第四章 流体运动学和流体动力学基础
流体力学-教学大纲

《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。
该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。
通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。
二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。
第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。
基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。
重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。
难点:惯性力是质量力,牛顿内摩擦定律的应用计算。
第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。
重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。
难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。
第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。
流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
流体动力学基础和方程讲解

① 理想 ② 不可压缩均质流体 ③ 在重力作用下 ④ 作恒定流动 ⑤ 并沿同一流线(或微元流束)流动。
第4章 流体动力学基础
§4.2 元流的伯努利方程
4.2.2 元流伯努利方程的物理意义和几何意义
1、物理意义
z
p
g
u2 2g
c0
位能—— z 压力能—— p
g
势能—— z p
动能—— u 2 2g
§4.2 元流的伯努利方程
4.2.1 无黏性流体运动微分方程的伯努利积分
理想流体的运动微分方程只有在少数特殊情况下才能求解。 在下列几个假定条件下:
(1)不可压缩理想流体的恒定流动; (2)沿同一微元流束(也就是沿流线)积分; (3)质量力只有重力。 即可求得理想流体微元流束的伯努利方程
§4.2 元流的伯努利方程
(p1 pdx) 2 x
(p1 pdx) 2 x
§4.1 流体的运动微分方程
受力分析: 1、表面力:
p p dx p p dx
x 2
x 2
(p1 pdx) 2 x
x轴正方向 x轴负方向
PM
(p 1 2
p dx)dydz x
PN
(p
1 2
p x
dx)dydz
2、质量力: FBxXdxdydz
§4.2 元流的伯努利方程
元流能量方程的应用——毕托管测速原理。
pA
u
2 A
pB
+0
g 2g g
uA2 pB pA h
2g g g
机械能—— z p u 2 2g
Bernoulli方程表明,对于理想流体,其位置能、压力能和动能可以互相 转换,但总和不变。Bernoulli方程为能量守恒方程在理想液体中的应用或 表现形式。
流体力学

流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
流体力学知识点经典总结

流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。
主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。
二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。
六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。
这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。
清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。
特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。
特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。
流体动力学基础工程流体力学闻建龙

z p p dy p p dz
y 2
z 2
y
x
第一节 理想流体的运动微分方程
x方向
p
p x
dx 2
dydz
p
p x
dx 2
Hale Waihona Puke dydzy方向p
p y
dy 2
dzdx
p
p y
dy 2
dzdx
z方向
p
p z
dz 2
dxdy
p
p z
dz 2
dxdy
p
p z
dz 2
p
p
根据牛顿第二定律建立欧拉运动微分程。
在运动的理想流体中,取一微元六面体,如图示。
理想流体不存在粘性,运动时 不产生切应力,只有正应力。
各方向所受压力为
1. 表面力 理想流体中没有切应力
p
p z
dz 2
p
p
dy
y 2
p p dx
x 2 dz A
p p dx x 2
dy dx
(摩擦力),作用在微元体 上的表面力只有重直指向作 用面的压力。
(2)沿同一微元流束(流线)积分。 因定常流动,流线与迹线重合,即
dx dt
vx ,
dy dt
vy,
dz dt
vz
(3)质量力只有重力。即
fx 0, f y 0, fz g
第二节 伯努利方程
将欧拉运动微分方程各式分别乘以同一流线上的微元线段矢 量ds的投影dx、dy、dz,然后相加得
fx
z方向
p
p z
dz 2
dxdy
p
p z
dz 2
dxdy
流体力学复习内容

dFn v v pnn pn dA
特征一: 流体静压强的方向沿作用面的内法向方向。 特征二: 静止流体中任一点上不论来自何方的静压 强均相等。
3.2 流体平衡的微分方程式
一,平衡方程:由微元受力平衡(表面力和质量力) 得出静止流体平衡的微分方程。
1、压强差公式:
dp f x dx f y dy f z dz
表明:静止液体中,流体静压强的增量dp随坐标增量 的变化决定于质量力。
3.6 静止液体作用在平面上的总压力
§2.2 流体受力平衡微分方程
压强全微分方程: 等压面方程:
dp f x dx f y dy f z dz
分子组成的,宏观尺度非常小,而微观尺度又
足够大的物理实体。
§2.2 连续介质假设
流体质点选取必须具备的两个基本条件:
宏观尺度非常小:
才能把流体视为占据整个空间的一种连续介质, 且其所有的物理量都是空间坐标和时间的连续函 数的一种假设模型。 有了这样的模型,就可以把数学上的微积分手 段加以应用了。
微观尺度又足够大的物理实体:
使得流体质点中包含足够多的分子,使各物理 量的统计平均值有意义(如密度,速度,压强,温 度,粘度,热力学能等宏观属性)。而无需研究所 有单个分子的瞬时状态。
§2.5 流体的可压缩性
流体体积随着压力和温度的改变而发生变化的 性质。
二、流体的第二个重要特性——可压缩性
单一参数影响规律
x x(a,b,c,t )
特征:追踪观察,如将不易扩散的染料滴一滴到水流
中,染了色的流体质点的运动轨迹。
用欧拉方法求流体质点物理量时间变化率的一 般公式为:
第四章-流体运动学和流体动力学基础PPT优质课件

r vdV
V
r
f dV
r A
pndA
t
CV
r
vdV
CS
r
v vn dA
CV
r
f dV
CS
r
pndA
.
积分形 式动量 矩方程
第七节 动量方程 动量矩方程
• 定常流动
r
v
vn
dA
r
Fi
CS
应用:离心式泵或风机
.
方程应用举例
• 求流体作用于弯管上的力。 x p2 v2 d2
y
d1
θ
p1
v1
流量Q
.
方程应用举例
• 叶片以匀速ve沿x方向运动,截面积为A0的
一股水流沿叶片切线方向射入叶片,并沿 叶片流动,最后从叶片出口流出。设水流 经过叶片截面积不变,因而流速的大小不
变,只是方向改变。已知A0=0.001m2, v0=120m/s,ve=60m/s,出口速度方向
与水平夹角为10度,求水流对叶片的反作 用力以及对叶片所做的功率。
vx
vx x
vy
vx y
vz
vx z
vy t
vx
vy x
vy
vy y
vz
vy z
az
dvz dt
vz t
vz x
dx vz dt y
dy dt
vz z
dz dt
vz t
vx
vz x
vy
vz y
vz
vz z
a
v
v
•v
t
当地加速. 度
迁移加速度
第一节 流体运动的描述
• 其他物理量的变化率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 流动的分类
定常、非定常流动(steady and unsteady flow)
流动参量不随时间变化
定常流动: B Bx, y,z
0 t
流动参量随时间变化
非定常流动: B Bx, y,z,t
0 t
是否定常与所选取的参考系有关。
第二节 流动的分类
独立变量:(a,b,c,t)——区分流体质点的标志
t0时刻,a,b,c代表流场中某一质点坐标,不同a,b,c代表不同的流 体支点
第一节 流体运动的描述
• 任一流体质点在t时刻的坐标可表示为:
x xa,b,c,t
y ya,b,c,t
z za,b,c,t
给定a,b,c时 代表给定流体质 点的运动轨迹; 给定t时代表t时 刻各流体质点所 处的位置。
第四章 流体运动学和 流体动力学基础
运动学与动力学
• 运动学:从几何的观点研究流体的运动,
不讨论运动产生的动力学原因。
• 动力学:研究流体运动中各种物理量(速
度、加速度、压力等参数)之间的相互关 系和流体对周围物体的作用。
本章主要内容
• 基本概念 • 质量守恒定律、动量定理、动量矩定理以
及能量转换与守恒定律
积分: ln(x t)(y t) c t=0时,x=-1,y=-1 c=0
xy 1 ——流线方程(双曲线)
例:速度场vx=a,vy=bt,vz=0(a、b为常数) 求:(a)流线方程及t=0、1、2时流线图;
解:(a)流线: dx dy
a bt
积分: y bt x c ——流线方程 a
dx xa,b,c,t
vx dt
t
dy ya,b,c,t
vy dt
t
dz za,b,c,t
vz dt
t
ax
d2x dt 2
2 xa ,b,c ,t
t 2
d 2 y 2 ya,b,c,t
ay dt2
t 2
d 2 z 2 za,b,c,t
az dt2
t 2
第二节 流动的分类
(1)按与时间的关系分:定常与非定常流动 流体运动过程中,若各空间点上对应的物理量不随时间而
y c=2
c=1
c=0
o
x
y c=2
c=1
c=0
o
x
ቤተ መጻሕፍቲ ባይዱ
c=2
y
c=1
c=0
o
x
t=0时流线
t=1时流线
t=2时流线
第四节 流管 流束 流量 水利半径
流管——在流场内作一本身不是流线 又不相交的封闭曲线,通过这样封闭 曲线上各点流线所构成的管状表面。
流束——流管内部的流体
微小截面的流束为微小流束,微小流束的极限为微元流束(即流线)
d
v •
dt t
当地导数
迁移导数
全导数,也称随体导数,表示对时间求导要考虑到 质点本身的运动。
第一节 流体运动的描述
• 2拉格朗日法(Lagrange法 )
基本思想:跟踪每个流体质点的运动全 过程,记录它们在运动过程中的各物理 量及其变化。着眼于每个个别流体质点 运动的研究。
物理概念 清晰,但 处理问题 十分困难
vx
vx x
vy
vx y
vz
vx z
vy t
vx
vy x
vy
vy y
vz
vy z
az
dvz dt
vz t
vz x
dx vz dt y
dy dt
vz z
dz dt
vz t
vx
vz x
vy
vz y
vz
vz z
a
v
v
•v
t
当地加速度
迁移加速度
第一节 流体运动的描述
• 其他物理量的变化率
• 连续性方程、动量方程以及能量方程
第一节 流体运动的描述
• 1、欧拉法( Euler法 )
基本思想:考察空间每一点上的物理量及
其变化。所谓空间一点上的物理量是指占据 该空间点的流体质点的物理量。着眼于某瞬
时,整个流场各空间点处的状态。
独立变量:空间点坐标和时间的函数
vx vx x, y,z,t vy vy x, y,z,t
变化,则称此流动为定常流动,反之为非定常流动。 (2)按与空间的关系分:一维、二维、三维流动
在设定坐标系中,有关物理量依赖于一个坐标,称为一 维流动,依赖于二个坐标,称为二维流动,依赖于三个坐 标,则称为三维流动。平面运动和轴对称运动是典型的二 维运动。 (3)按运动状态分
有旋和无旋流动、层流和湍流、亚音速和超音速 (4)按流体性质分
即流体不能穿过流管,流管就像真正的管子一样将其内外的流体分开。 总流——管内整股流体。如河流、水渠、水管中的水流及风管中的气流 都是总流。
缓变流——流线间夹角很小,曲率半径很大的近乎直线的
流动。
反之为急变流
流量 单位时间内流经某一规定表面的流体量
体积流量(m3 / s): 质量流量(kg / s):
一维流动 —— 二维流动 —— 三维流动 ——
B Bx, t 0
y z
B Bx, y, t Br, , t 0
z
B Bx, y, z, t
第三节 迹线 流线
(1)迹线—— 是流体质点在空间运动时描绘的 轨迹。它给出了同一流体质点在不同时刻的空间位 置。
(2)流线 —— 速度场的矢量线。
任一时刻t,曲线上每一点处的切向量 dr dxi d都yj与该dz点k 的
速度向量
相切v。x, y, z, t
流线微分方程: dr v 0
dx dy dz vx( x, y,z,t ) vy( x, y,z,t ) vz( x, y,z,t )
流线的几个性质: (1)对于非定常流场,不同时刻通过同一空间点的流线一般不重合; 对于定常流场,流线与迹线重合。 (2)流线不能相交(驻点和速度无限大的奇点除外)。 (3)流线的走向反映了流速方向,疏密程度反映了流速的大小分布。
vz vz x, y,z,t p px, y,z,t
注意:流体质点和空间点是二个完全不同 的概念。
第一节 流体运动的描述
• 加速度
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
vx z
dz dt
ax
dvy dt
vy t
vy x
dx dt
vy y
dy dt
vy z
dz dt
vx t
迹线和流线的差别: 迹线是同一流体质点在不同时刻的位移曲线,与Lagrange观点对应; 流线是同一时刻、不同流体质点速度向量的包络线,与Euler观点对应; 速度为零的点为驻点,速度为无穷大的点为奇点。
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线。
解:(a)流线: dx dy xt yt