5张,B型消费券4张或A型消费券5张,C型消费券8张.21.解:∵3.75和7.1都不是0.45 0.8 1.5的整数倍,∴甲乙丙3人的用水正好在0﹣10,10﹣20,20以上这3段中,且甲>乙>丙.设丙户用水xt(0≤x≤10),乙户用水(10+y)t(0<y≤10).则有0.45x+3.75=0.8y+0.45×10,即9x﹣16y=15.∵3能够整除9和15,而不能整除16,∴3整除y.∴y=3或6或9.经检验,只有y=3符合题意,则x=7.同理,设甲户用水(20+z)t,则有0.8y+0.45×10+7.10=1.50z+0.45×10+0.8×10,解,得z=1.所以甲户交水费14元,乙户交水费6.9元,丙户交水费3.15元.22.解:(1)设A款文具盒销售了x个,B款文具盒销售了y个,由题意得:x+y=18015x+23y=3340,解得:x=100 y=80,答:A款文具盒销售了100个,B款文具盒销售了80个;(2)由(1)可知,开业当月的利润=(15﹣7)×100+(23﹣10)×80=1840(元),由题意得:(15+a﹣7)(100﹣2a)+(23﹣10﹣1)(80+a)=1840+76a﹣30,解得:a1=a2=5,即a的值为5.23.解:(1)∵每片口罩需要一只鼻梁条、两条耳带,∴1100000÷25000=44(卷),1100000×2÷100000=22(箱).(2)110万片口罩的成本:13000×2+14700+44×90+22×230=49720(元),1片口罩的成本:49720÷1100000=0.0452(元),∵每片口罩还需支出费用大约0.1548元,∴每片口罩的成本:0.0452+0.1548=0.2(元).(3)方案一:全部大包销售:440000100÷800=5.5(天).∴440000100×45.8―6×2000―0.2×440000=201520﹣12000﹣88000=101520(元).方案二:全部小包销售:44000010÷2000=22(天)>7(天)(舍去).方案三:设包装小包的天数为x,由题意得:10×2000x+100×800×(7﹣x)=440000.解得:x=2.∴440000﹣10×2000×2=400000(片).∴2×2000×5.8+400000÷100×45.8﹣7×2000﹣0.2×440000=206400﹣14000﹣88000=104400(元).∵104400>101520,∴选择方案三.24.解:(1)2x+y=7①x+2y=8②,由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:20m+3n+2p=32①39m+5n+3p=58②,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:3a+5b+c=15①4a+7b+c=28②,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.25.解:(2)设m3―1=x,n5+2=y,∴原方程组可变为:x+2y=43x―y=5,解这个方程组得:x=2 y=1,―1=2 2=1,所以:m=9n=―5;(3)设m+2=x ―n=y,可得:m+2=3―n=4,解得:m=1n=―4.。

北师大版七年级数学上册各章测试卷(共7套,含答案)

北师大版七年级数学上册各章测试卷(共7套,含答案)

(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。

2022-2023年青岛版初中数学七年级上册期末考试检测试卷及部分答案(三套)

2022-2023年青岛版初中数学七年级上册期末考试检测试卷及部分答案(三套)

2022-2023年青岛版数学七年级上册期末考试测试卷及答案(一)一.单选题(共10题;共30分)1.一轮船从A地到B地需7天,而从B地到A地只需5天,则一竹排从B地漂到A地需要的天数是()A. 12B. 35C. 24D. 472.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2=C. 2xy3D. 2x33.下列各式计算正确的是()A. ﹣2a+5b=3abB. 6a+a=6a2C. 4m2n﹣2mn2=2mnD. 3ab2﹣5b2a=﹣2ab24.由方程组,可以得到x+y+z的值等于()A. 8B. 9C. 10D. 115.下列代数式书写规范的是()A. a×2B. 2aC. (5÷3)aD. 2a26.下列计算中,正确的是()A. ﹣2(a+b)=﹣2a+bB. ﹣2(a+b)=﹣2a﹣b2C. ﹣2(a+b)=﹣2a﹣2bD. ﹣2(a+b)=﹣2a+2b7.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -28.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的航速与水速分别是()A. 24千米/时,8千米/时B. 22.5千米/时,2.5千米/时C. 18千米/时,24千米/时D. 12.5千米/时,1.5千米/时9.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.则这款空调每台的进价()A. 1000B. 1100C. 1200D. 130010.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x人到甲队,列出的方程正确的是()A. 272+x=(196﹣x)B. (272﹣x)=196﹣xC. (272+x)=196﹣xD. ×272+x=196﹣x二.填空题(共8题;共24分)11.单项式a2b4c的系数是________ ,次数是_______12.如果x﹣y=3,m+n=2,则(x+m)﹣(y﹣n)的值是_______13.观察下列图形,若将一个正方形平均分成n2个小正方形,则一条直线最多可穿过________个小正方形14.已知一个两位数M的个位上的数字是a,十位上的数字是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则3M﹣2N=________(用含a和b的式子表示).15.某市出租车收费标准为:起步价为7元,3千米后每千米的价格为1.5元,小明乘坐出租车走了x千米(x>3),则小明应付________元.16.方程x+5= (x+3)的解是________.17.若x=﹣1是关于x的方程2x+3m﹣1=0的解,则m=________.18.某班发放作业本,若每人发4本,则还余12本;每人发5本,则还少18本,则该班有学生________人.三.解答题(共6题;共42分)19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.﹣7(7y﹣5)21.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?22.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.23.用方程描述下列实际问题中数量之间的相等关系:妈妈给小明25元钱,要他买每个2元和每个3元的面包共11个,小明该买这两种面包各几个?24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?参考答案:一.单选题1.B2.D3.D4.A5.D6.C7.A8.9.C 10.C二.填空题11.35π;7 12.5 13.(2n﹣1) 14.﹣17a+28b 15.(1.5x+2.5) 16.x=﹣7 17.1 18.30三.解答题19.解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4=.0+ab﹣4=ab﹣4(2)原式=﹣x+4x﹣4﹣9x﹣15=﹣6x﹣1920.解:﹣7(7y﹣5)=﹣49y+35.21.解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升一千米,温度降低6摄氏度,可得解析式为t=20﹣6h;(3)由表可知,距地面5千米时,温度为零下10摄氏度;(4)将t=6代入h=20﹣t可得,t=20﹣6×6=﹣16.22.解:(1)2a﹣3c表示甲车的速度是a,乙车的速度是b,甲车两小时比乙车三小时多行驶多少;(2)表示甲车的速度是a,乙车的速度是b,甲车三小时是乙车5小时行驶的多少倍;(3)ab表示矩形的宽是a,矩形的长是b。

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3B.2,3,4C.4,5,6D.1,2 2.(3分)七年级手工小组用彩带给如图所示的图片制作边框,已知AB=5,BC=12,则制作一个边框需要彩带的长度是()A.5B.12C.13D.303.(3分)下列四组数,是勾股数的是()A.0.3,0.4,0.5B.3,4,5C.6,7,8D.32,42,524.(3分)如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.(3分)若一直角三角形的两边长分别是6,8,则第三边长为()A.10B.C.10或D.146.(3分)△ABC各边分别为a,b,c,在下列条件中,不是直角三角形的是()A.两内角互余B.∠A:∠B:∠C=3:4:5C.∠C=∠A﹣∠B D.b2=a2﹣c27.(3分)已知,Rt△ABC中,∠A=90°,AB=4,BC=5,AC边的长为()A.3B C.3D8.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的度数比为1:2:3B.三条边的长度比为1:2:3C.三条边满足关系a2+c2=b2D.三个角满足关系∠B+∠C=∠A9.(3分)如图,在5×5的网格中,每个格点小正方形的边长为1,△ABC的三个顶点A、B、C都在网格格点的位置上,则△ABC的边AB上的高为()A B C D10.(3分)在平面直角坐标系中有一个点A(﹣4,3),则点A到坐标原点O的距离是()A.﹣5B.5C D二.填空题(共5小题,满分15分,每小题3分)11.(3分)若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是cm.12.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B 出发沿射线BA以2cm/s的速度运动.则当运动时间t=s时,△BPC为直角三角形.13.(3分)如图,Rt△ABC中,∠B=90°,AB=3,AC=5,AC的垂直平分线交AC于点E,交BC于点D.则BD的长为.14.(3分)如图,在△ABC中,已知AB=4,AD⊥BC,垂足为D.BD=2CD.若E是AD 的中点,则EC=.15.(3分)如图,Rt△ABC中,∠C=90°,AB=5,BC=3,DE垂直平分AB交AB于点E,交AC于点D,则AD的长是.三.解答题(共8小题,满分75分)16.(9分)如图,在四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD的面积.17.(9分)如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是多少米?18.(9分)某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.19.(9分)已知线段a,b,c,且线段a,b满足|a48|+(b12)2=0.(1)求a,b的值;(2)若a,b,c是某直角三角形的三条边的长度,求c的值.20.(9分)如图,网格中的△ABC,若小方格边长为1,请你根据所学的知识:(1)判断△ABC是什么形状?并说明理由;(2)求△ABC的面积.21.(10分)如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.22.(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB 与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.23.(10分)八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.参考答案1.D;2.D;3.B;4.C;5.C;6.B;7.A;8.B;9.C;10.B;11.512.25或16;13.78;14.2;15.258;16.连接AC,∵∠B=90°,∴△ABC为直角三角形,∵AB=4,BC=3,根据勾股定理得:AC222243AB CB5,又∵AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∴∠ACD=90°,∴S 四边形ABCD=S△ABC+S△ACD 12AB•BC12AC•CD123×41212×5=36.17.如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.18.∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.19.(1)∵|a48|+(b12)2=0,∴a480,b120,解得a4843,b1223,(2)当a,b是某直角三角形的两条直角边的长,c为直角三角形斜边的长时,c2222a b;(48)(12)215当b,c是某直角三角形的两条直角边的长,a为直角三角形斜边的长时,c2222a b.(48)(12)6综上所述,c的值为或6.20.(1)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形;(2)S△ABC=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5,∴△ABC的面积为5.21.(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC =5,∴AC 22259CD AD 4.22.(1)解:设直线AB 的解析式为:y =kx +b , 点A (2,1),B (﹣2,4),则2124k b k b , 解得,3452k b , ∴设直线AB 的解析式为:y34x 52, ∴点C 的坐标为(0,52); (2)证明:∵点A (2,1),B (﹣2,4),∴OA 2=22+12=5,OB 2=22+42=20,AB 2=32+42=25, 则OA 2+OB 2=AB 2,∴△OAB 是直角三角形.23.(1)在Rt △CDB 中,由勾股定理,得2222251520CD CB BD (米). 所以CE =CD +DE =20+1.6=21.6(米);(2)由1122BD DC BC DH 得15201225DH , 在Rt △BHD 中,BH22BD OB 9.。

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

2022-2023学年八年级上学期期中考前必刷卷数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC中,4AB AC==,15B∠=︒,CD是腰AB上的高,则CD的长()A.4B.2C.1D.1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC的两条角平分线相交于点D,过点D作EF∥BC,交AB于点E,交AC于点F,若AEF的周长为30cm,则AB AC+=()cm.A.10B.20C.30D.4011.(2022·全国·八年级专题练习)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70︒,则∠EAN的度数为()A.35︒B.40︒C.50︒D.55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC中,∠C=90°∠B=30°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④1:3ACD ACBS S=:.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC的边AB上一点P,作PE AC⊥于点E,Q为BC延长线上一点,当AP CQ=时,PQ交AC于点D,则DE的长为()A.13B.12C.23D.不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC中,90BAC∠=︒,2AB AC=,点D是线段AB的中点,将一块锐角为45︒的直角三角板按如图()ADE放置,使直角三角板斜边的两个端点分别与A、D重合,连接BE、CE,CE与AB交于点.F下列判断正确的有()①ACE≌DBE;②BE CE⊥;③DE DF=;④DEF ACFS S=A.①②B.①②③C.①②④D.①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a,3)和点Q(4,b)关于x轴对称,则()2021a b+=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则∠BEC=_____.○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○…………学校:______________姓名:_____________班级:_______________考号:______________________17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ;(2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''V (其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ',B ',C '三点的坐标:A '(),B '(),C '()(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC,求作一个△DEF,使EF=BC,∠F=∠C,DE=AB(即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹):①画EF=BC;②在线段EF的上方画∠F=∠C;③画DE=AB;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC中,点D在边BC延长线上,100ACB∠=︒,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且50CEH∠=︒.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;25.(2022·全国·八年级专题练习)(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D¢的位置时,你能求出∠A'、∠D¢、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.(1)如图①,若点C的横坐标为﹣3,点B的坐标为;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD垂直x轴于D点,试猜想线段CD与AM的数量关系,并说明理由;(3)如图③,OB=BF,∠OBF=90°,连接CF交y轴于P点,点B在y轴的正半轴上运动时,△BPC与△AOB的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C 1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC≌△DEF,∠FED=15°,得∠CBA=15°,再根据三角形内角和即可得答案.【详解】解:∵△ABC≌△DEF,∠FED=15°,∴∠CBA=∠FED=15°,∵∠A=132°,∴∠C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:∵|a﹣,∴a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,6符合条件;故选:A .【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a 、b 的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、∵C D ∠=∠,BAC BAD ∠=∠,AB =AB ,∴ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、∵BC BD =,AC AD =,AB =AB ,∴ABC ABD △≌△(SSS ),正确,故此选项不符合题意;C 、∵BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,∴ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键.5.D【分析】若使PA +PC =BC ,则PA =PB ,P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,∴BC =BP +PC =BA +PC ,故A 不符合题意;B.由作图可知PA =PC ,∴BC =BP +PC =BP +PA ,故B 不符合题意;C.由作图可知AC =PC ,∴BC =BP +PC =BP +AC ,故C 不符合题意;D.由作图可知PA =PB ,∴BC =BP +PC =PA +PC ,故D 符合题意;故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键.6.C【分析】设∠O=x ,进而根据三角形外角的性质表示出∠2,即可表示出∠3,同理表示出∠4,可得∠5,再表示出∠6,即可∠7,最后根据∠8=∠O +∠7得出答案即可.【详解】设∠O=x ,∵∠2是△ABO 的外角,且∠O =∠1,∴∠2=∠O +∠1=2x ,∵∠4是△BCO 的外角,∴∠4=∠O +∠3=3x ,∴∠5=∠4=3x .∵∠6是△CDO 的外角,∴∠6=∠O +∠5=4x ,∴∠7=∠6=4x .∵∠8是△DEO 的外角,∴∠8=∠O +∠7=5x ,即5x =90°,解得x =18°.故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键.7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答.【详解】∵ED 是边AC 的垂直平分线,∴AE =EC ,∵AB =10厘米,BC =8厘米,∴BC +CE +EB =BC +AE +EB =BC +AB =18厘米,即△BEC 的周长为18厘米,故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键.8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABO S :BCO S △:CAO S AB = :BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点,OD OE OF ∴==,ABO S ∴ :BCO S △:12CAO S AB OD ⎛⎫=⋅ ⎪⎝⎭ :12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式.9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30°角的直角三角形的性质可得CD 的长.【详解】解:AB AC = ,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高,CD AB ∴⊥,122CD AC ∴==,故选:B【点睛】本题主要考查了等腰三角形的性质,含30°角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到∠EBD =∠EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案.【详解】解:∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠EBD =∠EDB ,同理:FD =FC ,∴AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm ,即AB +AC =30cm ,故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键.11.B【分析】根据三角形内角和定理可求∠B +∠C ,根据垂直平分线性质,EA =EB ,NA =NC ,则∠EAB =∠B ,∠NAC =∠C ,从而可得∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,即可得到∠EAN =∠B +∠C -∠BAC ,即可得解.【详解】解:∵∠BAC =70︒,∴∠B +∠C =18070110︒︒︒﹣=,∵AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,∴EA =EB ,NA =NC ,∴∠EAB =∠B ,∠NAC =∠C ,∴∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,∴∠EAN =∠B +∠C -∠BAC ,=11070︒︒﹣=40︒.故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN 的关系式是关键.12.D【分析】①根据作图的过程可以判定AD 是∠BAC 的角平分线;②利用角平分线的定义可以推知∠CAD =30°,则由直角三角形的性质来求∠ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,DAC S =12AC •CD =14AC •AD .∴ABC S =12AC •BC =12AC •32AD =34AC •AD .∴DAC S :ABC S =14AC •AD :34AC •AD =1:3.故④正确.综上所述,正确的结论是:①②③④,故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质.13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明 AEP ≅ CFQ ,再证明 DEP ≅ DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果.【详解】如图,过点Q 作AD 的延长线的垂线于点F ,∵△ABC 是等边三角形,∴∠A =∠ACB =60°,∵∠ACB =∠QCF ,∴∠QCF =60°,又∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠CFQ =90°,又AP =CQ ,∴△AEP ≅△CFQ (AAS ),∴AE =CF ,PE =QF ,同理可证,△DEP ≅△DFQ ,∴DE =DF ,∴AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE ,∴DE =12AC =12.故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE ≌DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE ≌DBE 得到ACE DBE S S = ,由BD AD =得到DAE DBE S S = ,所以ACE DAE S S = ,从而可对④进行判断.【详解】解:2AB AC = ,点D 是线段AB 的中点,BD AD AC ∴==,ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒ ,180********EDB EDA ∠∠=︒-=︒-︒=︒,EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴ ≌SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒- .而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒- ,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误;ACE Q V ≌DBE ,ACE DBE S S ∴= ,BD AD = ,DAE DBE S S ∴= ,ACE DAE S S ∴= ,DEF ACF S S ∴= ,所以④正确.故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:∵点P (a ,3)和点Q (4,b )关于x 轴对称,∴a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.16.48°##48度【分析】根据多边形的内角和,分别得出∠ABE =120°,∠DCE =108°,再根据平角的定义和三角形的内角和算出∠BEC .【详解】解:由多边形的内角和可得,∠ABE =()621806-⨯︒=120°,∴∠EBC =180°﹣∠ABE =180°﹣=60°,∵∠DCE =()521805-⨯︒=108°,∴∠BCE =180°﹣108°=72°,由三角形的内角和得:∠BEC =180°﹣∠EBC ﹣∠BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S === ,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB = ,ABC 的面积01S =,101BCB ABC S S S ∴=== ,又1BC CC = ,1111B CC BCB S S ∴== ,112B BC S ∴= ,同理可得:11112,2A CC A AB S S == ,111122217A B C S S ∴==+++= ,同理可得:2221112277A B C A B C S S S === ,归纳类推得:7n n n A B n C n S S == ,其中n 为非负整数,202220227S ∴=,故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP V 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅V V ,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,∵点D 是AB 的中点∴152BD AB ==∵BD PC=∴()853BP cm =-=∴B 点向C 点运动了33t =,1t =秒∵BPD CQP≅△△∴BP CQ=∴31v =⨯∴3/sv cm =②设运动了t 秒,当BD CQ =时,BDP QCP≅V V ∵5BD =,142PB PC BC ===∴34t =解得43t =秒∵BD CQ =∴453v =⨯∴15/s 4v cm =故答案为:3或154.【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF = ,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅ .(2)解:12,4BF EC == ,8BE CF BF EC ∴+=-=,BE CF = ,4BE ∴=,448BC BE EC ∴=+=+=.【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y 轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A 点关于x 轴的对称点A '',连接A B ''交x 轴于点P ,P 点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A (−4,1),B (−2,3),C (1,−2),∴A 点关于y 轴对称的点为(4,1),B 点关于y 轴对称的点为(2,3),C 点关于y 轴对称的点为(−1,−2),∴A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A 点关于x 轴的对称点A ',连接A B ''交x 轴于点P ,∴AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,以C为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,作线段BC的垂直平分线,此线与坐标轴有2个交点,∴△BCQ是等腰三角形时,Q点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD⊥BC,进一步求出∠EDC=30°,然后根据三角形内角和定理推出∠DOC=90°,再根据三角形的外角性质可求出∠DEC=30°,从而得出∠EDC=∠DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD≌△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB AC ABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析(2)2,D EF ';(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)2个;其中三角形D EF '(填三角形的名称)与△ABC 明显不全等,故答案为:2,D EF ';(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证;(3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +== 和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒ ,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒ ,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠,EN EH ∴=,EM EN ∴=,又 点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S = ,21ACE DCE S S +∴= ,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=,又14AC CD += ,211223142x AC CD ⨯=∴⨯==+,3EM ∴=,8.5AB = ,ABE ∴ 的面积为11518.53224AB EM ⋅=⨯⨯=.【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2∠A =∠1+∠2;见解析;(2)2∠A =∠1﹣∠2;见解析;(3)2(∠A +∠D )=∠1+∠2+360°,见解析【分析】(1)根据翻折的性质表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,∠3=EDA '∠=12(180-∠1),∠4=DEA '∠=12(180-∠2),∵∠A +∠3+∠4=180°,∴∠A +12(180-∠1)+12(180-∠2)=180°,整理得,2∠A=∠1+∠2;(2)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+12(180-∠1)+12(180+∠2)=180°,整理得,2∠A=∠1-∠2;(3)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180-∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+12(180-∠1)+12(180-∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH ⊥y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解;(2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG ⊥y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解.【详解】解:(1)如图①,过点CH ⊥y 轴于H ,∴90BHC ABC ∠=︒=∠,∴90BCH CBH ABH CBH ∠+∠=∠+∠=︒,∴BCH ABH ∠=∠,∵点C 的横坐标为﹣3,∴3CH =,在ABO 和BCH 中,BCH ABHBHC AOB BC AB∠=∠⎧⎪∠∠⎨⎪=⎩=,∴ABO BCH ≌,∴3CH BO ==,∴点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CADAD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADN ADC ≌,∴CD DN =,∴2CN CD =,∵90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,∴BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCNBA BC ABM CBN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABM CBN ≌,∴AM CN =,∴2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG ⊥y 轴于G,∵90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,∴BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,∴BAO CBG ≌,∴BG AO =,CG OB =,∵OB BF =,∴BF GC =,在CGP 和FBP 中,90CPG FPBCGP FBP CG BF∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,∴CGP FBP ≌,∴PB PG=,∴1122PB BG AO==,∵12AOBS OB OA∆=⨯⨯,111222PBCS PB GC OB OA∆=⨯⨯=⨯⨯⨯,∴12PBC AOBS S∆∆=:.【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。

单元测试卷人教版数学初一七年级下册第10单元 B提升测试 试卷含答案解析

单元测试卷人教版数学初一七年级下册第10单元 B提升测试 试卷含答案解析

【分层单元卷】人教版数学7年级下册第10单元·B提升测试时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)()1.(3分)以下调查中,适合用普查方式进行调查的是 A.调查我市八年级学生的身高情况B.调查八年级学生对电影《长津湖》的观后感C.调查全校学生用于做数学作业的时间D.调查10名运动员兴奋剂的使用情况2.(3分)新学期开学后,小红第1至第6周每周零花钱收支情况如图所示,6周后小()红的零花钱一共 A.22元B.23元C.25元D.27元3.(3分)北京2022年冬奥会于2022年2月4日正式开幕,吉祥物“冰墩墩”受到了广大民众的热捧.某中学为了解本校2250名学生对吉祥物“冰墩墩”设计寓意的知晓()情况,准备进行抽样调查,你认为抽样最合理的是 A.从八年级随机抽取150名学生B.从九年级15个班中各随机抽取10名学生C.从七年级随机抽取150名男生D.从七、八、九年级各随机抽取50名学生4.(3分)小明同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知AAB()型血的有15人,则型血的有 A.5人B.8人C.10人D.20人5.(3分)某大米加工厂为选择一种大米包装的质量规格(即每包大米的质量,单位:千克包),抽样调查了该大米散装销售时顾客购买的质量,并将收集的数据绘/制成如图的频数分布直方图(每小组包括最小值,不包括最大值).根据调查结()果,下列包装的质量规格中,较为合理的选择是 A.2千克包B.3千克包C.4千克包D.5千克包////6.(3分)为了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)分组(分)40~5050~6060~7070~8080~9090~100频数12 18 180频率0.16 0.04根据上表信息,由此样本请你估计全区此次成绩在分的人数大约是_______. 70~80()A.270 B.96 C.24 D.16207.(3分)随着防疫工作的推进和宣传工作的深入,人们对接种新冠疫苗越来越重视.小聪想利用折线统计图反映所在社区去年下半年每月新冠疫苗接种人次的变化情况,以下是打乱的统计步骤:①按统计表的数据绘制折线统计图;②整理社区每月接种人次的数据并制作统计表;③从社区办事处收集去年下半年新冠疫苗接种人次的数据;④从折线统计图中分析该社区去年下半年每月新冠疫苗接种人次的变化趋势.正()确统计步骤的顺序是 →→→→→→→A.①②③④B.③②①④C.③①→→→→→②④D.②④③①() 8.(3分)某班级的一次数学考试成绩统计图如图,则下列说法正确的是 A.该班的总人数为41B.得分在分的人数最多60~70C.人数最少的得分段的频数为2…(60D.得分及格分)的有35人9.(3分)从鱼塘捕捞同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240()尾的总质量大约为 A.300千克B.360千克C.36千克D.30千克10.(3分)网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台5G阶.据预测,2020年到2030年中国直接经济产出和间接经济产出的情况如图所5G()示,根据图提供的信息,下列推断不合理的是 A.2030年间接经济产出比直接经济产出多4.2万亿元5G5GB.2022年到2023年与2023年到2024年间接经济产出的增长率相同5GC.2030年直接经济产出约为2020年直接经济产出的13倍5G5GD.2020年到2030年,直接经济产出和间接经济产出都是逐年增长5G5G二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图是某校七年级学生参加课外兴趣小组人数的扇形统计图.若参加书法兴趣小组的人数是30人,则参加绘画兴趣小组的人数是 人.12.(3分)一组数据,其中最大值是,最小值是,对这组数据进行整理170cm147cm时,组距是4,则组数为 .13.(3分)为了解某校2000中学生喜爱冬奥会吉祥物冰墩墩和雪容融情况,随机抽取100名学生,其中有70位学生喜欢冰墩墩,根据所学的统计知识可以估计该校喜欢冰墩墩的学生的人数是 .cm)14.(3分)七(2)班第一组的12名同学身高(单位:如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在的频数155~160是 .15.(3分)小明同学统计了某学校七年级部分同学每天阅读图书的时间,并绘制了统计图,如图所示.下面有四个推断:①小明此次一共调查了100位同学;②每天阅读图书时间不足15分钟的同学人数多于分钟的人数;-4560③每天阅读图书时间在分钟的人数最多;-1530④每天阅读图书时间超过30分钟的同学人数是调查总人数的.20%根据图中信息,上述说法中正确的是 .(直接填写序号)三、解答题(共10小题,满分75分)16.(7分)一个口袋中有5个黑球和若干个白球若干个,从口袋中随机摸出一球,记下其颜色,再把它放回摇均,重复上述过程,共实验100次,其中75次摸到白球,于是可以估计袋中共有多少球?17.(7分)某学校在开展“节约每一滴水”的活动中,从七年级的180名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量/t0.5 1 1.5 2同学数 2 3 4 1请你估计这180名同学的家庭一个月节约用水的总量是多少?18.(7分)为了节约资源,保护环境,从6月1日起全国限用超薄塑料袋.古龙中学课外实践小组的同学利用业余时间对本城居民家庭使用超薄塑料袋的情况进行了A B抽样调查.统计情况如图所示,其中为”不再使用”,为”明显减少了使用量”,为”没有明显变化”.C(1)本次抽样的样本容量是 .(2)图中 (户, (户.a=)c=)(3)若被调查的家庭占全城区家庭数的,请估计该城区不再使用超薄塑料袋的家10%庭数.19.(7分)为丰富学生的课余生活,培养学生的爱好,陶冶学生的情操,某校开展学生拓展课,为了解学生各社团活动的参与人数,该校对参与社团活动的学生进行了抽样调查,制作出如下的统计图根据该统计图,完成以下问题:(1)这次共调查了 名学生;(2)请把统计图1补充完整;(3)已知该校七年级共有680名学生参加社团活动,请根据样本估算该校七年级学生参加艺术类社团的人数20.(7分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x(1)求的值;x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?21.(8分)在“慈善一日捐”活动中,小明对全年级同学的捐款情况进行了抽样调查,并将收集的数据绘制成统计图.其中捐款为100元的人数占抽取人数的.由统计25%图中给出的信息回答下列问题:(1)一共抽取了 人;(2)补全统计图;(3)若全年级有300名学生,请估计全年级学生中捐款为10元的人数.22.(8分)杭州市体育中考跳跃类项目有立定跳远和1分钟跳绳两项,每位学生只能选择一项参加考试,满分为10分.某校九年级(1)班体育委员统计了该班40人的跳跃类项目测试成绩,并列出下面的频数分布表和频数分布直方图(每组均含前一个边界值,不含后一个边界值).(1)求的值.m(2)根据项目评分表,跳绳180个及以上计9.5分(男、女生标准一样).该校九年(9.5级共有400名学生,请你估计该年级跳跃类项目获得满分分按照10分计)的学生人数.1分钟跳绳的频数分布表组别(个)频数120~140 1140~160m160~180 5180~2001323.(8分)2022年3月23日下午,中国空间站“天宫课堂”再度开课,“太空教师”翟志刚、王亚平、叶光富演示了太空“冰雪”实验、液桥演示实验、水油分离实验、太空抛物实验.某校学生全员观看了太空授课直播,为了了解学生心中“最受启发的实验”的情况,随机抽取了部分学生(每人只选择一个实验)进行调查,以下是根据调查结果绘制的统计图表的一部分.最受启发的实验频数(人)频率.“冰雪”实验A 6 0.15B.液桥演示实验.水油分离实验CD0.35.太空抛物实验根据以上信息,回答下列问题:A(1)被调查的学生中,认为最受启发的实验是的学生人数为 人,认为最受启发的实验是的学生人数占被调查学生总人数的百分比为 ;C%D(2)本次调查的样本容量为 ,样本中认为最受启发的实验是的学生人数为 人;(3)若该校共有1200名学生,请根据调查结果,估计认为最受启发的实验是的学B生人数.24.(8分)某中学举行了一次庆祝建党100周年知识竞赛.比赛结束后,老师随机抽(x x取了部分参赛学生的成绩取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率分数段频数频率…30 0.15x<6070…m0.45x<7080…60 n8090x<…20 0.190100x<请根据以上图表提供的信息,解答下列问题: (1)表格中 ; . m =n =(2)把频数分布直方图补充完整.(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.25.(8分)某校为创建书香校园,倡导读书风尚,开展了师生“大阅读”活动,并制订“大阅读”星级评选方案,每月评选一次.为了了解活动开展情况,某星期学校组织对全校八年级“大阅读”五星级评选工作进行抽样调查,随机 抽取20名学生阅读的积分情况进行分析,过程如下: 收集数据:20名学生的“大阅读”积分如下(单位:分) :32 43 34 35 15 46 48 24 45 10 25 40 56 42 55 30 47 28 37 42整理数据:请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.积分分 /1020x <…2030x <…3040x <…4050x <…5060x <…星级 红 橙 黄 绿 青 频数234mn 根据以上数据可制成不完整的频数分布直方图. (1)填空;这组数据的组距是 , ; m =(2)补全频数分布直方图;(3)估计该校八年级400名学生中获得绿星级及其以上的人数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D ; 2.B ; 3.D ; 4.A ; 5.A ; 6.D ; 7.B ; 8.C ; 9.B ; 10.B ;二、填空题(共5小题,满分15分,每小题3分)11.60;12.6;13.1400;14.3;15.①③;三、解答题(共10小题,满分75分)16.设小球共有个,根据题意可得:x ,575100x x -=解得:,20x =经检验:是分式方程的解,20x =即袋中共有20个小球.17.这10名同学的平均用水量为,0.5213 1.54211.210⨯+⨯+⨯+⨯=所以克估算180名同学月用水量为.1.2180216()t ⨯=18.(1),800(100%70%10%)4000÷--=故答案为:4000;(2),,400070%2800a =⨯=400010%400c =⨯=故答案为:2800,400;(3)(户),400010%70%28000÷⨯=答:估计该城区不再使用超薄塑料袋的家庭数是28000户.19.(1)这次共调查的学生有:(名).3240%80÷=故答案为:80;(2)社团的人数有:(名),补全统计图如下:B 803224816---=(3)(名), 1668013680⨯=答:估算该校七年级学生参加艺术类社团的人数有136名.20.(1);120(247218)6x =-++=(2)(人), 247218001440120+⨯=答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.21.(1)共抽取的人数有:(人).1525%60÷=故答案为:60;(2)捐款20元的人数为(人),补全统计图如下:6020151015---=(3)(人), 2030010060⨯=答:估计全年级学生中捐款为10元的有100人.22.(1);40(151311237)7m =-+++++++=(2)估计该年级跳跃类项目获得满分分按照10分计)的学生人数为(9.5(名. 137********+⨯=)23.由题意可知,被调查的学生中,认为最受启发的实验是的学生人数为6人,认A 为最受启发的实验是的学生人数占被调查学生总人数的百分比为,C 30%故答案为:6;30;(2)本次调查的样本容量为:;60.1540÷=样本中认为最受启发的实验是的学生人数为:(人),D 400.3514⨯=故答案为:40;14;(3)样本中认为最受启发的实验是的学生人数为:B 406144030%8---⨯=(人),(人),8120024040⨯=答:估计该校认为最受启发的实验是的学生人数为240人.B 24.(1)(人),30015200÷=,2000.4590m =⨯=,602000.30n =÷=故答案为:90,0.30,(2)补全频数分布直方图如图所示:(3)(人),600(0.300.10)240⨯+=答:全校600名学生中成绩不低于80分的学生有240人.25.(1)由题意可知,这组数据的组距是10;由样本数据得:的有8人,4050x <…的有2人,5060x ……,,8m ∴=2n =故答案为:10;8;(2)补全频数分布直方图如下:(3)样本中,积分在绿星级以上的人数,占抽样人数的,821202+=(人).14002002∴⨯=答:估计该校八年级400名学生中获得绿星级以上的人数约为200人.。

2023-2024学年山东省济南市槐荫区八年级上学期期中数学测试试卷

2023-2024学年山东省济南市槐荫区八年级上学期期中数学测试试卷

2023~2024学年度第一学期期中质量检测八 年 级 数 学 (2023.11)本试题分试卷和答题卡两部分.第Ⅰ卷共2页,满分为40分;第Ⅱ卷共6页,满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共40分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的算术平方根是A .2B .-2C .±2D.2.下列4组数中,不是二元一次方程2x +y =4的解的是A .B .C .D .3.下列二次根式中是最简二次根式的是ABCD .4.已知点P 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为4,点P 坐标为A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3)5的值A .在-6与-5之间B .在-5与-4之间C .在-4与-3之间D .在-3与-2之间6.如图所示图象中,表示y 是x 的函数的有A .①②③④B .①②③C .①④2⎩⎨⎧==21y x ⎩⎨⎧==02y x ⎩⎨⎧==35.0y x ⎩⎨⎧=-=42y x 21xy OD Oxy BO xyCABC DED′7题图7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线上D ′处,若AB =6,AD =8,则ED 的长为A.B .3C .1D .8.若直线y =kx +b 经过第一、二、四象限,则直线y =bx+k 的图象大致是9.如图一个三级台阶,它的每一级的长宽高分别是5cm ,3cm 和1cm ,点A 和点B 是这个台阶的两个相对的端点,点A 上有一只蚂蚁,想到点B 去吃可口的食物,则蚂蚁沿着台阶面爬到点B 的最短路程长为A .10cmB .11cmC .12cmD .13cm10.已知,△OA 1A 2,△A 3A 4A 5,△A 6A 7A 8,…都是边长为2的等边三角形,按如图所示摆放.点A 2,A 3,A 5,…都在x 轴正半轴上,且A 2A 3=A 5A 6=A 8A 9=…=1,则点A 2023的坐标是A .(2023,)B .(2022,0)C .(2024,0)D .(2026,-)342333xyO A9题图10题图Oxyy=kx+314题图xAO16题图第Ⅱ卷(非选择题 共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求作答,答案无效.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.-8的立方根等于 .12.在平面直角坐标系中,已知点P (m +5,m -2)在x 轴上,则m =___________.13.在下列实数中:①-,②(-1)2023,,,⑤1.010010001……(两个1之间依次多1个,属于无理数的是 .(直接填写序号)14.如图y =kx +6的图象经过(3,0),则关于的方程kx +6=0的解为 .15.已知关于x ,y 的方程组的解满足x -y =6,则a 的值为 .16.在“探索一次函数y =kx +b 的系数k ,b 与图象的关系”活动中,老师给出了直角坐标系中的三个点:A (0,2),B (2,3),C (3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y 1=k 1x +b 1,y 2=k 2x +b 2,y 3=k 3x +b 3.分别计算k 1+b 1,k 2+b 2,k 3+b 3的值,其中最大的值等于 .三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)2π0)x ⎩⎨⎧-=++=+12122a y x a y x17.(本小题满分6分)计算:18.(本小题满分6分)解方程组:19.(本小题满分6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地.送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(AC =1尺),将它往前推进两步(EB =10尺),此时踏板升高离地五尺(BD =5尺),∠OEB =90°.求秋千绳索(OA 或OB )的长度.20.(本小题满分8分)2023年9月23日至10月8日,第19届亚运会在杭州成功举办,为了更好的发扬亚运精神,济南市某校乒乓球社团购买乒乓球和乒乓球拍,已知甲、乙两家体育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定价20元,乒乓球拍每副定价100元.现两家商店都搞促销活动,甲店每买一副球拍赠两盒乒乓球,乙店按八折优惠.社团需购球拍4副,乒乓球x (x ≥10)盒.(1)若在甲店购买付款y 甲(元),在乙店购买付款y 乙(元),分别写出:y 甲、y 乙与x 的函数关系式.(2)若该社团需要购买乒乓球30盒,在哪家商店购买合算?21.(本小题满分8分)已知,如图,方格纸中每个小方格都是边长为1个单位长度的正方形,现有A 、B 、C 三点,其中点A 坐标为(-4,1),点B 坐标为(1,1).8×21+18)(2035x y x y -=⎧⎨-=⎩19题图A21题图O ABC 22题图(1)请根据点A 、B 的坐标在方格纸中画出平面直角坐标系,并直接写出点C 坐标 ;(2)作出点C 关于直线AB 的对称点D .则点D 的坐标为 ;(3)在y 轴上找一点F ,使△ABF 的面积等于△ABD 的面积,点F 的坐标为 .22.(本小题满分8分)因为一次函数y =kx +b 与y =-kx +b (k ≠0)的图象关于y 轴对称,所以我们定义:函数y =kx +b 与y =-kx +b (k ≠0)互为“镜子”函数.(1)请直接写出函数y =3x -2的“镜子”函数: ;(2)如果一对“镜子”函数y =kx +b 与y =-kx +b (k ≠0)的图象交于点A ,且与x 轴交于B 、C 两点,如图所示,若△ABC 是等腰直角三角形,∠BAC =90°,且它的面积是16,求这对“镜子”函数的解析式.23.(本小题满分10分)如图,正方形网格中的每个小正方形的边长都是1,点、、均在格点上.(1)图中线段 , , ;(2)判断△ABC 的形状,并说明理由;(3)若于点,求的长.A B C AB =AC =BC =AD BC ⊥D ADABDC23题图)24题图20015024.(本小题满分10分)某型号新能源纯电动汽车充满电后,蓄电池剩余电量(千瓦时)关于已行驶路程(千米)的函数图象如图所示.(1)根据图象,直接写出蓄电池剩余电量为35(千瓦时)时汽车已行驶的路程为__________千米;(2)当时,求1千瓦时的电量汽车能行驶的路程;(3)当时,求关于的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.25.(本小题满分12分)如图,△ABC 是边长为4的等边三角形,动点E 、F 均以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A →B →C 方向运动,点F 沿折线A →C →B 方向运动,当两点相遇时停止运动.设运动的时间为t 秒,点E ,F 的距离为y .(1)求y 关于t 的函数关系式并注明自变量t 的取值范围;y x 0150x ……150200x ……y xAB CE F25题图12345678 9(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E ,F 相距3个单位长度时t 的值.26.(本小题满分12分)如图,在数轴上有两个长方形ABCD 和EFGH ,这两个长方形的宽都是长方形ABCD 的长AD 是EFGH 的长EH 是个单位长度,点E在数轴上表示的数是,且E 、D 两点之间的距离为.BF G C26题图(1)点在数轴上表示的数是 ,点在数轴上表示的数是 ;(2)若线段的中点为,线段上有一点N ,,点M 以每秒4个单位长度的速度向右匀速运动,点N 以每秒3个单位长度的速度向左运动,设运动的时间为秒,问当为多少时,原点恰为线段的三等分点?(3)若线段的中点为,线段上有一点N ,,长方形以每秒4个单位长度的速度向右匀速运动,长方形保持不动,设运动时间为秒,是否存在一个的值,使以M 、N 、F 三点为顶点的三角形是直角三角形?若存在,直接写出的值;不存在,请说明理由.H A AD M EH 14EN EH =x x O MN AD M EH 14EN EH =ABCD EFGH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学简单测试卷
一、选择题
1、在数轴上到-3的距离等于5的数是:( )
A 、2
B 、-8和-2
C 、-2
D 、2和-8
2、计算(-1)2004+(-1)2005
有值为:( )
A 、0
B 、-2
C 、2
D 、2⨯(-1)2004
3、若b<0<a ,则下列各式不成立的是:( )
A 、a-b>0
B 、-a+b<0
C 、ab<0
D 、|a|>|b| 4、下列说法中正确的是( )
A 、两点之间的所有连线中,线段最短。

B 、射线就是直线。

C 、两条射线组成的图形叫做角。

D 、小于平角的角可分为锐角和钝角两类。

5、已知线段AB ,延长AB 到C ,使BC =
3
1
AB ,D 为AC 中点,DC = 2cm ,则线段AB 的长度是( ) A 、3 B 、6cm C 、4cm D 、3cm
6、元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是:( )
A 、150元
B 、50元
C 、120元
D 、100元
7、如图,∠AOC 和∠BOD 都是直角,如果∠AOB = 150º,那么∠COD 等于( ) A 、30º B 、40ºC 、50º D 、60º
8、如果一个数的平方等于这个数的倒数,那么这个数是 ( )
A 、-1
B 、0
C 、1
D 、 -1
9、一条船向北偏东50方向航行到某地,然后依原航线返回, 船返回时航行的正确方向是:( )
A 、南偏西400
B 、南偏西500
C 、北偏西400
D 、北偏西500
10、下列各题中合并同类项,结果正确的是( )
A 、2a 2+3a 2=5a 2
B 、2a 2+3a 2=6a 2
C 、4xy -3xy =1
D 、2x 3+3x 3=5x 6
二、 填空
11、-18
1
的倒数是 。

12、如果x= -3,那么x 的相反数是 。

13、计算-2-5= 。

14、比较-
54和-65的大小,结果是:-54 -6
5 16、木工师傅要把一根14m 长的木头锯成七段,锯一段要用5分钟,一共需要 分钟 17、当x= 时,代数式5
1
3-x —1等于零。

三、综合题 19、计算:{1+[
16
1-(43)2]⨯(-2)4
}÷(231)2
20、化简:5x 2-[x 2+(5x 2-2x )- 2(x 2
-3x )]
21、解方程和不等式组:
7.0x -3
.027.1x -=1
A
O B C D
22、先化简,再求值:
7x 2
y + {xy - [3x 2
y-(4xy 2
+
21xy )] - 4x 2
y},其中x= -2
1,y= -1
23、如图,已知射线OX ,当OX 绕端点按逆时针方向旋转300
到OA 时,如果线段OA 的长是2cm ,那么点A 用记
号A (2,300
)表示。

(1)画出两点B (3,500),C (4,1400
)的位置;
(2)量出BC 的长(精确到0.1cm );
(3)求B 点的方位角。

24、已知:|a+2b-1|+(b+1)2
=0,代数式2
2m
a b +-的值比21b-a+m 的值大2。

求m 的值。

25、某人完成一份文稿的打字工作,现已完成
3
2
,还剩30页,求这份文稿的总页数。

(用两种方法解题)
26、甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这
样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?
一、选择题:
1.两条直线被第三条直线所截,总有( )
A .同位角相等
B .内错角相等
C .同旁内角互补
D .以上都不对
A ·
O
X
第4题图
D
第3题图
432
1第6题
D
D
C
B
A 2.如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是( ) A .相等
B .互余
C .互补
D .相等或互补
3.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是 ( ) A. 50° B. 60° C.70° D.80°
4.如图,下列说法正确的是 ( ) A .若AB ∥CD ,则∠1=∠2 B .若AD ∥BC ,则∠3=∠4 C .若∠1=∠2,则AB ∥CD D .若∠1=∠2,则AD ∥BC
第5题
5.如上图,AB ⊥CB ,BC ⊥DC ,∠EBC=∠BCF ,则∠ABE 与∠FCD ( )
A .是同位角且相等
B .不是同位角但相等
C .是同位角但不相等
D .不是同位角也不等
6.如图,线段AB=2 cm ,把线段AB 向右平移3cm ,得到线段DC ,连接BC 、AD ,则四边形ABCD 的面积为 ( ) A .4cm
2
B .9cm
2
C .6cm 2
D .无法确定
7.如图,能使AB ∥CD 的条件是 ( ) A .∠1=∠B B .∠3=∠A C .∠1+∠2+∠B=180° D .∠1=∠A
第7题 第8题
8.如图,有下列判定,其中正确的有 ( ) ①若∠1=∠3,那么AD ∥BC ②若AD ∥BC ,则∠1=∠2=∠3 ③若∠1=∠3,AD ∥BC,则∠1=∠2 ④若∠C+∠3+∠4=180°,AD ∥BC A .1个 B .2个 C .3个 D .4个
9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )
A .第一次右拐50°,第二次左拐130°
B .第一次左拐50°,第二次右拐50°
C .第一次左拐50°,第二次左拐130°
D .第一次右拐50°,第二次右拐50° 10. 如图:内错角有( )
A .4对
B .5对
C .6对
D .8对 二、填空题
A
B
C D
E
F
A B C D E
1 2
3 A D
B C
1 2 3 4
54E D
C B A 3
21
11.如图,∠2和∠5是 角,∠4和∠1是 角,∠4和∠BCD 是 角.
第 11 题 第12题 第13题 12.如图,在四边形ABCD 中,如果∠A+∠D=180°,则∠B+∠C= . 13.如图,AD ∥BC ,∠1=∠2,∠D=120°,则∠CAD= .
14.在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48甲、乙两地
同时开工,若干天后准确接通,则乙地所修公路的走向是 . 15.如右图,AD ∥BC ,AC ⊥AB ,∠BCD=900
,∠ABC=490

则∠CAD=______,∠ACD= .
16.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E , 若∠1=43°,则∠2= 。

17、若代数式1-x-22 的值不大于1+3x3 的值,那么x 的取值范围是_______________________。

三、解答题
18如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°。

将求∠AGD 的过程填写完整。

解:∵EF ∥AD ( )
∴∠2 = ( ) 又∵ ∠1 = ∠2( ) ∴ ∠1 = ∠3
∴AB ∥ ( ) ∴∠BAC + = 180°。

又∵∠BAC = 70° ∴∠AGD =
19.(6分)如图,若∠1=47°,∠2=133°,∠D=47°,那么BC 与DE 平行吗?AB 与CD 呢?请说明理由?
20、如图,为了加固房屋,要在屋架上加一根横梁DE ,使DE ∥BC 。

如果∠ABC=400
,那么∠ADE 应为多少度?请
说明理由.
A
O B
C E
1 2
L 1
L 2
G
F E
D C
B
A
3
21
A B
C
D
E
1
2 A
B
C
D
E
O
C
F
A E D C B
21、如图,AB ∥DC ,AD ∥BC ,问∠A 与∠C 有怎样的数量关系?为什么?
22、如图,AB//EF ,AB//CD ,若∠EFB=1200
,∠C=700
,求∠FBC 的度数.
23、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产x 件A 种产品,写出其题意x 应满足的不等式组;(2)由题意有哪几种按要求安排A 、B 两种产品的生产件数的生产方案?请您帮助设计出来。

相关文档
最新文档