《流体力学》第三章流体动力学基础例题

合集下载

流体力学第三章习题

流体力学第三章习题

第三章 流体动力学基础3-1 已知速度场为k z x j y x i y x u)()()(2-+-++= (m/s),求(2,3,1)点的速度和加速度。

已已知知::z x u y x u y x u -=-=+=z y x )(2,, 解析:(1) (2,3,1)点的速度为m/s 1m/s 1m/s 10)(2z y x =-=-=-==+=z x u y x u y x u ,, s /m 10.101)1(102222z 2y 2x =+-+=++=u u u u (2) (2,3,1)点的加速度为2x z x y x x x x m/s 1832262602)(2)(20=⨯+⨯=+=+⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zuu y u u x u u u a τ2y zy yy xy y m/s 1133230)1()(1)(20=⨯+=+=+-⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zu u yu u xu u u a τ2z z z y z x z z m/s 913222)1()(01)(20=+⨯+=++=-⨯-++⨯++=∂∂+∂∂+∂∂+∂∂=z y x z x y x zu u y u u x u u u a τ22222z 2y 2x s /m 93.2291118=++=++=a a a a3-2 已知速度场为k z y j y i x u )34()(2)3(2-+-++=ττ (m/s),求τ=2秒时,位于(2,2,1)点的速度和加速度。

已已知知::z y u y u x u )34()(23z 2y x -=-=+=,,ττ解析:(1) τ=2秒、位于(2,2,1)点的速度为m/s 5)34(m/s 4)(2m/s 83z 2y x =-=-=-==+=z y u y u x u ,,ττ s /m 25.105)4(82222z 2y 2x =+-+=++=u u u u (2) τ=2秒、位于(2,2,1)点的加速度为2x z x y x x x x m/s 251)223(31)3(3003)3(1=++⨯⨯=++=++⨯++=∂∂+∂∂+∂∂+∂∂=τττx x zuu y u u x u u u a2222y zy yy xy y m/s 342)22(282)(80)4()(202=+-⨯⨯=+-=+-⨯-++=∂∂+∂∂+∂∂+∂∂=τττy y y y zu u yu u xu u u a2222222z z z y z x z z m/s 91)324()22(18)34()(8)34(4)(200=⨯-⨯+-⨯⨯=-+-=-+⨯-++=∂∂+∂∂+∂∂+∂∂=z y y z zy z y zuu y u u x u u u a τττ22222z 2y 2x s /m 15.4393425=++=++=a a a a3-3 已知二维流场的速度分布为j x y i x y uττ)96()64(-+-= (m/s)。

工程流体力学第三章自测题答案

工程流体力学第三章自测题答案

所以
⎧ x = A1e t − t − 1 ⎪ −t ⎨ y = A2 e + t − 1 ⎪ z = A3 ⎩
⎧ a = A1 e t0 − t 0 − 1 ⎪ −t ⎨b = A2 e 0 + t 0 − 1 ⎪ c = A3 ⎩
a + t0 + 1 e t0 b − t0 + 1 A2 = e −t0 A3 = c A1 =
所以, R x = 3663N
2 R = R x2 + R y = 3786 N
R y = 958 N
θ = arctg
Ry Rx
= 14.66 o
所以,水流对弯管壁的作用力为 F 的反作用力 F`,大小相等,方向相反。
7
V42 2g
所以,
V4 = 2 g
p0
γ
− 2 g (h2 + h1 ) = 2 g [(h2 + h3 ) − (h2 + h1 )]
= 2 × 9.8 × (2.5 − 0.3) = 6.57m / s
② h=
V42 = 2.20m 2g
2
3-4.节流式流量计
已知:U 形水银压差计连接于直角弯管,
+ hw吸 2g Q = VA ⇒ V = 12.74m / s
0 = 0.7 +
pB
γ
+
V2
∴ p B = −9.8 × 10 4 Pa N 泵 = γQH = 9800 × 0.001 × 32 = 313.6W
6
3-9.
已知:一个水平放置的 90º 弯管输送水
d1=150mm,d2=75mm p1=2.06×105Pa,Q=0.02m3/s

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学

vx vx vx dv x vx vx vy vz 解: (1)a x t x y z dt
(4 y 6 x) (4 y 6 x)t (6t ) (6 y 9 x)t (4t )
将t=2,x=2,y=4代入得
ax 4m / s 2
同理 ay 6m / s 2 m / s2 a 4i 6 j
满足连续性方程,此流动可能出现
例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处
uz=0,求uz。 解:由
得 积分
u x u y u z 0 x y z u z 4 x 4 y z
uz 4( x y) z c
得 c=0
由z=0,uz=0
a.流体质点的加速度
dv a dt
dv x vx vx dx vx dy vx dz ax dt t x dt y dt z dt
同理
vx vx vx vx vx vy vz t x y z
ay
v y t
vx
是均匀流
3.流线与迹线 (1)流线——某瞬时在流场中所作的一条空间曲线,曲
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转 流线微分方程:
流线上任一点的切线方向 (dr ) 与该点速度矢量 (v ) 一致
dr v dx dy dz 0 vx vy vz
dy (a, b, c, t ) vy dt
dvy (a, b, c, t ) dt
dz (a, b, c, t ) vz dt
dv z (a, b, c, t ) az dt

流体力学习题及答案-第三章

流体力学习题及答案-第三章

第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。

因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。

3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。

3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。

(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。

答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。

由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。

代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。

流体力学 第三章 一元流体动力学基础(第三次)

流体力学 第三章 一元流体动力学基础(第三次)
(2)渐变流 渐变流是近似的均匀流,均匀流的性质可近似地 用到渐变流中,即渐变流过流断面上的压强分布满 足流体静力学规律。
渐变流没有严格的定义,流动能否按渐变流处理, 关键是看得到的结果是否满足工程精度要求。
v2 A2 v1A1 v3 A3
v1
Q1
v Q3 3
v2
Q2
v1
Q1
v2
Q2
Q3
v3
核心问题2: 恒定元流能量方程
功能原理
理想不可压缩流体恒定流动模型
Z1

p1


u12 2g


Z2

p2


u22 2g
上式为理想不可压缩流体恒定元流能量方程, 或称为恒定元流伯努利方程。
理想不可压缩流体恒定总流能量方程:
z
的自由面方程。
x
显然,自由面是过坐标原点的一
O
个倾斜面,与水平面夹角为 , 且 tan a / g。
y
液面下任一点与自由面的铅直距离:
z
a h g x0 z0
p

pa
(
a g
x
z)

pa
h
x
h x0 z0
A(x0, y0, z0 )

a
习题3-15:一开口圆筒形容器绕其立轴等速旋转, 已知容器半 径R=150mm, 高度H=500mm, 静止时液面高度h=300mm,问当 转速n为多少转时,水面刚好到达容器的上边缘。
§3.7 过流断面的压强分布
一、问题的提出
元流方程 + 连续性方程
压强沿流线的分布
实际流体总流的能量方程:
(Z1

(完整版)流体力学第三章课后习题答案

(完整版)流体力学第三章课后习题答案

一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。

解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。

试确定管道直径,根据所选直径求流速。

直径应是mm 50的倍数。

解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。

试设计直径,根据所定直径求流速。

直径规定为50 mm 的倍数。

解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。

设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。

流体力学经典习题解答以及经典试卷及详细解答

流体力学经典习题解答以及经典试卷及详细解答

第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。

解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。

解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。

题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。

在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。

(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dy τμ=得du(1250y 50)dyτμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。

第三章-流体动力学基础

第三章-流体动力学基础

第三章流体动力学基础习题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是〔〕 A .加速运动 B .减速运动 C .匀速运动 D .不能确定2、血管中血液流动的流量受血管内径影响很大。

如果血管内径减少一半,其血液的流量将变为原来的〔〕倍。

A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =3.0×10-3 Pa·S ,密度ρ=1.05×103 kg/m 3,则此时主动脉中血液的流动形态处于〔〕状态。

A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为〔〕m/s 。

A .30B .40C .45D .605、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为〔〕。

A .1m /sB .2m /sC .3 m /sD .4 m /s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为〔 〕。

A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为〔〕mm 。

A .4B .3C .2D .18、正常情况下,人的血液密度为1.05×103kg/m 3,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差〔〕Pa 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例】 有一贮水装置如图所示,贮水池足够大,当阀 门关闭时,压强计读数为2.8个大气压强。而当将阀门全 开,水从管中流出时,压强计读数是0.6个大气压强,试 求当水管直径d=12cm时,通过出口的体积流量(不计流动 损失)。
【解】 当阀门全开时列1-l、2-2截面的伯努利方程
当阀门关闭时,根据压强计的读数,应用流体静力学基本
9806
所以管内流量
qV
4
d
2V2
0.785 0.122 20.78 0.235(m3/s)
2020/4/17
2
2020/4/17
3
【例】 水流通过如图所示管路流入大气,已知:U形
测压管中水银柱高差Δh=0.2m,h1=0.72m H2O,管径
d1=0.1m,管嘴出口直径d2=0.05m,不计管中水头损失,
5
2020/4/17
6
H pa 0 0 pa 0.6 pa V22
g
g
2g
2020/4/17
1
方程求出H值
pa gH pa 2.8 pa

H 2.8 pa
g
2.8 98060 9806
28(mH 2O)
代入到上式
V2
2g
H
0.6 pa g
29.8062.8 0.698060 20.78(m/s)
2020/4/17
4
由连续性方程:
V1
V2
d2 d1
2
22 15 0 V22
16 2g
2g
管中流量
V2
19.6 7 16 12.(1 m/s) 15
qV
4
d 22V2
0.052 12.1 0.02(4 m3/s)
4
2020/4/17
试求管中流量qv。
【解】 首先计算1-1断面管路中心的压强。因为A-B为
等压面,列等压面方程得: Hg gh p1 gh1
p1 Hg gh gh1

p1
g
Hg
h h1
13.6 0.2 0.72 2
(mH2O)
列1-1和2-2断面的伯努利方程
z1
p1
g
V12 2g
z2
p2
g
V22 2g
相关文档
最新文档