流体力学第四章 流体动力学基础
工程流体力学 第4章 粘性流体动力学基础

沿程损失水头 (hf):
hf
LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u
umax
p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g
64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W
ghf Q
pQ
128 LQ 2 d 4
动能修正系数
1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失
李玉柱流体力学课后题标准答案第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。
试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。
解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。
4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。
试求此时压力表的读数。
解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。
流体力学第4章9

2014-10-1
28
通过流管中有效截面面积为A的流体体积流量和质量流量分 别积分求得,即
qV vdA
qm vdA
在工程计算中为了方便起见,引入平均流速的概念。平均 流速是一个假想的流速,即假定在有效截面上各点都以相 同的平均流速流过,这时通过该有效截面上的体积流量仍
A
A
与各点以真实流速流动时所得到的体积流量相同。
述三点原因,欧拉法在流体力学研究中广泛被采用。当然
拉格朗日法在研究爆炸现象以及计算流体力学的某些问题 中还是方便的。
2014-10-1 11
第二节 流体运动的一些基本概念
一、流动的分类 (1)按照流体性质分为理想流体的流动和粘性流体的流动, 不可压缩流体的流动和可压缩流体的流动。 (2)按照运动状态分为定常流动和非定常流动,有旋流动 和无旋流动,层流流动和紊流流动,亚声速流动和超声速 流动
在流场中的一些点,流体质点不断流过空间点,空间点上 的速度指流体质点正好流过此空间点时的速度。
用欧拉法求流体质点其他物理量的时间变化率也可以采用
下式的形式,即
D( ) ( ) (V )( ) Dt t
式中,括弧内可以代表描述流体运动的任一物理量,如密
D( ) 度、温度、压强,可以是标量,也可以是矢量。 称为 Dt ( ) 全导数, 称为当地导数, (V )( )称为迁移导数。 t
1、系统:包含确定不变的物质的任何集合。 系统以外的一切称为外界。 边界的性质: ① 边界随流体一起运动; ② 边界面的形状和大小可随时间变化; ③ 系统是封闭的,没有质量交换,可以有能 量交换; ④ 边界上受到外界作用在系统上的表面力;
2014-10-1 31
2、控制体:被流体所流过的,相对于某 个坐标系来讲,固定不变的任何体积。 控制面的性质: ① 总是封闭表面; ② 相对于坐标系是固定的; ③ 在控制面上可以有质量、能量交换; ④ 在控制面上受到控制体以外物体加在 控制体内物体上的力;
4工程流体力学 第四章流体动力学基础

Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
流体力学第四章

动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体力学

流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:定常流动
∫
CS
ρV ⋅ ndS = 0
Uh
= ∫ c (3.5 − x / h)dx
h 0
c=U 3
流体力学
连续方程-例题2
如图所示一水箱,水均匀垂直流入流出,求水的 如图所示一水箱,水均匀垂直流入流出,求水的 深度随时间的变化率dh/dt。 深度随时间的变化率dh/dt。
解:第一项
∂ dh ∫CV ρdτ = ρ w A dt ∂t
x y z
ρ uV ⋅ ndS ρ vV ⋅ ndS ρ wV ⋅ ndS
CS
CS
控制体上所受的和外力只与动量的净流 出率有关
流体力学
动量方程4
分量形式
∑ F = ∑ (m V ) − ∑ (m V ) ∑ F = ∑ (m V ) − ∑ (m V )
x
i
xi out
i
xi in
y
i
yi out
− ∑ miVri
(
)
in
其中 Vr = V − VCV
流体力学
动量方程14-运动控制体
已知V = 30 m/s,U = 10 m/s,忽略重力和摩擦力, 已知V = 30 m/s,U = 10 m/s,忽略重力和摩擦力, 出口截面A11= 0.003 m22,求Rxx和 Ryy 出口截面A = 0.003 m ,求R 和 R
控制体
控制体
流场中某一确定的空间区域
与外界有质量交换 空间位置相对于某参照系不变 边界形状、包围空间大小一般是确定的 欧拉方法
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSIII CSII CS I I
dS1 dS1
tt
II II
V V
III III
dS3 dS3
n n
i
yi in
∑ F = ∑ (m V )
z
i
zi out
− ∑ (miVzi )in
力与速度的正负号 与选定坐标方向一致 者取正,反之取负
流体力学
动量方程5-例题1
自由射流:已知Q00 ,, V00 ,, ρ=const,重力和摩擦 自由射流:已知Q V ρ=const,重力和摩擦 力可以忽略,V11= V22 = V00,求: Q11 ,, Q22 以及液 力可以忽略,V = V = V ,求: Q Q 以及液 体对平板的作用力。 体对平板的作用力。
解:(1) 坐标系 (2) 控制体
0-0 0-0
A1 ,, Q,V1 A1 Q11 ,V1
1-1 1-1
(3) 受力分析 平板对控制体 的力F,y方向
流体力学
A0 ,, Q ,V0 A0 Q00 ,V0
F F
2-2 2-2
A2 ,, Q ,V2 A2 Q22 ,V2
θ θ
y y
x x
动量方程6-例题1
系统
某一确定流体质点集合的总体
与外界无质量交换 随流体质点的运动而运动 边界形状、包围空间大小随流体质点的 运动而变化 拉格朗日方法
流体力学
系统的物质导数
物理定律通常应用于系统 系统的物质导数
DN D = ∫sys φdτ Dt Dt
N
dτ dτ
系统体积内包含的总物理量
φ
流体力学
单位体积流体的物理量分布函数
x x
流体力学
动量方程11
求解步骤
建立坐标系 是否运动、是否包含所有 的进出口、所求力是否为 外力 质量力、表面力
选取控制体
控制体受力分析
连续方程 (速度) 、伯努利方程 (压强) 、动量 方程(分量方程求解各分力)
流体力学
动量方程12-解题注意事项
控制体的选择 包含所有进出口,使要求解的力为控 制体所受的外力 定常流动、参数在有限个进出口上均布
=
∂ ∫CV φdτ + ∫CS φV ⋅ ndS ∂t
系统某物理量随时间的变化率和控制体上的物 理量变化之间的关系
流体力学
4.2 对控制体的积分方程
连续方程
DM =0 Dt
系统的质量守恒
系统体积为τ,质量为M,质量守恒
初始时刻系统与控制体重合
DM ∂ = ∫ ρdτ + ∫ ρV ⋅ ndS = 0 CS Dt ∂t CV
60 60
(5) 动量方程 – x方向
Fx = R x = ∑ miVri
(4) 连续方程
A1 ,, Q,V1 A1 Q11 ,V1
∑Q
in
= ∑ Qout
1-1 1-1 0-0 0-0
F F A0 ,, Q ,V0 A0 Q00 ,V0
Q0 = Q1 + Q2
(5) 动量方程 - x方向
Fx = 0
2-2 2-2
A2 ,, Q ,V2 A2 Q22 ,V2
θ θ
y y
x x
n n tt+ δ tt +δ
V V
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt DN sys Dt ∂ = ∫ φdτ + ∫ φV ⋅ ndS CS ∂t CV
系统的变量N对时间的变化率 控制体变量 N对时间的变化 率,反应流场的非定常性 变量 N 流出控制体的净流 率,反应流场的不均匀性
∑ (ρV A)
r
in
= ∑ (ρVr A)out
流体力学
连续方程-例题1
水以均匀速度U流入一二维通道,由于通道弯曲 水以均匀速度U流入一二维通道,由于通道弯曲 了90º,在出口端速度分布变为 c(3.5-x/h)。设通 了90º,在出口端速度分布变为 c(3.5-x/h)。设通 道宽度为常数,求 c。定常流动 道宽度为常数,求 c。定常流动
R x = − p1m A1 − ρV A1
2 1
V1 ,,p1 ,,A1 V1 p1 A1
P = p11A1 P = p A1
= −1.36 × 10 (N )
3
动量方程 - y方向
Fy = R y
流体力学
Rxx R Ryy R
y y
V2 ,,pa ,,A2 V2 pa A2
x x
动量方程10-例题2
动量方程2
∂ ∑ F = ∂t ∫CV ρVdτ + ∫CS ρVV ⋅ ndS
∑F
∂ ∫CV ρVdτ ∂t
作用在控制体上的外力之和 控制体中流体的动量 对时间的变化率 流出控制体的动量净流率
∫
流体力学
CS
ρVV ⋅ ndS
动量方程3
定常流动
∑F = ∫
CS
CS
ρVV ⋅ ndS
∑F = ∫ ∑F = ∫ ∑F = ∫
A A H H 1 1 A11,,V1 A V1
ρa ρa
第二项:净流出率
h h
ρw ρw
∫
流体力学
CS
ρV ⋅ ndS
A22,,V22 A V 2 2
= ρ w A2V2 − ρ w A1V1
连续方程-例题2
dh ρ w A + ρ w A2V2 − ρ w AV1 = 0 1 dt
dh A1V1 − A2V2 = dt A
V1 ,,p1 ,,A1 V1 p1 A1
P = p11A11 P=p A
V1 A1 = V2 A2
Rxx R Ryy R
y y
V2 ,,pa ,,A2 V2 pa A2
A2 V1 = V2 = 4(m/s ) A1
流体力学
x x
动量方程9-例题2
(5) 动量方程 - x方向
Fx = Rx + P = ∑ (miV xi )out − ∑ (miV xi )in
解:(1) 坐标系 (2) 控制体
Vr = V − U
V 1 V 1 A11 A y y 2 2 2 2 x x U U Rxx R Ryy R
60 60
(3) 受力分析
维持叶片做匀速直 线运动的力 Rx,Ry
流体力学
1 1
动量方程15-运动控制体
(4) 连续方程
Qr 1 = Qr 2
V 1 V 1 A11 A y y 2 2 2 2 x x U U Rxx R Ryy R
= ∑ (miV xi )out − ∑ (miV xi )in
流体力学
动量方程7-例题1
V1Q1 − V0 cos θ Q0 − V2Q2 = 0
Q0 ⎧ ⎪Q1 = 2 (1 + cosθ ) ⎨ Q0 ⎪Q2 = (1 − cosθ ) 2 ⎩
A1 , Q1 ,V1 A1 , Q1 ,V1
1-1 1-1 0-0 0-0
CV 做匀速运动,所有运动量均为相对于 CV的,若CV做加速运动或旋转,则需添 加惯性力
流体力学
动量方程13-运动控制体
∂ ∫CV ρVr dτ + ∫CS ρVrVr ⋅ ndS = ΣF ∂t
流体仅在控制面的有限个区域流入流出 且 ρ,V 在进出口截面均布
∑ F = ∑ (m V )
i
ri out
A A H H 1 1 A11,,V1 A V1
ρa ρa
h h
ρw ρw
A22,,V22 A V 2 2
流体学
动量方程1
动量方程
Dk ∑ F = Dt
系统的动量定理
系统体积为τ,动量为k,动量定理
初始时刻系统与控制体重合
∂ ∑ F = ∂t ∫CV ρVdτ + ∫CS ρVV ⋅ ndS