质谱测定虾青素酯中的脂肪酸-英文文献

合集下载

太平洋磷虾脂肪酸的气相色谱-质谱法分析

太平洋磷虾脂肪酸的气相色谱-质谱法分析

太平洋磷虾脂肪酸的气相色谱-质谱法分析王兰;岳荣岩;卢杰;韩玉谦【期刊名称】《现代食品科技》【年(卷),期】2012(028)010【摘要】通过采用Folch法从太平洋磷虾(Euphausia Pacifica)中提取总脂,通过硅胶柱层析分析了总脂中中性脂、糖脂和磷脂的组成情况,并采用气相色谱-质谱(GC-MS)法对这三类脂质的脂肪酸组成进行了分析和比较.结果表明,太平洋磷虾的总脂含量为15.16%,其中中性脂占总脂含量的70.19%,磷脂占25.15%,糖脂占4.66%.通过气相色谱-质谱分析从太平洋磷虾的总脂中共鉴定出20种脂肪酸,其中不饱和脂肪酸11种,占总脂肪酸总量的55.54%.对中性脂、糖脂和磷脂的脂肪酸组成进行的分析比较表明,不同脂质中脂肪酸组成及其含量存在一定的差异.本文旨在为太平洋磷虾的营养评价和高值化利用提供一定的基础数据.【总页数】4页(P1407-1410)【作者】王兰;岳荣岩;卢杰;韩玉谦【作者单位】中国海洋大学食品科学与工程学院山东青岛266003;中国海洋大学食品科学与工程学院山东青岛266003;中国海洋大学食品科学与工程学院山东青岛266003;中国海洋大学食品科学与工程学院山东青岛266003【正文语种】中文【相关文献】1.太平洋磷虾虾油提取工艺及其脂肪酸组成分析 [J], 刘远平;李丽迪;李钰金;唐俊峰;毛相朝;王颖2.太平洋磷虾油的亚临界R134a萃取工艺及脂肪酸成分分析 [J], 刘坤;王兰;薛长湖;韩玉谦3.太平洋磷虾油脂提取工艺及其脂肪酸成分分析 [J], 孙艳宾;刘云;陈洪基;姜国良;吴志强4.气相色谱-质谱法分析黄蘑菇中总脂肪酸组成 [J], 索朗央宗;索朗拉姆;杨满军;张彩峡5.气相色谱质谱法测定孕妇血浆中短链脂肪酸结果分析 [J], 李振兴;冯蕊;陈冠军;胡江玲;汪生因版权原因,仅展示原文概要,查看原文内容请购买。

褪黑素对雨生红球藻虾青素积累和脂肪酸合成的影响

褪黑素对雨生红球藻虾青素积累和脂肪酸合成的影响

褪黑素对雨生红球藻虾青素积累和脂肪酸合成的影响岳陈陈;丁巍;赵鹏;徐军伟;李涛;余旭亚【摘要】The effects of melatonin (MLT)on the algae cellgrowth,astaxanthin accumulation,fatty acids,and fatty acid synthesis-related enzyme activities of H.pluvialis LUGU were studied.The results showed that the astaxanthin content in algae cells achieved 26.62 mg/g under the induction conditions of MLT concentration 10 μmol/L and cultivation time 13 d,which was 2.16 times as high as that of the control (12.3 mg/g).The content of fatty acids (15.32%) was the highest when cultivating for 5 d,which was 1.24 times as high as that of the control,and the astaxanthin ester content increased.Moreover,the acetyl-CoA carboxylase (ACCase) activity significantly increased,but the phosphoenolpyruvate carboxylase (PEPCase) activity reduced by MLT induction.The study revealed that the appropriate concentration of MLT not only could improve the astaxanthin accumulation in H.pluvialis LUGU,but also could boost the fatty acid content and change the fatty acid composition.%以雨生红球藻H.pluvialis LUGU为对象,研究了不同浓度的褪黑素(MLT)对藻细胞生长、虾青素积累、脂肪酸及脂肪酸合成相关酶活性的影响.结果显示:10 μmol/L MLT诱导条件下培养13 d藻细胞中虾青素含量可达26.62 mg/g,是对照组(12.3 mg/g)的2.16倍;培养5d脂肪酸合成量(15.32%)最大,是对照组的1.24倍,同时提高了虾青素酯含量;MLT诱导条件下,脂肪酸合成关键酶乙酰辅酶A 羧化酶(ACCase)活性升高,而磷酸烯醇式丙酮酸羧化酶(PEPCase)活性降低.研究表明,外源添加适当浓度的MLT不仅可以促进雨生红球藻中虾青素的积累,而且提高了脂肪酸的合成量,改变了脂肪酸组成.【期刊名称】《中国油脂》【年(卷),期】2018(043)006【总页数】6页(P120-125)【关键词】褪黑素;雨生红球藻;虾青素;脂肪酸;酶活【作者】岳陈陈;丁巍;赵鹏;徐军伟;李涛;余旭亚【作者单位】昆明理工大学生命科学与技术学院,昆明650500;昆明理工大学生命科学与技术学院,昆明650500;昆明理工大学生命科学与技术学院,昆明650500;昆明理工大学生命科学与技术学院,昆明650500;昆明理工大学生命科学与技术学院,昆明650500;昆明理工大学生命科学与技术学院,昆明650500【正文语种】中文【中图分类】TK6;Q949.2虾青素(3,3′-二羟基-β,β-胡萝卜素-4,4′-二酮)是一种普遍存在于微藻、水生动物、鸟类和酵母中的红色酮类胡萝卜素[1-2],因其具有强抗氧化性、中和自由基、清除活性氧特性,在食品、饲料、化妆品以及医药行业广泛应用,具有较高的商业价值[3-5]。

虾青素油皂化的单因素及正交实验研究

虾青素油皂化的单因素及正交实验研究

虾青素油皂化的单因素及正交实验研究
王长露;张颖;卢石孔;王沙;翁文
【期刊名称】《福建分析测试》
【年(卷),期】2024(33)1
【摘要】以二氯甲烷为溶剂,通过单因素和正交实验设计,优化得到虾青素油粗品皂化的最佳条件为:皂化液3mg/mL Na0H-甲醇溶液,温度10℃,时间60min,溶剂与皂化液体积比为1:2。

皂化物经硅胶柱层析纯化可得游离虾青素,纯度达96%,利用红外、核磁、质谱等对产品进行了表征。

【总页数】4页(P1-4)
【作者】王长露;张颖;卢石孔;王沙;翁文
【作者单位】闽南师范大学化学化工与环境学院;漳州城市职业学院
【正文语种】中文
【中图分类】TS209
【相关文献】
1.虾青素酯皂化工艺研究
2.正交试验优化天然虾青素的提取工艺研究
3.基于多指标权重分析和单因素-正交实验优选前列爽颗粒醇提工艺
4.利用正交实验及单因素实验设计合成ATMP
5.超声提取雨生红球藻中左旋虾青素的正交试验研究
因版权原因,仅展示原文概要,查看原文内容请购买。

高效液相色谱法测定虾青素油中虾青素的含量

高效液相色谱法测定虾青素油中虾青素的含量

DOI:10.13995/ki.11-1802/ts.025283引用格式:孔凡华,徐佳佳,郭倩,等.高效液相色谱法测定虾青素油中虾青素的含量[J].食品与发酵工业,2021,47(6):214-220.KONG Fanhua,XU Jiajia,GUO Qian,et al.Determination of astaxanthin in astaxanthin oil by high performance liquid chromatography[J].Food and Fermentation Industries,2021,47(6):214-220.高效液相色谱法测定虾青素油中虾青素的含量孔凡华2,徐佳佳2,郭倩2,白沙沙2,李东2,方从容1,邱楠楠1∗,崔亚娟2∗1(国家食品安全风险评估中心,国家卫生健康委员会食品安全风险评估重点实验室,北京,100021)2(北京市营养源研究所,北京,100069)摘㊀要㊀该研究建立了高效液相色谱法测定虾青素油中虾青素含量的分析方法㊂利用单因素实验,对虾青素油中虾青素的提取试剂㊁酶解时间进行选择,确定最佳前处理条件为37ħ恒温水浴振荡酶解60min ,石油醚提取㊂色谱条件:YMC TM C 30色谱柱(250mm ˑ4.6mm ,5μm ),柱温30ħ,流动相为甲醇-甲基叔丁基醚梯度洗脱,流速1mL /min ,检测波长472nm ㊂结果表明,全反式虾青素在0.10~4.00μg /mL 范围内与峰面积有良好线性关系,精密度的相对标准偏差(relative standard deviation ,RSD )为1.36%,表明精密度高,平均回收率为93.58%,回收率的RSD 为2.84%,表明添加回收率高,相对标准偏差小,实验建立方法测得虾青素油中虾青素的含量为92.9%,是碱性皂化测得结果的2.11倍,所建立的方法可以准确定量虾青素油中虾青素的含量㊂关键词㊀高效液相色谱法;虾青素油;虾青素;全反式虾青素;9-顺-虾青素;13-顺-虾青素第一作者:硕士,工程师(邱楠楠副研究员和崔亚娟研究员为通讯作者,E-mail:qiunannan@;cuiyj66@)㊀㊀基金项目:十三五国家重点研发计划(2016YFD0400600)收稿日期:2020-08-05;改回日期:2020-10-05㊀㊀虾青素为萜烯类不饱和化合物,化学名称是3,3ᶄ-二羟基-4,4ᶄ-二酮基-β,βᶄ-胡萝卜素,是一种具有超级抗氧化活性的类胡萝卜素[1],其抗氧化性能是维生素E㊁维生素C㊁β-胡萝卜素㊁叶黄素和玉米黄质的几十倍甚至几百倍[2-4]㊂雨生红球藻㊁红法夫酵母㊁南极磷虾㊁一些浮游生物㊁藻类㊁螃蟹外壳㊁河螯虾外壳㊁牡蛎㊁三文鱼皮㊁鲑鱼等动物中含有虾青素㊂虾青素具有多种生物功能,它能终止生物系统中炎症的发生[5]㊁对抗自由基损伤以维持免疫系统防御[6]㊁降低心脏病发病的风险[7]㊁减轻神经退行性疾病带来的影响[8]㊁抑制肿瘤发生和生长[9]及对抗紫外线引起的光氧化损伤[10]等㊂虾青素具有较长的共轭双键链,结构复杂,化学性质不稳定,存在多种同分异构体,虾青素及其异构体的定性定量分析是结构解析和功能研究的基础㊂天然虾青素大多与脂肪酸结合,以酯化的形态存在,但由于缺乏虾青素酯标准品,且人工合成虾青素酯困难,限制了虾青素酯的定性定量研究㊂虾青素酯脱去脂肪酸链后可以形成游离的虾青素,包括全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素等,使虾青素的定量研究变得容易操作[11]㊂目前,虾青素脱脂的主要方法是碱性皂化和酶解方法,碱性皂化脱脂会产生副产物并引起虾青素降解[12],食品化学法典(FCC )(2012)[13]采用来自假单胞杆菌的胆固醇酯酶(EC3.1.1.13)进行虾青素酯的酶解,可以使虾青素酯水解完全㊂色谱技术的发展在虾青素的定性定量分析上起了非常重要的作用,随着紫外可见光谱㊁质谱㊁核磁共振波谱法㊁红外光谱㊁拉曼光谱和圆二色光谱的快速发展,虾青素的结构鉴定变得更为简单容易,考虑到设备的成本,样品制备的复杂程度和方法的局限性,虾青素的定量分析方法主要是分光光度法和高效液相色谱法㊂分光光度法具有快速简单㊁适用范围广㊁成本低等优点,但是只能对虾青素总量进行估算,无法对其中虾青素的存在形式进行准确的测定㊂高效液相色谱法分离效果好㊁灵敏度高㊁选择性好成为目前测定虾青素的常用方法㊂我国测定虾青素的标准方法有‘红球藻中虾青素的测定液相色谱法“(GB /T 31520 2015)[14]适用于雨生红球藻藻粉中虾青素含量的测定;‘水产品及其制品中虾青素含量的测定高效液相色谱法“(SC /T 3053 2019)[15]适用于鱼类㊁甲壳类及虾粉㊁磷虾油等制品中虾青索含量的测定;‘进出口动物源性食品中角黄素㊁虾青素的检测方法“(SN /T 2327 2009)[16]适用于黄鱼㊁鳗鱼㊁鸡肉㊁鸡蛋㊁鸭肝㊁猪肾和牛奶中角黄素㊁虾青素的测定与确证;‘植物提取物虾青素油“(T/CCCMHPIE 1.23 2016)[17]适用于以人工培养的红球藻属雨生红球藻为原料经提取精制后,得到的虾青素油中虾青素的测定㊂以上标准方法通过有机溶剂直接提取或者碱性皂化脱脂后提取虾青素,容易引起虾青素的降解[12],导致测量结果不准确或对测定结果造成干扰;标准方法多采用三相洗脱系统分离虾青素及其异构体,对液相系统要求高㊂本文参照虾青素检测的标准方法[14-17]和文献方法[13,18-23],设计单因素实验,对提取试剂㊁胆固醇酯酶酶解时间进行优化,以虾青素含量的高低作为评价指标,筛选最佳提取试剂和酶解条件;通过比较色谱柱㊁流动相等高效液相色谱条件,以全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素的分离度和峰形对称性作为评价指标,筛选最佳色谱条件,实现虾青素油中虾青素的有效提取和高效分离㊂以虾青素油为研究对象,进行方法学验证,考察方法的科学性㊁准确性和适用性,并比较实验建立的酶解方法与文献中的碱性皂化方法[18]对虾青素油中虾青素的提取效率,以期建立虾青素油中虾青素的精准分析检测技术㊂1㊀材料与方法1.1㊀材料与试剂超临界二氧化碳萃取的雨生红球藻虾青素油,市购;全反式虾青素对照品(纯度96.9%),Dr.Ehren-storfer GmbH;9-顺-虾青素㊁13-顺-虾青素对照品(纯度ȡ95.0%),Sigma公司;胆固醇酯酶16.3U/mg,月旭科技股份有限公司㊂甲醇㊁乙腈㊁甲基叔丁基醚㊁二氯甲烷㊁乙酸乙酯(均为色谱纯),美国Fisher公司;无水乙醇㊁无水硫酸钠㊁氢氧化钠㊁浓盐酸(分析纯),北京化工厂;石油醚(分析纯),福晨(天津)化学试剂有限公司;丙酮(分析纯),国药集团化学试剂有限公司;三羟甲基氨基甲烷(Tris)(分析纯),浙江联硕生物科技有限公司㊂1.2㊀仪器与设备BS224S分析天平,德国赛多利斯科学仪器(北京)有限公司;METTLER TOLEDO pH计,梅特勒-托利多国际贸易(上海)有限公司;QL-901斡旋振荡器,海门市其林贝尔仪器制造有限公司;ZHWY-110X30往复式恒温水浴摇床,上海智诚分析仪器制造有限公司;KQ-500DE型数控超声波清洗器,昆山市超市仪器有限公司;HITACHI CF16RXII高速冷冻离心机,日本日立科技有限公司;安捷伦1260高效液相色谱仪,配二极管阵列检测器和ChemStation for LC sys-tems色谱工作站,美国Agilent公司;YMC TM C30色谱柱,5μm,250mmˑ4.6mm(内径)㊂1.3㊀方法1.3.1㊀溶液的配制㊀㊀(1)0.021mol/L氢氧化钠-甲醇溶液:称取0.084g 氢氧化钠,加入80mL甲醇溶解并定容到100mL㊂㊀㊀(2)0.05mol/L Tris-HCl缓冲液(pH=7):准确称取3.0285g Tris,加入450mL去离子水溶解后,用0.5mol/L的盐酸调节pH至7.0,然后用去离子水定容至500mL㊂㊀㊀(3)胆固醇酯酶溶液:称取6.2mg胆固醇酯酶于25mL容量瓶中,用0.05mol/L Tris-HCl缓冲液定容至刻度,胆固醇酯酶溶液浓度约为4U/mL,现用现配㊂㊀㊀(4)全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素标准储备液:分别准确称取全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素标准品1mg,分别置于25mL棕色容量瓶中,加丙酮溶解并定容至刻度,摇匀,得到浓度为40μg/mL标准储备液,现用现配㊂㊀㊀(5)全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素混合标准工作溶液:准确移取全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素标准储备溶液,用丙酮稀释成各浓度均为0.80μg/mL的标准工作溶液,用于定性,现用现配㊂㊀㊀(6)全反式虾青素标准工作溶液:准确移取全反式虾青素标准储备溶液,用丙酮稀释成浓度分别为0.10㊁0.20㊁0.40㊁0.80㊁1.60㊁4.00μg/mL的标准工作溶液,现用现配㊂1.3.2㊀色谱条件的选择孙伟红等[19]研究表明,C30色谱柱对虾青素异构体的分离效果和响应值优于C18色谱柱,更有利于定量结果的分析,所以本实验选择YMC TM C30色谱柱㊂参考标准方法和文献方法,选择甲基叔丁基醚-乙腈(体积比95ʒ5)[20]㊁甲醇-甲基叔丁基醚-水(体积比83ʒ15ʒ2)[21]㊁水-甲醇-二氯甲烷-乙腈(体积比4.5ʒ28ʒ22ʒ45.5)[22]㊁水-甲醇-二氯甲烷-乙腈(5ʒ85ʒ5ʒ5)[23]和甲醇-甲基叔丁基醚[24]等流动相体系洗脱,以全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素的分离度作为评价指标,优化全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素分离的色谱条件㊂1.3.3㊀提取溶剂的选择虾青素油用丙酮稀释500倍作为实验用虾青素油样品㊂实验参照食品化学法典FCC th(2012)[23]的方法,并加以改进㊂称取10mg虾青素油样品于15mL离心管中,样品称取15份,分别加入2mL Tris-HCl缓冲液(0.05mol/L,pH=7)和1mL胆固醇酯酶(4U/mL)溶液振荡均匀后,在37ħ恒温水浴振荡器内振荡酶解60min,取出立即冷却至室温㊂向每份酶解液中分别加入2.0mL石油醚㊁二氯甲烷-甲醇(体积比1ʒ3)㊁丙酮㊁乙腈㊁甲醇-乙酸乙酯-石油醚(体积比1ʒ1ʒ1),每种提取溶剂做3个平行,每份样品均加入1g无水硫酸钠后在涡旋振荡器上涡旋提取2min,静置分层后,分别将上层溶液转移至10mL容量瓶中,重复提取2次,合并提取液于容量瓶中,氮气吹干后,用甲醇定容至刻度,溶液过0.45μm有机系滤膜后,待测定㊂1.3.4㊀酶解时间的选择称取10mg虾青素油样品于15mL离心管中,分别加入2mL Tris-HCl缓冲液(0.05mol/L,pH=7)和1.0mL胆固醇酯酶(4U/mL)溶液振荡均匀后,在37ħ恒温水浴振荡器内分别振荡酶解15㊁30㊁45㊁60㊁75㊁90㊁120min,取出立即冷却至室温,用石油醚提取,其他操作步骤同1.3.3㊂1.3.5㊀方法验证按照GB/T27404 2008‘实验室质量控制规范食品理化检测“[25]方法学要求,建立校准曲线及校准曲线的工作范围;逐步稀释样品上机测定,R(S/N) =3时的测定浓度作为检出限,R(S/N)=10时的测定浓度作为定量限;称取虾青素油样品,按照实验优化的方法,平行测定6次,计算虾青素的含量,并计算相对标准偏差,考察方法的重现性;根据虾青素油样品中虾青素的含量,按本底值的0.5倍㊁1倍㊁1.5倍3个浓度水平,进行3水平6平行加标回收实验,以回收率的高低评价方法的准确度㊂1.3.6㊀碱性皂化脱脂方法参见YUAN等[18]和苏芳[26]的方法,称取10mg 虾青素油样品于15mL离心管中,加入5mL0.021 mol/L氢氧化钠-甲醇溶液,5ħ水浴中避光皂化60 min,加入2mL纯净水和2mL石油醚,在涡旋振荡器上振荡2min,静置分层后,将上层溶液转移至10mL容量瓶中,重复提取2次至石油醚层无色,合并提取液于容量瓶中,氮气吹干后,用甲醇定容至刻度,溶液过0.45μm有机系滤膜后,测定㊂1.4㊀虾青素含量的计算1.4.1㊀标准曲线的制作将各浓度全反式虾青素标准品工作溶液,9-顺式虾青素和13-顺式虾青素标准品工作溶液按实验优化的色谱条件进行液相色谱分析,根据虾青素异构体组分的保留时间定性㊂选定峰面积相近的全反式虾青素的标准工作液多点校准定量,试样测定结果以3种虾青素同分异构体的总和计,外标法定量,同时,标准工作液和样液的响应值均应在仪器检测的线性范围内㊂1.4.2㊀结果计算试样中虾青素的含量X以质量分数计,按式(1)计算㊂X=(1.3ˑA13-cis+A tras+1.1ˑA9-cis)ˑC sˑVˑfA sˑmˑ100(1)式中:X,试样中虾青素的含量,%;1.3,13顺-虾青素对全反式虾青素的校正因子;A13-cis,试样溶液中13-顺-虾青素的峰面积;A tras,试样溶液中全反式虾青素的峰面积;1.1,9-顺-虾青素对全反式虾青素的校正因子;A9-cis,试样溶液中9-顺-虾青素的峰面积;C s,标准工作液中全反式虾青素的含量,μg/mL;V,试样溶液体积,mL;A s,标准工作液中全反式虾青素的峰面积;m,试样质量,mg;f,稀释倍数㊂1.5㊀数据处理通过与仪器配套的ChemStation for LC systems工作站软件完成数据的采集与处理㊂数据的差异性分析在SPSS软件上进行,P<0.05时,说明差异水平显著㊂2㊀结果与分析2.1㊀色谱条件的选择不同流动相体系对全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素分离效果见表1㊂目前,多采用三相洗脱系统[14-15,17,19,27]或者正相洗脱系统[26]分离虾青素及其异构体,对液相系统要求较高,且普适性较差㊂本实验通过优化液相色谱条件,采用甲醇-甲基叔丁基醚两相梯度洗脱,可以实现3种虾青素异构体的有效分离,结果如图1所示,优化得到分离虾青素的色谱条件为:色谱柱:YMC TM C30色谱柱,5μm,250mmˑ4.6mm (内径)或相当者;柱温:30ħ;流动相:见表1;流速: 1.0mL/min;检测波长:472nm;进样量:20μL㊂表1㊀色谱条件的优化Table1㊀Optimization of chromatographic conditions流动相洗脱程序流速/(mL㊃min-1)柱温/ħ分离度1甲基叔丁基醚-乙腈(体积比95ʒ5)等度洗脱 1.030 1.12 2甲醇-甲基叔丁基醚-水(体积比83ʒ15ʒ2)等度洗脱 1.030 1.33 3水-甲醇-二氯甲烷-乙腈(体积比4.5ʒ28ʒ25ʒ45.5)等度洗脱 1.030 1.21 4水-甲醇-二氯甲烷-乙腈(体积比5ʒ85ʒ5ʒ5)等度洗脱 1.030<00-12.0min,A相85%-70%;12.0-20.0min,A相70%-20%;5A-甲醇;B-甲基叔丁基醚20.0-22.0min,A相20%; 1.030ʎC 2.1922.0-22.1min,A相20%-85%;22.1-25.0min,A相85%;㊀㊀注:所有进样体积均为20μL,色谱柱为YMC TM C30,5μm,4.6mmˑ250mm色谱柱;检测波长是472nm(ref=off);分离度是指13-顺式虾青素和全反式虾青素的分离度(全反式虾青素和9-顺式虾青素的分离度均大于2.0)㊂图1㊀全反式虾青素㊁9-顺式虾青素㊁13-顺式虾青素标准溶液液相色谱图Fig.1㊀Chromatograms of all trans astaxanthin,9-cis-astaxanthin,13-cis-astaxanthin2.2㊀提取溶剂的选择室温条件下,虾青素在丙酮㊁二氯甲烷㊁二甲亚砜㊁乙醇及其他非极性溶剂中的溶解性较好[28]㊂本试验根据前人研究基础,选取5种不同提取溶剂,比较不同提取溶剂对虾青素油中虾青素的提取得率,结果显示,石油醚对虾青素的提取效果最佳,显著高于其他提取溶剂(P<0.05),结果见表2,虾青素油中虾青素异构体的HPLC色谱图见图2㊂表2㊀不同提取溶剂的提取结果(n=3)Table2㊀Results of different extraction solvents(n=3)提取溶剂虾青素含量/%石油醚92.9ʃ3.38二氯甲烷-甲醇(体积比1ʒ3)80.3ʃ2.53丙酮85.2ʃ1.58乙腈70.5ʃ1.99甲醇-乙酸乙酯-石油醚(体积比1ʒ1ʒ1)72.1ʃ3.012.3㊀酶解时间的选择胆固醇酯酶的酶解时间影响虾青素酯的酶解效果,酶解时间不足,会导致酶解不完全,酶解时间过长,会造成虾青素的降解,不同酶解时间提取结果见表3㊂图2㊀虾青素油脂中全反式虾青素㊁9-顺式虾青素㊁13-顺式虾青素液相色谱图Fig.2㊀Chromatograms of all trans astaxanthin,9-cis-astaxanthin, 13-cis-astaxanthin in astaxanthin oil表3㊀不同酶解时间的提取结果(n=3) Table1㊀Results of different enzymolysis time(n=3)酶解时间/min虾青素含量/%1581.9ʃ5.303086.7ʃ6.334584.4ʃ4.226092.9ʃ3.387590.6ʃ1.979091.0ʃ7.2112084.4ʃ1.54由表3知,在37ħ条件下,随着酶解时间的延长,虾青素的含量增加,60min时酶解完全,虾青素含量为92.9%,继续酶解到75min和90min,虾青素含量分别为90.6%和91.0%,与60min时没有显著性差异(P> 0.05),酶解120min,虾青素含量明显降低(P<0.05),其原因可能是温度对虾青素的降解破坏作用导致,因此酶解时间需要严格控制,以避免虾青素的损失,以4U/mL胆固醇酯酶37ħ条件下酶解60min最佳㊂2.4㊀方法验证2.4.1㊀线性关系、检出限及定量限按照1.3.3操作,在2.1色谱条件下进行HPLC分析,得到全反式虾青素为0.10~4.00μg/mL,浓度与峰面积有良好的线性关系,虾青素的检出限为0.1 mg/g,定量限为0.3mg/g㊂2.4.2㊀方法精密度实验按实验优化的前处理方法和色谱条件,平行测定6次,虾青素油中虾青素含量的相对标准偏差(rela-tive standard deviation,RSD)为1.36%,表明精密度高,适合虾青素的定量分析,结果见表4㊂表4㊀方法精密度结果(n=6)Table4㊀Results of precision(n=6)测定组分测定结果/%123456均值SD RSD/%虾青素92.893.991.690.391.491.792.0 1.25 1.36 2.4.3㊀方法准确度实验准确度为分析方法测定的平均值与真值相符的程度㊂稳定样品中加入不同水平已知量的标准物质(将标准物质的量作为真值)称加标样品;同时测定虾青素油和虾青素油加标样品;加标样品扣除样品值后与标准物质的误差即为该方法的准确度,按公式(2)计算㊂P/%=X1-X0mˑ100(2)式中:P,加入的标准物质的回收率;m,加入的标准物质的质量,μg;X1,加标试样的测定值,μg;X0,未加标试样的测定值,μg㊂采用样品加标试验进行本方法准确度验证,结果见表5㊂表5㊀加标回收率实验结果(n=6)Table5㊀Results of recovery rate of ginger(n=6)加标量/μg编号虾青素本底值/μg虾青素测定值/μg回收率/%平均回收率/%RSD/ %jb1-114.81022.30093.59jb1-214.73022.13092.458jb1-314.50021.77090.89jb1-414.44021.70090.79jb1-514.42021.65090.39jb1-614.39021.66090.91jb2-113.47027.96090.61jb2-213.15027.86091.9316jb2-312.95027.94093.6893.58 2.84 jb2-413.02028.03093.81jb2-513.08027.69091.32jb2-613.04028.08094.00jb3-114.38537.62396.83jb3-213.94437.57898.4824jb3-314.64337.48595.17jb3-414.44037.17594.73jb3-513.96237.12296.50jb3-613.72337.32698.35由表5可知,虾青素油中虾青素的回收率为90.39%~98.48%,平均回收率为93.58%,RSD为2.84%,表明方法添加回收率高,相对标准偏差小,适合虾青素含量的测定㊂2.5㊀不同脱脂方法测得虾青素的含量比较实验建立的胆固醇酯酶酶解方法㊁碱性皂化方法对虾青素油中虾青素的提取效率,结果见表6㊂表6㊀不同脱脂方法测定结果(n=3)Table6㊀Results of different degreasing methods(n=3)脱脂方法虾青素含量/%胆固醇酯酶酶解92.9ʃ3.38碱性皂化方法㊀44.1ʃ1.06由表6可知,胆固醇酯酶酶解所得虾青素含量是92.9%,显著高于苗凤萍[29]报道的72.04%和ZHAO 等[12]报道的63.2%,与苏芳[26]报道的92.95%结果相近㊂酶解所得虾青素含量是碱性皂化得率的2.11倍,这可能是因为碱不仅对脂肪酸有破坏作用,对虾青素也有很大的降解作用,而胆固醇酯酶对脂肪酸有特异性,可以减少对虾青素的降解㊂张丽瑶等[30]研究表明虾青素溶液经超声处理后,全反式异构体的浓度大幅度降低,9-顺式和13-顺式异构体浓度均有所增加,超声处理使虾青素降解为其他成分㊂对比虾青素的得率,可见,酶解法对虾青素的含量影响较小,先酶解再进行高效液相色谱分析是对含虾青素酯样品的含量及几何异构体测定的可靠方法,可以准确定量样品中虾青素的含量㊂3㊀结论本实验在前人研究的基础上,设计单因素实验,对提取试剂㊁胆固醇酯酶酶解时间进行优化,以虾青素得率高低作为评价指标,得到虾青素油中虾青素的最佳提取条件为37ħ恒温水浴振荡酶解60min,石油醚提取,该方法对虾青素油中虾青素的提取得率为92.9%,是碱性皂化得率的2.11倍㊂通过比较色谱柱㊁流动相等高效液相色谱条件,以全反式虾青素㊁9-顺-虾青素㊁13-顺-虾青素的分离度和峰形对称性作为评价指标,筛选最佳色谱条件为YMC TM C30色谱柱,甲醇-甲基叔丁基醚两相梯度洗脱,可以实现3种虾青素异构体的有效分离,相比于目前常用的三相洗脱程序和正相洗脱系统,要求的液相系统简单㊂选择虾青素油进行方法学验证,结果表明,全反式虾青素在0.10~4.00μg/mL的浓度范围内与峰面积有良好的线性关系;虾青素的检出限为0.1mg/g,定量限为0.3mg/g;按实验优化的最佳酶解方式和色谱条件,平行测定6次,虾青素油中虾青素含量的RSD为1.36%,表明精密度高;按虾青素油样品中虾青素含量的0.5倍㊁1倍㊁1.5倍3个浓度水平,进行3水平6平行加标回收实验,得到虾青素油中虾青素的回收率为90.39%~98.48%,平均回收率为93.58%, RSD为2.84%,表明添加回收率高,相对标准偏差小,实验建立的方法适合虾青素油样品中虾青素含量的测定㊂参考文献[1]㊀AL-AMIN M M,AKHTER S,HASAN A T,et al.The antioxidanteffect of astaxanthin is higher in young mice than aged:A region specif-ic study on brain[J].Metabolic Brain Disease,2015,30(5):1237-1246.[2]㊀BOROWITZKA M A.High-value products from microalgae-their de-velopment and commercialisation[J].Journal of Applied Phycology, 2013,25(3):743-756.[3]㊀KOLLER M,MUHR A,BRAUNEGG G.Microalgae as versatilecellular factories for valued products[J].Algal Research,2014,6: 52-63.[4]㊀PÉREZ-LÓPEZ P,GONZÁLEZ-GARCÍA S,JEFFRYES C,et al.Life cycle assessment of the production of the red antioxidant carote-noid astaxanthin by microalgae:From lab to pilot scale[J].Journal of Cleaner Production,2014,64(64):332-344.[5]㊀ANDERSEN LP,HOLCK S,KUPCINSKAS L,et al.Gastric in-flammatory markers and interleukins in patients with functional dys-pepsia treated with astaxanthin[J].Fems Immunology&Medical Microbiology,2007,50(2):244-248.[6]㊀CHEW B P,PARK J S.Carotenoid action on the immune response[J].Journal of Nutrition,2004,134(1):257-261.[7]㊀MIYAWAKI H,TAKAHASHI J,TSUKAHARA H,et al.Effects ofastaxanthin on human blood rheology[J].Journal of Clinical Bio-chemistry and Nutrition,2008,43(2):69-74.[8]㊀GRIMMIG B,DALY L,HUDSON C,et al.Astaxanthin attenuatesneurotoxicity in a mouse model of Parkinsonᶄs disease[J].Cell Transplantation,2016,25(4):759-759.[9]㊀NAKAO R,NELSON OLPARK J S,MATHISON B D,et al.Effectof astaxanthin supplementation on inflammation and cardiac function in BALB/c mice[J].Anticancer Research,2010,30(7):2721-2 725.[10]㊀AMBATI R R,MOI P S,RAVI S,et al.Astaxanthin:Sources,ex-traction,stability,biological activities and its commercial applica-tions-a review[J].Marine Drugs,2014,12(1):128-152. [11]㊀YANG C,ZHANG H,LIU R H,et al.Bioaccessibility,cellularuptake,and transport of astaxanthin isomers and their antioxidativeeffects in human intestinal epithelial Caco-2cells[J].Journal ofAgricultural and Food Chemistry,2017,65(47):10223-10232.[12]㊀ZHAO Y Y,GUAN F F,WANG G L,et al.Astaxanthin prepara-tion by Lipase-Catalyzed hydrolysis of its esters from Haematococcuspluvialis algal extracts[J].Journal of Food Science,2011,76(4):643-650.[13]㊀ANTONOIO M,JURI R,PATRIZIA C,et al.Extraction of astaxan-thin from microalga Haematococcus pluvialis in red phase by usinggenrally recognized as safe solvents and accelerated extraction[J].Journal of Biotechnology,2018,283:51-61.[14]㊀国家质量监督检验检疫总局,国家标准化管理委员会.GB/T31520 2015红球藻中虾青素的测定液相色谱法[S].北京:中国标准出版社,2015.General Administration of Quality Supervision,Inspection andQuarantine of the Peopleᶄs Republic of China,Standardization Ad-ministration.GB/T31520 2015Determination of astaxanthin inHaematococcus-High performance liquid chromatography method[S].Beijing:Standards Press of China,2015.[15]㊀农业农村部.SC/T3053 2019水产品及其制品中虾青素含量的测定高效液相色谱法[S].北京:中国标准出版社,2019.Ministry of Agriculture and Rural Affairs of the Peopleᶄs Republicof China.SC/T3053 2019Determination of astaxanthin in fishand fishery products by high performance liquid chromatographymethod[S].Beijing:Standards Press of China,2019. [16]㊀国家质量监督检验检疫总局.SN/T2327 2009进出口动物源性食品中角黄素㊁虾青素的检测方法[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection andQuarantine of the Peopleᶄs Republic of China.SN/T2327 2009Determination of canthaxanthin and astaxanthin in foods of animalorigin food for import and export[S].Beijing:Standards Press ofChina,2019.[17]㊀中国医药保健品进出口商会.T/CCCMHPIE1.21 2016植物提取物虾青素油[S].北京:中国标准出版社,2016.China Chamber of Commerce of Medicines&Health Products Im-porters&Exporters.T/CCCMHPIE1.21 2016Plant extract-Astaxanthin Oil[S].Beijing:Standards Press of China,2016. [18]㊀YUAN J P,CHEN F.Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haema-tococcus pluvialis[J].Food Chem,2000,68(4):443-448. [19]㊀孙伟红,冷凯良,邢丽红,等.GPC-HPLC法测定南极磷虾油中虾青素及校正因子计算[J].分析试验室,2013,32(2):26-30.SUN W H,LENG K L,XING L H,et al.Determination of astaxan-thin in Antarctic krill oil by GPC-HPLC and calculation of correc-tion factor[J].Chinese Journal of Analysis Laboratory,2013,32(2):26-30.[20]㊀杨澍,张婷,徐杰,等.高效液相色谱手性拆分法分析生物体内虾青素光学异构体[J].食品科学,2015,36(8):139-144.YANG S,ZHANG T,XU J,et al.Chiral separation and analysisof astaxanthin stereoisomers in biological organisms by high-per-formance liquid chromatography[J].Food Science,2015,36(8):139-144.[21]㊀HOLTIN K,KUEHNLE M,REHBEIN J,et al.Determination ofastaxanthin and astaxanthin esters in the microalgae Haematococcuspluvialis by LC-(APCI)MS and characterization of predominant ca-rotenoid isomers by NMR spectroscopy[J].Analytical and Bioana-lytical Chemistry,2009,395(6):1613-1622. [22]㊀LÓPEZ-CERVANTES J,SÁNCHEZ-MACHADO D I,GUTIÉRREZ-CORONADO M A,et al.Quantification of astaxan-thin in shrimp waste hydrolysate by HPLC[J].Biomedical Chroma-tography,2006,20(10):981-984.[23]㊀MACHMUDAH S,SHOTIPRUK A,GOTO M,et al.Extraction ofAstaxanthin from Haematococcus pluvialis Using Supercritical CO2and Ethanol as Entrainer[J].Industrial&Engineering ChemistryResearch,2006,45(10):3652-3657.[24]㊀PENG J,WIANG W Z,TANG Q M,et parative analysis ofastaxanthin and its esters in the mutant E1of Haematococcus plu-vialis and other green algae by HPLC with a C30column[J].Sci-ence in China Series C,2008,51(12):1108-1115. [25]㊀中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T27404 2008食品安全国家标准实验室质量控制规范食品理化检测[S].北京:中国标准出版社,2008.General Administration of Quality Supervision,Inspection andQuarantine of the Peopleᶄs Republic of China,Standardization Ad-ministration.GB/T27404 2008Criterion on quality control of la-boratories Chemical testing of food[S].Beijing:Standards Pressof China,2008.[26]㊀苏芳.类胡萝卜素在藻虾蟹鱼中的结构分布特征及虾青素异构化研究[D].青岛:中国科学院大学,2018.SU F.A study on the structure distribution of carotenoids in algae,shrimps,crabs and fishes and the isomerization of astaxanthin[D].Qingdao:University of Chinese Academy of Sciences,2018. [27]㊀邢俊波,姜春来,靳守东,等.HPLC内标手性拆分法分析保健食品雨生红球藻片中虾青素光学异构体[J].解放军药学学报,2016,32(1):10-12.XING J B,JIANG C L,JIN S D,et al.Chiral separation and analy-sis of astaxanthin stereoisomers in health food yushenghongqiuzaotablets by HPLC internal standard method[J].Pharm J Chin PLA,2016,32(1):10-12.[28]㊀吴伟.红法夫酵母生产虾青素过程关键技术的研究[D].武汉:华中科技大学,2011.WU W.The study on the key techniques for the production of astax-anthin by fermentation in xanthophyllomyces dendrorhous[D].Wu-han:Huazhong University of Science and Technology,2011. [29]㊀苗凤萍.雨生红球藻(Haematococcus pluvialis)虾青素酯和脂肪酸的鉴定及差异表达基因的分析[D].武汉:中国科学院研究生院(武汉植物园),2007.MIAO F P.Characterization on astaxanthin esters and fatty acids ofhaematococcus pluvialis and analysis of differentially expressedgenes[D].Wuhan:Wuhan Botanical Garden,Chinese Academy ofSciences,2007.[30]㊀张丽瑶,张华敏,王志祥,等.超声处理对虾青素稳定性和抗氧化性的影响[J].食品与药品,2018,20(4):264-267.ZHANG L Y,ZHANG H M,WANG Z X,et al.Effect of ultrason-ic treatment on stability and antioxidant activity of astaxanthin[J].Food and Drug,2018,20(4):264-267.Determination of astaxanthin in astaxanthin oil by high performanceliquid chromatographyKONG Fanhua2,XU Jiajia2,GUO Qian2,BAI Shasha2,LI Dong2,FANG Congrong1,QIU Nannan1∗,CUI Yajuan2∗1(NHC Key Laboratory of Food Safety Risk Assessment,Food Safety Research Unit of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment,Beijing100021,China)2(Beijing Institute of Nutrition Resources,Beijing100069,China)ABSTRACT㊀An analytical method was developed for the detection of astaxanthins in astaxanthin oil.The extraction reagent and enzymolysis time of astaxanthins in astaxanthin oil were selected by single factor experiment.The optimized pretreatment condition was bath shaking zymolytic for60min at37ħand petroleum ether extraction were selected for the extraction.The separation of astaxanthins were achieved on YMC TM C30column(250mmˑ4.6mm,5μm)using methanol-methyl tert-butyl ether as the mobile phase at a flow rate of1.0mL/min.The detection wavelength and column temperature were set at472nm and30ħ,respectively.The results showed that the linear range of all trans astaxanthin was0.10-4.00μg/mL.The relative standard deviation(RSD)of astaxanthin in astaxanthin oil was1.36%.Moreo-ver,the average recovery rate of astaxanthin was93.58%and RSD was2.84%,indicating high recovery rate and small relative standard deviation.The astaxanthin content in astaxanthin oil by this method is92.9%which was2.11times of alkaline saponification content.Therefore,the method established can accurately quantify astaxanthin content in astaxan-thin oil.Key words㊀high performance liquid chromatography(HPLC);astaxanthin oil;astaxanthin;all trans astaxanthin;9-cis-astaxanthin;13-cis-astaxanthin。

雨生红球藻萃取物中虾青素及其衍生物的含量测定

雨生红球藻萃取物中虾青素及其衍生物的含量测定

谱分离萃取物 中各 酯组分 ,联用质谱 测定各 酯组分分子量 ;紫外 一可见光分光光度法 测定 总酯萃取 物吸光值 ; 计算各酯组分及总酯 吸光 系数 ;计算总酯含量 ;计算各酯组分和总酯 中虾青素结构 的比率 ;计算 萃取物 中虾青 素含量 。由于检测结果 源于 紫外 一可见光分光光度法测定值 ,且不需虾青素酯的水解操作 ,该方法具有操作简 便 、重复性好 ( R S D< 1 %) 、加样 回收率高 ( 9 9 . 9 2 %) 、检测下限低 ( 1 2 n g / mL)等优点。 关键词 :虾青素 ;虾青素衍生物 ;虾青素酯 ;雨生 红球 藻 ;uV— V I s;HP L C;HP L C - MS 中图分类号 :T S 2 0 2 . 3 文献标识码 :A 文章编号 :1 0 0 6 2 5 1 3( 2 0 1 6 )1 1 —0 1 9 5 —0 9
Con t en t d e t er mi n a t i on i t s d er i v at i v e s
f r O m Ha e ma t o c u c c u s p l v i a l s e x t r a c t
t he t ot a l es t e r a bs or ba nce det er mi na t i on by ul t r a vi o l et —vi s i b l e s pe c t r opho t om et r y, t he a bs or pt i o n coe f f i ci en t
B e i j i n g 1 0 0 1 9 1 )
Abs t r a c t:Th i s a r t i c l e d e s c r i b e s a me t h o d f o r t h e c o n t e n t d e t e r mi n a t i o n o f a s t a x a n t h i n a n d i t s d e r i v a t i v e s f r o m Ha e ma t o c o c c u s p l v i a l s e x t r a c t wi t h o u t e s t e r h y d r o l y s i s . T h e ma i n s t e p s i n c l u d e: T h e s e p a r a t i o n a n d r e l a t i v e mo l e c u l a r ma s s d e t e r mi n a t i o n o f e a c h e s t e r ro f m t h e e x t r a c t b y h i g h p e r f o r ma n c e l i q u i d c h r o ma t o g r a p h y - ma s s s p e c t r o me t r y,

虾青素脂的主要脂肪酸

虾青素脂的主要脂肪酸

虾青素脂的主要脂肪酸1.引言1.1 概述概述部分的内容可以从虾青素脂和脂肪酸这两个角度进行介绍。

虾青素脂是一种富含丰富营养价值的天然化合物,被广泛应用于人类的健康保健和医疗领域。

它是一种从虾类和其他海洋生物中提取出来的红色色素,具有强大的抗氧化性能。

抗氧化剂的功效使得虾青素脂在防治心血管疾病、癌症、眼部退行性疾病等方面具有广泛的应用前景。

脂肪酸是构成虾青素脂的重要成分之一。

正确认识脂肪酸的种类和功能对于深入了解虾青素脂的物理性质以及为人体健康带来的益处至关重要。

在虾青素脂中,硬脂酸和亚油酸被认为是主要的脂肪酸成分。

硬脂酸属于饱和脂肪酸,在虾青素脂中起到稳定结构和延长保质期的作用。

亚油酸则是一种多不饱和脂肪酸,具有降低胆固醇、改善心血管功能等多种益处。

通过对虾青素脂的研究和分析,我们可以深刻理解其中主要脂肪酸的特性以及其对人体健康的影响。

进一步探讨虾青素脂在医学和健康领域中的应用前景和潜力,将有助于开拓虾青素脂的新用途,并为人们提供更好的保健选择。

在接下来的文章中,将着重介绍虾青素脂的主要脂肪酸成分硬脂酸和亚油酸的特点和作用,以及虾青素脂可能的意义和应用。

1.2文章结构文章结构的主要目的是为读者提供一个清晰的框架,以便他们能够更好地理解文章的内容和组织。

本文主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个方面。

概述中可以简要介绍虾青素脂的背景和重要性,引起读者对该主题的兴趣。

文章结构部分则是本文整体框架的介绍,可以提及本文将主要围绕虾青素脂的主要脂肪酸展开讨论。

最后,在目的部分明确阐述本文的目标,例如通过研究虾青素脂的主要脂肪酸,探讨其对人体健康的影响以及在食品、医药等方面的应用价值。

总之,文章结构的目的是为了帮助读者更好地理解文章的内容和组织,使他们在阅读过程中能够更好地把握文章的重点和逻辑关系。

1.3 目的文章的目的是深入研究虾青素脂所含的主要脂肪酸,并探讨这些脂肪酸对人体的效应和潜在的应用领域。

热处理方式对南美白对虾虾青素含量、氨基酸组成及脂肪酸组成的影响

热处理方式对南美白对虾虾青素含量、氨基酸组成及脂肪酸组成的影响董志俭;王庆军;孙丽平;李学鹏;陈华健;牟伟丽;李钰金;励建荣【摘要】热处理是南美白对虾的重要加工手段,本文通过研究蒸制和煮制对南美白对虾含水量、虾青素含量、氨基酸组成及脂肪酸组成的影响,探索不同的热处理方式对南美白对虾营养成分的影响.结果表明:蒸制和煮制均导致南美白对虾含水量降低;蒸制较煮制的南美白对虾具有更高的虾青素含量,蒸制6 min时虾青素含量最高,达58.00μg/g;蒸制和煮制后总氨基酸含量均明显提高(p<0.05),蒸制样品中的苏氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、蛋氨酸等必需氨基酸含量均高于煮制样品;蒸制和煮制后单不饱和脂肪酸含量降低,而多不饱和脂肪酸含量则分别由鲜虾的33.32%增加到煮制样品的35.13%和蒸制样品的35.02%.因此,蒸制是南美白对虾的一种良好的热处理方式.%The heat treatment was an important method processing Penaeus Vannamei.In this study,effects of steaming and boiling on the water content,the astaxanthin content,the fatty acid composition,the amino acid composition of Penaeus Vannamei were studied to investigate the impact of different heat processing methods on the nutritional ingredients of Penaeus Vannamei.The results showed that the water content of Penaeus Vannamei decreased for the steaming and the cooking.The astaxanthin content of steaming samples was higher than that of cooking samples,arriving at the highest cont ent,58.00 μg/g,after six minutes of heating processing.The total amino acid content obviously increased after steaming and boiling(p < 0.05) and the content of essential amino acids of the steamingsamples,threonine,valine,leucine,isoleucine,phenylalanine,methionine was higher than that of the boiling products.Monounsaturated fatty acid contents decreased,while polyunsaturated fatty acid contents increased respectively from 33.32% of raw material to 35.13% of boiling samples and 35.02% of steaming samples.Therefore,the steaming was an excellent method processing Penaeus Vannamei.【期刊名称】《食品工业科技》【年(卷),期】2017(038)023【总页数】6页(P14-18,28)【关键词】南美白对虾;蒸制;煮制;虾青素;氨基酸;脂肪酸【作者】董志俭;王庆军;孙丽平;李学鹏;陈华健;牟伟丽;李钰金;励建荣【作者单位】江苏农牧科技职业学院,食品科技学院,江苏泰州225300;渤海大学食品科学与工程学院,辽宁省食品安全重点实验室,生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心,辽宁锦州121013;渤海大学食品科学与工程学院,辽宁省食品安全重点实验室,生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心,辽宁锦州121013;江苏农牧科技职业学院,食品科技学院,江苏泰州225300;渤海大学食品科学与工程学院,辽宁省食品安全重点实验室,生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心,辽宁锦州121013;湛江国联水产开发股份有限公司,广东湛江524088;蓬莱京鲁渔业有限公司,山东烟台265600;荣城泰祥食品股份有限公司,山东威海264309;渤海大学食品科学与工程学院,辽宁省食品安全重点实验室,生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心,辽宁锦州121013【正文语种】中文【中图分类】TS254南美白对虾(Penaeus Vannamei)学名凡纳对虾,是世界养殖产量最高的三大虾类之一。

MIDI微生物鉴定脂肪酸分析系统PLFA应用案例及其它

主成分的组成因素:第一主成分主要综合微生物PLFA总量和细菌PLFA 第二主成分主要综合“真菌/细菌”及真菌PLFA
整理课件
微生物鉴定应用注意点
优势 一步鉴定到株型(菌库中已有菌株),亲缘性分析 可分型
弱势 肠道菌(遗传高度相关)鉴定准确性为属级,推 荐使用碳源利用鉴定法
整理课件
关于配置
2011年MIDI发布最新GC配置,已转发大家,请 注意更新
3 革兰氏阳性及厌氧菌PLFA含量在OM样本中最高,而真菌 PLFA在NPK样本中最高 革兰氏阳性菌对有机肥敏感而 真菌对无机肥敏感
4 真菌PLFA含量在NPK样本中最高,P样本中最低 NPK 均衡施肥对土壤真菌生长重要
4与1不一致 细菌、真菌对有机肥和无机肥应答不同
整理课件
PCA(Principal Component Analysis )原理
整理课件
分析结论
1 细菌及放线菌PLFA含量在OM+NPK样本中最高,N样本 中最低 OM+NPK施肥方式显著刺激土壤原核生物生长, 单纯N肥施肥方式则有抑制作用(导致酸化降低微生物群 落丰度及多样性)
2 土壤中细菌特别是革兰氏阴性菌含量最高,对土壤施肥方 式更敏感,相对于真菌及放线菌指示性更强。
整理课件
MIDI在PLFA中的优势
MIDI 提取及分析方法由于低成本、其简单性、 可同时处理大量样品而被广泛应用于土壤微生物 群落研究
GC-MS进行P PLFA方法研发中! (预计3月底2小时) GC分析时间:15min PLFA专用标准品
MIDI微生物鉴定(脂肪酸分析)系统 PLFA 应用案例及其它
颜淑玮 2011.1.4
整理课件
PLFA分析原理
PLFA定义 PLFA 是磷脂脂肪酸(phospholipid fatty acid) 的英文 缩写。PLFA 是构成活体细胞膜的重要组分

气相色谱-质谱对三种硅藻脂肪酸组成的测试规律性分析

气相色谱-质谱对三种硅藻脂肪酸组成的测试规律性分析夏静芬;钱国英;贾永红【期刊名称】《分析试验室》【年(卷),期】2007()z1【摘要】借助气相色谱-质谱(GC-MS)联用技术比较分析了角毛藻(Chaetoceros muelleri)、新月菱形藻(Nitzshia closterium)和三角褐指藻(Phaeodactylum tricornutum)等3种硅藻在保留时间和质谱裂解方面的异同性规律。

结果表明,强极性柱中各脂肪酸的分离顺序为低碳原子数到高碳原子数,碳原子数相同的组分分离顺序按低不饱和度到高不饱和度,弱极性柱中色谱出峰顺序也为低碳原子数到高碳原子数,与强极性柱一致,但碳原子数相同的组分分离顺序则从低饱和度到高饱和度,与强极性柱恰好相反;不同脂肪酸的质谱裂解表明,饱和脂肪酸甲酯的基峰为m/z 74,单烯脂肪酸甲酯的基峰为m/z 55,双烯脂肪酸甲酯的基峰为m/z 67,而三烯以上脂肪酸甲酯的基峰则为m/z 79,本文认为基峰这一特点可用来确定不饱和度,以助于快速准确的对脂肪酸甲酯进行定性分析;本文还比较了TMSH和NaOH-CH3OH两种甲酯化方法的区别。

在此基础上用面积归一化法测定了硅藻脂肪酸的含量,发现3种硅藻都含有饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸,其中-ω3 PUFAs主要为EPA。

【总页数】4页(P342-345)【关键词】硅藻;GC-MS;脂肪酸【作者】夏静芬;钱国英;贾永红【作者单位】浙江万里学院生物与环境学院【正文语种】中文【中图分类】O65【相关文献】1.应用气相色谱质谱联用分析一株来自腐乳的毛霉脂肪酸组成 [J], 程浩;徐梅2.气相色谱-质谱联用分析四川白兔肌内脂肪酸的组成 [J], 汪踔;贺稚非;杨锐;李洪军3.应用气相色谱质谱联用分析一株来自腐乳的毛霉脂肪酸组成 [J], 程浩;徐梅;;4.气相色谱-质谱联用法分析茶枝柑籽油脂肪酸和不皂化物组成 [J], 杨春英;刘学铭;池建伟;陈智毅5.基于气相色谱-质谱联用技术的不同产地藜麦中脂肪酸及小分子物质组成分析 [J], 郭敏;卢恒谦;王顺合;陈卫;赵建新因版权原因,仅展示原文概要,查看原文内容请购买。

海洋微藻总脂含量和脂肪酸组成的测定

海洋微藻总脂含量和脂肪酸组成的测定王明清;迟晓元;秦松;杨官品;姜鹏;逄少军【期刊名称】《中国油脂》【年(卷),期】2008(033)011【摘要】对14株海洋微藻(绿藻纲6株,金藻纲4株,硅藻纲3株,甲藻纲1株)中的总脂含量和脂肪酸成分进行了测定.结果表明,14株海洋微藻的总脂含量存在着明显差异,盐藻的总脂含量最高,占干重的28.71%;4株金藻的总脂含量均较高,超过干重的20%.14株海洋微藻的脂肪酸成分和含量也存在着较大的差异,绿藻中饱和脂肪酸C16:0的含量均较高;对于单不饱和脂肪酸,小球藻以C16:1(n-7)为主,盐藻以C18:1(n-7)为主,青岛大扁藻以C18:1(n-9)为主.4株金藻的PUFAs含量均较高,几乎占脂肪酸总量的1/2,并且DHA的含量较其他藻株高.3株硅藻的EPA含量最高,占27.2%~32.9%;而裸甲藻的PUFAs含量最低,仅为25.2%.【总页数】4页(P67-70)【作者】王明清;迟晓元;秦松;杨官品;姜鹏;逄少军【作者单位】中国海洋大学,海洋生命学院,山东,青岛,266003;中国科学院,海洋研究所,山东,青岛,266071;中国科学院,研究生院,北京,100039;中国科学院,海洋研究所,山东,青岛,266071;中国海洋大学,海洋生命学院,山东,青岛,266003;中国科学院,海洋研究所,山东,青岛,266071;中国科学院,海洋研究所,山东,青岛,266071【正文语种】中文【中图分类】TQ646【相关文献】1.10种热带富油微藻生物量、总脂含量及脂肪酸组成分析 [J], 王盛林;赵震宇;刘平怀2.32株海洋微藻总脂含量及其脂肪酸组成的研究 [J], 卢丽娜;孙利芹;田焕玲;任蒙;王长海3.九种海洋微藻总脂含量及脂肪酸组成分析 [J], 何瑞;徐宁;段舜山4.氮限制时间对海绿球藻和微绿球藻生长、总脂含量及脂肪酸组成的影响 [J], 梁英; 纪维玮; 石伟杰; 田传远; 胡乃霞; 闫译允5.10种海洋微藻总脂、中性脂和极性脂的脂肪酸组成 [J], 俞建江;李荷芳;周汉秋因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Comparative Biochemistry and Physiology Part B 136(2003)317–3221096-4959/03/$-see front matter ᮊ2003Elsevier Inc.All rights reserved.doi:10.1016/S1096-4959(03)00209-4Fatty acids of astaxanthin esters in krill determined by mild massspectrometryShinichi Takaichi *,Kumi Matsui ,Masahisa Nakamura ,Mizuho Muramatsu ,a ,b bc Satoshi Hanada cBiological Laboratory,Nippon Medical School,Kosugi-cho,Nakahara,Kawasaki 211-0063,Japan aDepartment of Biology,School of Education,Waseda University,Nishiwaseda,Shinjuku 169-8050,Japan bNational Institute of Advanced Industrial Science and Technology (AIST ),Tsukuba 305-8566,JapancReceived 17April 2003;received in revised form 2July 2003;accepted 3July 2003AbstractKrill is a major source of astaxanthin,which has strong antioxidant activity.Fractions with astaxanthin monoesters and diesters of Antarctic krill Euphausia superba were isolated.Astaxanthin esters were separated by C18-HPLC depending on the number of carbons and double bonds of esterified fatty acid (s ).Small amounts of other lipids remained in the samples,but relative molecular masses of carotenoid esters could be measured by field desorption mass spectrometry without fragmentation and interference from contaminant lipids.The fatty acids were determined by calculation of difference between astaxanthin and astaxanthin esters.Only five kinds of fatty acids,dodecanoate,tetradecanoate,hexadecanoate,hexadecenoate and octadecenoate,were detected.Fast atom bombardment mass spectrom-etry and secondary ion mass spectrometry showed similar spectra.The fatty acid composition in astaxanthin esters was different from those in krill lipids.Therefore,determination of fatty acids in carotenoid esters by a combination of HPLC elution profile and mild mass spectrometry is found to be a useful tool.ᮊ2003Elsevier Inc.All rights reserved.Keywords:Astaxanthin;Astaxanthin ester;Carotenoid ester;Euphausia superba ;Fatty acid;Krill;Mass spectrometry1.IntroductionAntarctic krill are crustaceans with large bio-mass in the Southern Ocean and a good source of poly-unsaturated fatty acids,such as eicosapenta-enoate (C20:5)and docosahexaenoate (C22:6)(Bottino,1975;Phleger et al.,2002).Astaxanthin is a strong antioxidant (Palozza and Krinsky,1992),and it mainly distributes in the carapace of crustacean,the integuments of marine fish,the yeast Phaffia and green alga Haemato-*Corresponding author.Tel.:81-44-733-3584;fax:q 81-44-722-1231.E-mail address:takaichi@nms.ac.jp (S.Takaichi ).coccus sp.(Goodwin,1980,1984).Major carote-noids of krill are astaxanthin and its mono-and di-esters (Yamaguchi et al.,1983;Maoka et al.,1985;Foss et al.,1987).In krill,astaxanthin and its esters consist of three stereoisomers;(3R ,39R )-astaxanthin (60–70%)exists as a major compo-nent along with (3R ,39S ;meso )-astaxanthin (10–20%)and (3S ,39S )-astaxanthin (10–20%)(Maoka et al.,1985;Foss et al.,1987).The (3S ,39S )-form may be oxidized from (3R ,39R )-zeaxanthin,which is synthesized by plants in nature.The origin of the R -configuration of astaxanthin isomers in krill is still obscure.Although astaxanthin esters are known to be major carotenoids in marine animals,318S.Takaichi et al./Comparative Biochemistry and Physiology Part B 136(2003)317–322Fig.1.HPLC elution profile of carotenoids extracted from Ant-arctic krill Euphausia superba .See the text for details of the chromatographic conditions.A,M1–3and D1–5indicate the HPLC peaks,and the peak numbers are referred to in the text and figures.fatty acid compositions of astaxanthin esters in krill have not been investigated.In this study,astaxanthin esters in krill were analyzed by field desorption mass spectrometry (FD-MS ).The esterified fatty acids could be determined in spite of small amounts of other lipids remaining in the samples.2.Materials and methods 2.1.Samples and purificationAntarctic krill Euphausia superba was pur-chased in local markets.Carotenoids and lipids were extracted several times from the carapace of krill by acetone,and extracts were evaporated to dryness.The extract was dissolved in n -hexane and loaded on a column of Toyopearl DEAE-650M (Tosoh,Japan ),and the carotenoids and neutral lipids were eluted with n -hexane y acetone (8:2,v y v ),while polar lipids remained on the column (Takaichi et al.,2001).The carotenoid fraction was loaded on a column of silica gel 60(1.07734;Merck,Germany ),neutral lipids were eluted with n -hexane,a red band was eluted with n -hexane y acetone (9:1,v y v ),the next red band was with n -hexane y acetone (8:2,v y v )and a final red band with n -hexane y acetone (7:3,v y v ).Each red band was further purified by KC18TLC (Whatman,USA )developed with methanol and by silica gel TLC (1.13748;Merck )developed with n -hexane y acetone (8:2,v y v ),and finally each carotenoid ester was collected from HPLC described below.The HPLC system was equipped with a m -Bondapak C18column (8=100mm,RCM type;Waters,USA ),and eluted with methanol (2.0ml y min ).The absorption spectra of carotenoids were measured by an MCPD-3600photodiode array detector (Otsuka Electronics,Japan )attached to the HPLC apparatus (Takaichi and Ishidsu,1992).2.2.Analysis of carotenoid estersRelative molecular masses of carotenoids and carotenoid esters were measured by field desorp-tion mass spectrometry (FD-MS ),M-2500double-focusing gas chromatograph-mass spectrometer (Hitachi,Japan )equipped with a field-desorption apparatus (Takaichi,1993).Secondary ion mass spectrometry (SI-MS )and fast atom bombardment mass spectrometry (FAB-MS )were obtained fromthe M-2500and a JMS-HX y HX110A mass spec-trometer (JEOL,Japan ),respectively,using m -nitrobenzyl alcohol as a matrix.The fatty acid moieties of the carotenoid esters and krill lipids were converted to fatty acid methyl esters by treatment with 5%HCl in methanol solution at 608C for 20min (Takaichi and Ishidsu,1992).The fatty acid methyl esters were then analyzed by a gas chromatograph y mass spectrom-eter (M7200A GC y 3DQMS system;Hitachi )equipped with a DB-5ms capillary column (J&W Scientific,USA )coated with (5%-phenyl )-meth-ylpolysiloxane as described previously (Takaichi et al.,2001).3.Results3.1.Carotenoids and compositionFig.1shows a C18-HPLC elution profile of carotenoids extracted from Antarctic krill.Peaks A,M1–3and D1–5corresponded to the third,the second and the first red bands obtained from the silica gel column.The carotenoid in peak A was identified as astaxanthin based on the same retention time on HPLC and the same absorption spectrum with319S.Takaichi et al./Comparative Biochemistry and Physiology Part B 136(2003)317–322Fig.2.FD-MS spectra of astaxanthin monoesters in the peaks M1(a ),M2(b )and M3(c )in Fig.1.authentic astaxanthin (Roche,Switzerland )and the relative molecular mass of 596.All the HPLC peaks showed similar absorption spectra with astaxanthin in the HPLC eluent of methanol.By methanolysis of the carotenoid esters with HCl in methanol solution,carotenoid was liberated,and identified as astaxanthin as described above.From the retention times on HPLC,the second group (M1–3,Fig.1)and the third group (D1–5)were astaxanthin monoesters and astax-anthin diesters,respectively.The composition was astaxanthin (20%),astaxanthin monoesters (34%)and astaxanthin diesters (46%).3.2.Astaxanthin monoestersThe peaks M1,M2and M3were collected from HPLC.The major relative molecular mass of the peak M1analyzed by FD-MS was 778(Fig.2a ).Those of the peak M2were 806and 832(Fig.2b )and the peak M3were 834and 860(Fig.2c ).Recognized fragment peaks corresponding to carotenoid and fatty acid moieties were not foundin the low-mass region,and many mass peaks in Fig.2might be due to impurities.Similar mass spectra were obtained by SI-MS and FAB-MS (data not shown ).The relative molecular masses of carotenoid esters were easily determined under these mild mass spectrometry conditions in spite of the presence of lipids,while detection of the carotenoid moiety of the carotenoid esters was difficult by these methods due to the absence of fragmentation.Since SI-MS and FAB-MS require a matrix of m -nitrobenzyl alcohol,there are many mass peaks derived from the matrix,whereas FD-MS needs no matrixes and is more suitable for analysis of the relative molecular masses.The fatty acid moiety was calculated from the difference of the relative molecular masses of astaxanthin and astaxanthin esters.The mass of 778in peak M1(Fig.2a )corresponded to asta-xanthin dodecanoate (C12:0)monoester.Similarly,those of 806,832,834and 860corresponded to astaxanthin tetradecanoate (C14:0),hexadecenoate (C16:1),hexadecanoate (C16:0)and octa-decenoate (C18:1)monoesters,respectively.Two peaks on this HPLC system contained two astax-anthin monoesters.The peak M2contained astax-anthin C14:0and C16:1monoesters and the peak M3contained astaxanthin C16:0and C18:1mon-oesters.The HPLC peak areas of M1,M2and M3(Fig.1)were 17,29and 54%,respectively.The compositions of two astaxanthin monoesters in the peaks M2and M3were calculated from intensities of the mass peaks (Fig.2b and c ).The composition of astaxanthin monoesters were thus calculated to be 17,20,9,29and 25%of C12:0,C14:0,C16:1,C16:0and C18:1,respectively.The fatty acid moieties of the astaxanthin mono-ester fraction (M1–3)were converted into fatty acid methyl esters,and analyzed by GC.The major fatty acids were C16:0(76%)and C18:1(20%),and the trace amount of other fatty acids were also found.HPLC elution profile reflects esterified fatty acids of astaxanthin esters.When all of the fatty acid detected by GC described above was bound to astaxanthin as astaxanthin monoesters,HPLC elution profile was different from Fig. 1.This meant the astaxanthin monoester fraction (M1–3)contained other lipids,which could not been detected by FD-MS.3.3.Astaxanthin diestersThe major relative molecular masses in peak D5(Fig.1)were 1072,1098and 1124(Fig.3).In320S.Takaichi et al./Comparative Biochemistry and Physiology Part B136(2003)317–322Fig.3.FD-MS spectra of astaxanthin diesters in the peak D5 in Fig.1.the case of1072,the sum of the carbon number of fatty acids was32and the sum of double bond was zero.This corresponds to two C16:0.Similar-ly,for1098,the carbon number was34and the double bond was one,and the two fatty acids could be C16:0and C18:1.For1124,the carbon number was36and the double bond was two, corresponding to two C18:1.Consequently,peak D5contained astaxanthin C16:0and C18:1dies-ters.The major relative molecular masses in peak D4were1044,1070and1096.For1070,two pairs could be possible,C14:0and C18:1,and C16:0and C16:1diesters.Those of1044and1096 corresponded to C14:0and C16:0,and C16:1and C18:1diesters,respectively.In the peak D3,1016 corresponded to two C14:0,and C12:0and C16:0diesters,1042to C14:0and C16:1,and C12:0andC18:1diesters and1068to two C16:1diester.Inthe peak D2,988corresponded to C12:0and C14:0diester,and1014to C12:0and C16:1diester.Since the content of the peak D1was too small tocollect from HPLC,we could not measure therelative molecular masses,but this peak mightcontain astaxanthin C12:0diester from the reten-tion time on HPLC.The HPLC peak areas of D1,D2,D3,D4andD5(Fig.1)were3,12,33,28and24%,respec-tively.When the fatty acids of the astaxanthindiester fraction(D1–5)were analyzed by GC,they were C14:0(42%),C16:1(6%),C16:0(46%),C18:1(4%)and some minors.This com-position did not reflect the HPLC elution profile,and consequently,the astaxanthin diester fractionmight contain other lipids.Poly-unsaturated fattyacids were not found in astaxanthin esters basedon HPLC elution profile and FD-MS analysis.4.DiscussionThe presence of astaxanthin esters in animals, especially in marine,is well known(Goodwin, 1984).We found astaxanthin(20%),astaxanthin monoesters(34%)and astaxanthin diesters(46%) from Antarctic krill E.superba.Most carotenoids in krill have been reported as astaxanthin,and similar compositions have been reported for krill E.superba(Renstrøm and Liaaen-Jensen,1981; Yamaguchi et al.,1983;Maoka et al.,1985;Foss et al.,1987).Fatty acids of carotenoid esters have not been studied much in animals.We found that only five kinds of fatty acids,C12:0,C14:0,C16:0,C16:1 and C18:1,were esterified to astaxanthin esters inthe krill.Although poly-unsaturated fatty acidswere not found in astaxanthin esters,major fattyacids in the cellular lipids of krill was C14:0(17%),C16:0(26%),C16:1(16%),C18:1(8%), C20:5(26%)and C22:6(7%).Similar fatty acidcompositions have been reported(Bottino,1975;Phleger et al.,2002).Carotenoid esters occur in algae,fruits andpetals of higher plants,and animals and are notfound in bacteria(Goodwin,1980,1984).Acetate(C2:0)is common among algal carotenoids,e.g. fucoxanthin and peridinin.In siphonaxanthin ester of green-algae,2-trans-tetradecenoate(C14:1)is usually a specific and sole fatty acid esterified,but recently,other specific fatty acids have been found (Y oshii et al.,2002).Bacteria such as Rhodococ-cus,Halorhodospira and Heliorestis contain carot-enoid glucoside esters,whose fatty acids are only a few specific ones(Takaichi et al.,1990,2001, 2003;Niggli and Pfander,1999).In these,HPLC elution profiles showed few peaks corresponding to each carotenoid ester or carotenoid glucoside ester(Takaichi et al.,1990;Y oshii et al.,2002). Carotenoid esters of plants,such as lutein diesters from marigold petals,capsantin and capsorubin esters from red bell peppers and carotenoid esters in orange peels and concentrates(Zonta et al., 1987;Philip and Chen,1988;Wingerath et al., 1996),have many fatty acids.In these,HPLC elution profiles showed many carotenoid ester peaks.Contamination of carotenoid esters with otherlipids affects fatty acid composition analyzed byGC.Indeed,the fatty acid composition of theastaxanthin monoester fraction(M1–3,Fig.1)in321 S.Takaichi et al./Comparative Biochemistry and Physiology Part B136(2003)317–322krill determined by HPLC and FD-MS was differ-ent from that by GC in this study.In this study,we could determine some fattyacids in astaxanthin esters by FD-MS withoutfragmentation.FD-MS has been reported to showonly a molecular ion without fragmentation forcarotenoids,carotenoid glucoside and carotenoidglucoside esters(Takaichi,1993).SI-MS and FAB-MS showed similar spectra.Therefore,these meth-ods are useful tools for determination of fatty acidsin carotenoid esters containing small amounts oflipid impurities,and can be useful for carotenoidester analysis in animals and fruits,which containlarge amounts of lipids.Carbon numbers and sumof double bonds can be calculated for carotenoiddiesters,while determination of carbon number ofeach individual fatty acid is impossible by thismethod.Therefore,other spectroscopic methodsare necessary for fully understanding all the asta-xanthin esters.Major fatty acids among11different from asta-xanthin monoesters and diesters in shrimp Pan-dalus borealis was C16:1,C18:1,docosenoate (C22:1)and C22:6(Renstrøm and Liaaen-Jensen, 1981).In this case,the fatty acid composition ofthe purified astaxanthin esters was analyzed byGC.Major fatty acids in total phospholipids ineyes of P.borealis were C16:0,C18:1,C20:5andC22:6(Bell and Dick,1990).From the red crab langostilla Pleuroncodes plan-ipes,one astaxanthin monoester fraction and three astaxanthin diester fractions were purified from silica gel TLC(Coral-Hinostroza and Bjerkeng, 2002).Separation of astaxanthin diesters reflects the different esterified fatty acids,but the fatty acid composition analyzed by GC was similar to each other.Concerning biosynthesis of astaxanthin esters,an esterase must be present.This esterase canesterify both sides of astaxanthin to produce asta-xanthin monoesters and diesters,and only fivefatty acids appear to be substrates. AcknowledgmentsWe thank Dr T.Maoka of Kyoto PharmaceuticalUniversity for the analysis of the FAB-MS spectra. ReferencesBell,M.V.,Dick,J.R.,1990.The fatty acid composition of phospholipids from the eyes of the northern deepwaterprawn,Pandalus borealis.Biochem.Soc.Trans.18, 907–908.Bottino,N.R.,1975.Lipid composition of two species of Antarctic krill:Euphausia superba and E.crystallorophias. Comp.Biochem.Physiol.B50,479–484.Coral-Hinostroza,G.,Bjerkeng,B.,2002.Astaxanthin from the red crab langostilla(Pleuroncodes planipes):optical R y S isomers and fatty acid moieties of astaxanthin esters. Comp.Biochem.Physiol.B133,437–444.Goodwin,T.W.,1980.The Biochemistry of the Carotenoids, Vol.1Plants.2nd Ed.Chapman and Hall,New Y ork. Goodwin,T.W.,1984.The Biochemistry of the Carotenoids, Vol.II Animals.2nd Ed.Chapman and Hall,New Y ork. Foss,P.,Renstrøm,B.,Liaaen-Jensen,S.,1987.Natural occur-rence of enantiomeric and meso astaxanthin:7.Crustaceans including p.Biochem.Physiol.B86, 313–314.Maoka,T.,Katsuyama,M.,Kaneko,N.,Matsuno,T.,1985. Stereochemical investigation of carotenoids in the Antarctic krill Euphausia superba.Bull.Jpn.Soc.Sci.Fish.51, 1671–1673.Niggli,U.A.,Pfander,H.,1999.Carotenoid glycosides and glycosyl esters.In:Ikan,R.(Ed.),Naturally Occurring Glycosides.Wiley&Sons Ltd,Chichester,pp.125–145. Palozza,P.,Krinsky,N.I.,1992.Antioxidant effects of carot-enoids in vivo and in vitro:an overview.Methods Enzymol. 213,403–420.Philip,T.,Chen,T.-S.,1988.Separation and quantitative analysis of some carotenoid fatty acid esters of fruits by liquid chromatography.J.Chromatogr.435,113–126. Phleger,C.F.,Nelson,M.M.,Mooney,B.D.,Nicholes,P.D., 2002.Interannual and between species comparison of the lipids,fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey p.Biochem.Phy-siol.B131,733–747.Renstrøm,B.,Liaaen-Jensen,S.,1981.Fatty acid composition of some esterified p.Biochem.Physiol.B 69,625–627.Takaichi,S.,efulness of field desorption mass spec-trometry in determining molecular masses of carotenoids, natural carotenoid derivatives and their chemical derivatives. Org.Mass Spectrom.28,785–788.Takaichi,S.,Ishidsu,J.,1992.Carotenoid glycoside ester from Rhodococcus rhodochrous.Methods Enzymol.213, 366–374.Takaichi,S.,Seki,T.,Ishidsu,J.,Fukuda,S.,1990.Carotenoid pigments from Rhodococcus rhodochrous RNMS1:two monocyclic carotenoids,a carotenoid monoglycoside and carotenoid glycoside monoesters.Argic.Biol.Chem.54, 1931–1937.Takaichi,S.,Maoka,T.,Hanada,S.,Imhoff,J.F.,2001. Dihydroxylycopene diglucoside diesters:a novel class of carotenoids from the phototrophic purple sulfur bacteria Halorhodospira abdelmalekii and Halorhodospira haloch-loris.Arch.Microbiol.175,161–167.Takaichi,S.,Oh-oka,H.,Maoka,T.,Jung,D.O.,Madigan, M.T.,2003.Novel carotenoid glucoside esters from alkali-philic heliobacteria.Arch.Microbiol.179,95–100.322S.Takaichi et al./Comparative Biochemistry and Physiology Part B136(2003)317–322Wingerath,T.,Stahl,W.,Kirsch,D.,Kaufmann,R.,Sies,H.,1996.Fruit juice carotenol fatty acid esters and carotenoidsas identified by matrix-assisted laser desorption ionization(MALDI)mass spectrometry.J.Agric.Food Chem.44, 2006–2013.Yamaguchi,K.,Miki,W.,Toriu,N.,Kondo,Y.,Murakami,M.,Konosu,S.,et al.,1983.The composition of carotenoidpigments in the Antarctic krill Euphausia superba.Bull.Jpn.Soc.Sci.Fish.49,1411–1415.Y oshii,Y.,Takaichi,S.,Maoka,T.,Hanada,S.,Inoue,I.,2002. Characterization of two unique carotenoid fatty acid esters from Pterosperma cristatum(Prasinophyceae,Chlorophyta). J.Phycol.38,297–303.Zonta,F.,Stancher, B.,Marletta,G.P.,1987.Simultaneous high-performance liquid chromatographic analysis of free carotenoids and carotenoid esters.J.Chromatogr.403, 207–215.。

相关文档
最新文档