CCD视频采集系统设计和实现
基于CCD场输出模式下成像系统设计

技术创新摘要:采用SONY 行间转移型面阵CCD ICX415AL 作为传感器件,设计了一种新型的CCD 成像系统,成像系统采用CCD 信号专用芯片CXA1310AQ 进行信号处理。
使输出信号满足模拟信号PAL/CCIR 标准,可以采用电视机或者配有视频卡的计算机作为显示终端。
在介绍CCD ICX415AL 的结构和特点的基础上,完成了时序电路和驱动电路的设计,CCD 工作模式为场输出模式,可以理解为垂直方向的binning 技术,并采用相关双采样(CDS)技术滤除了视频信号中的相关噪声,提高了系统的信噪比,整个系统采用现场可编辑门阵列作为核心器件,通过自上而下的模块设计。
完成了CCD 驱动时序,数据采集时序控制和视频信号简单处理。
关键词:行间转移CCD;驱动时序;相关双采样;FPGA 中图分类号:TN386.5文献标识码:AAbstract:A new imaging system is design by using an interline transfer CCD ICX415AL as sensor which is produced by SNOY cor -poration .and greatly improve the SNR of system .CCD imaging system uses special signal processing chip-CXA1310AQ making out -put signal to meet the standard of PAL/CCIR .so It can be used with TV and computer which has video card as a display terminalOn the basis of introducing the structure and characteristics of CCD ICX415AL ,The circuits of timing sequence and driver for sen -sor are design ,CCD work in field readout mode which can be realize as binning-technology in vertical direction and the noises of video signal are filtered by Correlated Double Sampling (CDS),the signal -to -noise ratio of system is enhanced .The system is take Field Programmable Gate Array (FPGA)as the key device .the CCD driving clock ,Clock control of data Acquisition and Video signal process are accomplished by the module design method of from top to bottom .Key words:interline transfer CCD;driving clock Correlate Double Sample (CDS );Field Programmable Gate Array (FPGA)1引言CCD(Charge Coupled Devices)技术经过三十年的发展已成为一种成熟的光电成像技术,由于CCD 具有信号输出噪声低,动态范围大,量子效率高以及电荷转移效率高等优点,采用硅衬底的ICCD ,光谱响应范围为0.3um~1.1um ,超过可见光范围可以延伸到紫外,x 射线。
多路视频采集卡的设计与实现

多路视频采集卡的设计与实现摘要:视频是人类信息的一个主要渠道。
想要获取影像信息,必须完成图像信息收集。
作为视频采集设备的基础,影像信息采集卡的设置非常关键。
而本章针对多路视频采集卡进行了分析,该视频采集卡以 FPGA为逻辑控制中心,采用SAA7111将 4路视频信号分别转换为数字图像数据,经 FIFO缓存后,由 PCI总线接口芯片 PCI9052将数据送入计算机,最后通过应用程序将图像显示出来。
实验分析表明该视频采集卡能实现 4路实时传输显示,能够真实的将采集卡采集到的影像信息通过驱动传递到应用监控软件,以便进行显示和存储,希望能为相关人员提供参考。
关键词:多路视频采集卡;设计;实现数字视频监控管理系统因其直观、便捷、内容丰富的优点日益引起人们的关注,已成为保安防范体系的主要部分。
视频采集子系统主要进行视频图像的采集与压缩工作,是数字化视频监测中最核心的组成部分,直接影响到了整个监测系统性能与品质的高低[1]。
针对新一代的视频监测系统对于视频图象的高品质与实时性的需求。
1相关概念概述1.1视频信号概述视频信号是一个比较复杂的信息,它不但包括了画面本身的数据内容,而且包含着某些供采集用的处理数据,将这些内容混杂在一起,并按照特定的顺序和规则加以传递。
标准的电视信号是黑白CCD摄像头,通过连接设备将光学数据转换成幅值恒定的电信号,再配合机会支持组合产生的最终电视信号,而信号是黑白全视频(也称为混合电视信号)主要由图像数据、消隐数字、同步数字、开槽脉冲和图像脉冲等几部分构成。
彩色图像的每一位像素值中不但包括了亮度数据,而且也包括了色彩数据RGB建模作为经典的色彩空间建模,广泛应用在计算机、显卡和监视器件上,它利用了红绿蓝黄三种色彩的通道,形成了一个色彩空间结构。
但由于RGB模式信息内容在数据传输中占有的巨大带宽,亮度数据容易引起色彩干涉,而且与黑白计算机并不兼容,所以在PAL制影像数据中采用了YUV建模。
摄像头采集信息的算法

摄像头采集信息的算法全文共四篇示例,供读者参考第一篇示例:摄像头在现代社会中扮演着重要角色,不仅在监控系统、安防领域有着广泛的应用,还在智能手机、笔记本电脑、平板电脑等设备中被广泛使用。
摄像头采集信息的算法是指利用摄像头获取的视频信息进行处理和分析的算法,其涉及到图像处理、计算机视觉和人工智能等多个领域,是当前研究热点之一。
摄像头采集信息的算法可以用于多种应用场景,例如人脸识别、车辆识别、动作检测、人体姿态识别等。
在这些应用中,摄像头首先将所拍摄的图像或视频传输至计算机系统中,而后算法会对图像进行分析和处理,从中提取出有意义的信息,并作出相应的判断和行为反应。
对于摄像头采集信息的算法来说,图像处理是其中一个重要的环节。
图像处理技术包括图像的采集、预处理、特征提取和特征匹配等步骤。
在图像采集阶段,摄像头会不断地捕获图像或视频,将其传输至计算机系统中。
在预处理阶段,图像可能需要进行去噪、平滑处理等,以便提高后续处理的效果。
特征提取是指从图像中提取出具有代表性的信息,例如像素级的颜色、纹理、形状等信息。
特征匹配则是将提取出的特征与预先训练好的模型进行匹配,从而实现对图像中物体或场景的识别和分类。
除了图像处理,计算机视觉也是摄像头采集信息的算法中不可或缺的一部分。
计算机视觉是一门研究如何让计算机“看懂”图像或视频的学科,其包括目标检测、目标跟踪、图像识别、物体检测等多个领域。
通过计算机视觉的技术,摄像头可以实现人脸识别、动作检测、人体姿态识别等功能。
在人工智能领域,深度学习和神经网络技术也被广泛应用于摄像头采集信息的算法中。
深度学习是一种基于人工神经网络的机器学习方法,通过大量的训练数据和复杂的网络结构,可以实现更加精准的图像识别和分类。
神经网络模仿了人脑的神经元网络结构,在处理图像时可以提取出更多的高级特征,提高图像处理的准确性和效率。
在工业领域,摄像头采集信息的算法也被广泛应用于生产自动化和机器视觉系统中。
面阵CCD实验指导手册

⑥ 所有与 CCD 相关的实验设备都应在实验前进行检查,确定均连接好后方可 开机上电,未连接好的情况下不能开机实验;
⑦ 当发生意外事故或者实验过程中出现异常现象时,应当立即切断实验设备 的电源,并如实向指导教师汇报情况。故障排除之后方可继续实验。
2008 年 4 月
0
目
录
实验规则及注意事项 ............................................................................................................................1 实验一 面阵CCD原理及驱动实验 ......................................................................................................1 实验二 面阵CCD的数据采集与计算机接口.......................................................................................4 实验三 面阵CCD尺寸测量实验 ..........................................................................................................8 实验四 面阵CCD用于颜色识别 ........................................................................................................12 实验五 图像信息的点运算实验 ......................................................................................................15 实验六 图像的几何变换实验 ..........................................................................................................19 实验七 图像的增强与清晰处理实验...............................................................................................24 实验八 图像的边缘检测与轮廓信息处理实验...............................................................................31 实验九 典型图像分析方法实验 ......................................................................................................36 实验十 面阵CCD图像采集程序设计.................................................................................................41 实验十一 面阵CCD实物扫描及实物投影系统.................................................................................42
基于FPGA的实时视频图像采集与显示系统的设计与实现

基于FPGA的实时视频图像采集与显示系统的设计与实现作者:贡镇来源:《现代电子技术》2013年第13期摘要:主要针对目前视频图像处理发展的现状,结合FPGA技术,设计了一个基于FPGA的实时视频图像采集与显示系统。
系统采用FPGA作为主控芯片,搭载专用的编码解码芯片进行图像的采集与显示,主要包括解码芯片的初始化、编码芯片的初始化、FPGA图像采集、PLL设置等几个功能模块。
采用FPGA的标准设计流程及一些常用技巧来对整个系统进行编程。
重点在于利用FPFA开发平台对普通相机输出的图像进行采集与显示,最终能在连接的RCA端口显示屏显示。
关键词: FPGA;视频图像采集;编码芯片;解码芯片中图分类号: TN911⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)13⁃0046⁃03Design and Implementation of real⁃time video image captureand display system based on FPGAGONG Zhen(Anhui University of Science and Technology, Huainan 232000, China)Abstract: Based on the current development status of the video image processing and FPGA technology, a FPGA⁃based real⁃time video image capture and display system is designed in this paper. Equipped with dedicated coding and decoding ship for image capture and display, the system adopts FPGA as the main control chip, which are composed of decoding chip initialization module, the encoding chip initialization module, FPGA image acquisition module and PLL setting module. FPGA⁃standard design flow and some commonly used techniques are taken to program the entire system. The focus is to realize the ordinary camera output image acquisition and display via the FPFA development platform, and ultimately connect the RCA port display screen.Keywords: FPGA; video image capture; coding chip; decoding chip0 引言随着时代的发展,人们在图像处理领域取得了相当多的成果,研究出了很多算法,例如中值滤波、高通滤波等。
CCD摄像机原理

CCD摄像机原理电视监控系统(CCTV)的前端设备通常由摄像机、手动或电动镜头、云台、防护罩、监听器、报警探测器和多功能解码器等部件组成,它们各司其职,并通过有线、无线或光纤传输媒介与中心控制系统的各种设备建立相应的联系(传输视/音频信号及控制、报警信号)。
在实际的电视监控系统中,这些前端设备不一定同时使用,但实现监控现场图像采集的摄像机和镜头是必不可少的。
1 CCD摄像机概述摄像机是获取监视现场图像的前端设备,它以面阵CCD图像传感器为核心部件,外加同步信号产生电路、视频信号处理电路及电源等。
近年来,新型的低成本MOS图像传感器有了较快速的发展,基于MOS图像传感器的摄像机已开始被应用于对图像质量要求不高的可视电话或会议电视系统中。
由于MOS 图像传感器的分辨率和低照度等到主要指标暂时还比不上CCD图像传感器,因此,在电视监控系统中使用摄像机仍为CCD摄像机。
摄像机具有黑白和彩色之分,由于黑白摄像机具有高分辨率、低照度等优点,特别是它可以在红外光照下成像,因此在电视监控系统中,黑白CCD摄像机仍具有较高的市场占有率。
在实际应用中,应根据监控现场的实际环境及用户要求而定。
1.1 CCD摄像机的主要参数在电视监控系统中选择摄像机,一般要看几个主要的参数,即分辨率、最低照度和信噪比等,另外还要考虑摄像机的附带功能及价格等因素。
以下对摄像机的几个主要参数作一介绍。
A、CCD感光尺寸及像素数CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。
当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。
如果分解CCD图像传感器,你会发现C CD图像传感器的结构为三层,第一层是“微型镜头”,第二层是“分色滤色片”以及第三层“感光层”。
第一层“微型镜头”我们知道,数码相机成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。
但是提高采光率的办法也容易使画质下降。
CCD图像采集 程序---详细注释,适合新手

近几天看到论坛里有很多网友遇到CCD图像采集的麻烦,我在最开始的时候也为这个烦恼过,由于本人比较菜,在度过大概半个月的绝望日夜后,在刚准备放弃时突然发现我已经采集到正确的图像了。
特再次分享,希望能解决大家当前遇到的麻烦。
在采集图像之前,我们首先要知道摄像头输出信号的特性。
目前的模拟摄像头一般都是P AL制式的,输出的信号由复合同步信号,复合消隐信号和视频信号。
其中的视频信号才是真正的图像信号,对于黑白摄像头,图像越黑,电压越低,图像越白,电压越高。
而复合同步信号是控制电视机的电子枪对电子的偏转的,复合消隐信号是在图像换行和换场时电子枪回扫时不发射电子。
由于人眼看到的图像大于等于24Hz时人才不会觉得图像闪烁,所以P AL制式输出的图像是25Hz,即每秒钟有25幅画面,说的专业点就是每秒25帧,其中每一帧有625行。
但由于在早期电子技术还不发达时,电源不稳定,容易对电视信号进行干扰,而交流电源是50Hz所以,为了和电网兼容,同时由于25Hz时图像不稳定,所以后来工程师们把一副图像分成两场显示,对于一幅画面,一共有625行,但是电子枪先扫描奇数场1,3,5.....,然后再扫描2,4,6.....,所以这样的话,一副图像就变成了隔行扫描,每秒钟就有50场了。
其中具体的细节请参考这个网站电视原理与系统/zsb/zjx/zjx09/zjx090000.htm只用看前面的黑白全电视信号和P AL制式就可以了(当然如果感兴趣可以全部看完)。
通过上面的内容如果你对P AL制式信号了然于心,那么就可以开始图像的采集了,P AL输出的信号有复合同步信号,复合消隐信号和视频信号。
那么我们首先就是要从这三种信号中分理出复合同步信号,复合消隐信号和视频信号,以便我们对AD采样到的值进行存储,从而形成一幅画面。
具体如何分离,我们使用的是LM1881视频同步分离器件,具体的硬件连接请参看论坛内相关文章(论坛里有介绍LM1881的文章,自己搜吧,我不重复了)。
工业CCD相机原理知识和参数设定

工业CCD相机的功能及参数设置工业CCD相机的功能及参数设置1、同步方式的选择对单台工业CCD相机而言,主要的同步方式有:内同步、外同步、电源同步及等。
其具体功能如下:内同步:利用相机内置的同步信号发生电路产生的同步信号来完成同步信号控制;外同步:通过外置同步信号发生器将特定的同步信号送入相机的外同步输入端,完成满足对相机的特殊控制需要;电源同步(线性锁定,line lock):用相机的AC电源完成垂直同步。
对于由多个CCD相机构成的图像采集系统,希望所有的视频输入信号是垂直同步的,以避免变换相机输出时出现的图像失真。
此时,可利用同一个外同步信号发生器产生的同步信号驱动多台相机,以实现多相机的同步图像采集。
2.自动增益控制CCD相机通常具有一个对CCD的信号进行放大的视频放大器,其放大倍数称为增益。
若放大器的增益保持不变,则在高亮度环境下将使视频信号饱合。
利用相机的自动增益控制(AGC)电路可以随着环境内外照度的变化自动的调整放大器的增益,从而可以使相机能够在较大的光照范围内工作。
3.背光补偿通常,CCD相机的AGC工作点是以通过对整个视场的信号的平均值来确定的。
当视场中包含一个很亮的背景区域和一个很暗的前景目标时,所确定的AGC工作点并不完全适合于前景目标。
当启动背景光补偿时,CCD相机仅对前景目标所在的子区域求平均来确定其AGC工作点,从而提高了成像质量。
4.电子快门CCD相机一般都具备电子快门特性,电子快门不需任何机械部件。
CCD相机采用电子快门控制CCD 的累积时间。
当开启电子快门时,CCD相机输出的仅是电子快门开启时的光电荷信号,其余光电荷信号则被泄放。
目前,CCD相机的最短电子快门时间一般为1/10000秒;当电子快门关闭时,对NTSC制式相机,其CCD累积时间为1/60秒;对于PAL制式相机,则为1/50秒。
较高的快门速度对于观察运动图像会产生一个“停顿动作”效应,从而大大地增加了相机的动态分辨率。