黑龙江省哈尔滨三中高一数学上学期期中试题
黑龙江省哈尔滨市第三中学2019-2020学年高一数学上学期期中试题(国际部,含解析)

黑龙江省哈尔滨市第三中学2019-2020学年高一数学上学期期中试题(国际部,含解析)第Ⅰ卷一、选择题1.设集合{0,1,2}A =,2{|320}B x x x =-+≤,则A B =( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D 【解析】分析:先化简集合B,再求A∩B 得解.详解:由题得{|12}B x x =≤≤,所以{}1,2A B ⋂=.故答案为:D点睛:本题主要考查集合和集合的交集运算,意在考查学生集合基础知识的掌握能力.要注意集合A 和集合B 的交集是有限集,不要写成了不等式.2.下列函数中,在各自定义域内为增函数的是( )A. 22y x =-B. 3y x=C. 1y =D.2(2)y x =-+【答案】C 【解析】 【分析】根据二次函数的单调性判断A 、D 不对,由反比例函数的单调性判断B 不对,根据复合函数和幂函数的单调性判断C 对。
【详解】对于A ,因为22y x =-在(],0-∞上为减函数,在(0,)+∞为增函数,所以A 不对;对于B ,因为3y x=在(,0)-∞上为减函数,在(0,)+∞上也为减函数,所以B 不对;对于C ,因为y =(],2-∞上为减函数,所以1y =在(],2-∞为增函数,所以C 对;对于D ,因为2(2)y x =-+的对称轴是2x =-,所以(],2-∞-上为增函数,在(2,)-+∞为减函数,所以D 不对。
故选:C【点睛】本题考查函数的单调性的判断,主要利用二次函数的单调性、反比例函数的单调性、以及复合函数和幂函数的单调性进行判断。
3.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( ) A. 5 B. 4C. 3D. 2【答案】C 【解析】 【详解】,,或是,,根据集合元素的互异性,集合为,共含有3个元素,故选C.考点:元素与集合4.已知集合{}A m =,{}1,B m =,若A B A ⋃=,则m =( ) A. 03 B. 0或3C. 13D. 1或3【答案】B 【解析】【详解】因为A B A ⋃=,所以B A ⊆,所以3m =或m m =.若3m =,则{3},{1,3}A B ==,满足A B A ⋃=. 若m m =,解得0m =或1m =.若0m =,则{1,3,0},{1,3,0}A B ==,满足A B A ⋃=.若1m =,{1,3,1},{1,1}A B ==显然不成立,综上0m =或3m =,选B.5.函数21()y x x x R =++∈的递减区间是( ) A. 1[,)2-+∞B. [1,)-+∞C. 1(,]2-∞-D.(,)-∞+∞【答案】C 【解析】 【分析】首先求出二次函数的对称轴12x =-;然后根据二次函数开口向上,在对称轴左侧函数单调递减,据此可写出二次函数的单调递减区间。
黑龙江省哈尔滨市第三中学校2023-2024学年高一上学期期中数学试题

黑龙江省哈尔滨市第三中学校 2023-2024 学年高一上学期期 中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合 A x x 1 , B x 2 x 2 ,则 ðR A B ( )
A. 2,1
(2)求不等式 f 4x 4 f 4 3 2x1 0 的解集.
20.2023 年 8 月,我国各地因暴雨导致洪涝灾害频发,河北省受灾尤其严重,为了支 援赈灾,哈三中文创公司进行赈灾义卖,右图为这次义卖的三中金属书签,单件成本为 8 元.经过市场调查,该书签的销量 n(件)与单件售价 x(元)之间满足:单件售价
f
x
x2
2
x
2x, 3,
x 1 ,则 f x 1 的解集为
x 1
.
16.已知定义在 0, 的不恒为 0 的函数 f x ,对于任意正实数 m, n 满足
f mn f m f n ,且 x 1时 f x 0 ,若正实数 a,b 满足 f a f 2 2b ,则
a2 2b2 的最小值为
A.若 a b 0 ,则 ac2 bc2 C.若 a b 1,则 ab 的最大值为 1
4
B.若 a b 0 ,则 a 1 b 1
b
a
D.若 2a b 1 ,则 a a b 最大值为 1
4
11.已知定义在 0, 上的函数 f x x2 2x 5 ,下列说法错误的是( )
21.已知函数 f x ax 2 x 1
(1)解关于 x 的不等式 f x 0 .
(2)设函数 g x
f x ,若
x 1
f
x
0
的解集为
哈尔滨市第三中学数学高一上期中基础卷(含答案)

一、选择题1.(0分)[ID :11814]函数()ln f x x x =的图像大致是( )A .B .C .D .2.(0分)[ID :11813]函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .3.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦4.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 5.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件6.(0分)[ID :11782]设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .137.(0分)[ID :11795]已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( ) A .{x |-2≤x <4} B .{x |x ≤3或x ≥4} C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.(0分)[ID :11793]设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a取值范围( ) A .[)2,+∞B .[]0,3C .[]2,3D .[]2,49.(0分)[ID :11787]已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.(0分)[ID :11739]函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .611.(0分)[ID :11737]已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<12.(0分)[ID :11734]已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( )A .1B .3C .4D .613.(0分)[ID :11823]已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B中元素的个数为( ) A .3B .2C .1D .014.(0分)[ID :11760]设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( )A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞15.(0分)[ID :11768]已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( ) A .a c b >> B .b c a >> C .b a c >> D .a b c >>二、填空题16.(0分)[ID :11927]如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.17.(0分)[ID :11906]1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.18.(0分)[ID :11900]若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.19.(0分)[ID :11884]已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 20.(0分)[ID :11873]函数y =√1−x 2+lg(2cosx −1)的定义域为______________. 21.(0分)[ID :11853]若4log 3a =,则22a a -+= .22.(0分)[ID :11842]非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.23.(0分)[ID :11839]用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .24.(0分)[ID :11905]已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.25.(0分)[ID :11863]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12001]某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).27.(0分)[ID :11992]已知函数()xf x b a =⋅,(其中,a b 为常数且0,1a a >≠)的图象经过点(1,6),(3,24)A B (1)求()f x 的解析式(2)若不等式11120x xm a b ⎛⎫⎛⎫++-≥ ⎪ ⎪⎝⎭⎝⎭在(],1x ∈-∞上恒成立,求实数m 的取值范围. 28.(0分)[ID :11981]已知函数()212ax f x x b +=+是奇函数,且()312f =.(1)求实数a ,b 的值;(2)判断函数()f x 在(],1-∞-上的单调性,并用定义加以证明. (3)若[]2,1x ∈--,求函数的值域29.(0分)[ID :11947]设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求f (0);(2)证明f (x )是奇函数;(3)解不等式12f (x 2)—f (x )>12f (3x ).30.(0分)[ID :11940]已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.C4.B5.B6.B7.D8.D9.C10.A11.C12.C13.B14.D15.B二、填空题16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a=-5∴a=-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解( 2)求参数值:在定义域关于17.2【解析】【分析】先求f(2)再根据f(2)值所在区间求f(f(2))【详解】由题意f(2)=log3(22–1)=1故f(f(2))=f(1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数18.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数19.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b使得关于x的方程f(x)=b有三个不同的根则解得故m的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数20.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx-1>0⇒-1≤x≤1cosx>12cosx>12⇒x∈-π3+2kππ3+2kπ21.【解析】【分析】【详解】∵∴∴考点:对数的计算22.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题24.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A 解析:A 【解析】 【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定. 【详解】因为函数()ln f x x x =是奇函数,排除C ,D 又因为2x = 时()0f x >,排除B 故选:A 【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.2.D解析:D 【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x xx x x<≥分段画出函数图象如D 图示, 故选D .3.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去;当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.4.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算5.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.6.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减,又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.7.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.8.D解析:D 【解析】 【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.9.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.12.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案. 【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈. 结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.13.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛ ⎝⎭,2222⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.14.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.15.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于 解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.17.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.18.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.19.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.20.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:[−1,1]【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】由题意得:{1−x 2≥02cosx −1>0 ⇒{−1≤x ≤1cosx >12 cosx >12 ⇒x ∈(−π3+2kπ,π3+2kπ),k ∈Z ∴函数定义域为:[−1,1] 【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.21.【解析】【分析】【详解】∵∴∴考点:对数的计算 433【解析】【分析】 【详解】∵4log 3a =,∴432a a =⇒=222a-+== 考点:对数的计算22.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题24.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题 解析:3【解析】 【分析】 先由()()43ff x x =-求出a 、b 的值,可得出函数()y f x =的解析式,然后再求出()2f 的值.【详解】 由题意,得()()()()()243ff x f ax b a ax b b a x ab b x =-=⋅--=-+=-,即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此()23f =,故答案为3.【点睛】本题考查函数求值,解题的关键就是通过题中复合函数的解析式求出函数的解析式,考查运算求解能力,属于中等题.25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题26.(1)A 为()()104f x x x =≥,B 为())0g x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元 【解析】 【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()104x y f x g x =+-=,用换元法,设t =函数可求得利润的最大值. 【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元由题设知()1f x k x =;()g x k =由图1知()114f =,114k =由图2知()542g =,254k =则()()104f x x x =≥,())0g x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.()()104x y f x g x =+-=,010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元. 【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.27.(1)()=32xf x ⋅;(2)1112m ≤. 【解析】试题分析:(1)由题意得2,3a b ==,即可求解()f x 的解析式;(2)设11()()()x xg x a b =+,根据()y g x =在R 上为减函数,得到min 5()(1)6g x g ==,再由11()()120xxm a b++-≥在(],1x ∈-∞上恒成立,得5216m -≤,即可求解实数m 的取值范围. 试题解析: (1)由题意得()x36a 2,b 3,f x 32a 24a b b ⋅=⎧⇒==∴=⋅⎨⋅=⎩(2)设()xxxx1111g x a b 23⎛⎫⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()y g x =在R 上为减函数 ∴当x 1≤时()()min 5g x g 16==xx1112m 0a b ⎛⎫⎛⎫∴++-≥ ⎪ ⎪⎝⎭⎝⎭在(]x ,1∞∈-上恒成立,即5112m 1m 612-≤⇒≤∴ m 的取值范围为:11m 12≤点睛:本题主要考查了函数解析式的求解和不等式的恒成立问题的应用,解答中涉及到函数满足条件的实数的取值范围的求法,以及函数的单调性的应用,解题时要认真审题,仔细解答,同时注意合理进行等价转化是解答本题的关键,试题有一定的难度,属于中档试题.28.(1)2,0a b ==;(2)()f x 在(],1-∞-上为增函数,证明见解析;(3)93,42⎡⎤--⎢⎥⎣⎦. 【解析】 【分析】(1)由函数为奇函数可得()312f =,()312f -=-,再联立解方程组即可得解; (2)利用定义法证明函数()f x 在(],1-∞-上为增函数即可; (3)由函数()f x 在[]2,1--上为增函数,则可求得函数的值域. 【详解】解:(1)由函数()212ax f x x b+=+是奇函数,且()312f =,则()312f -=-,即22113212(1)132(1)2a b a b ⎧⨯+=⎪⨯+⎪⎨⨯-+⎪=-⎪⨯-+⎩ ,解得:20a b =⎧⎨=⎩ ; (2)由(1)得:()2212x f x x+=,则函数()f x 在(],1-∞-上为增函数; 证明如下: 设121x x <≤-,则12()()f x f x -=211212x x +222212x x +-=2212212112222x x x x x x x x +--121212()(21)2x x x x x x --=,又因为121x x <≤-,所以120x x -<,12210x x ->,120x x >, 即12())0(f x f x -< ,即12()()f x f x <, 故()f x 在(],1-∞-上为增函数;(3)由(2)得:函数()f x 在[]2,1--上为增函数,所以(2)()(1)f f x f -≤≤-,即93()42f x -≤≤-,故[]2,1x ∈--,函数的值域为:93,42⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查了函数的奇偶性及增减性,重点考查了利用函数的性质求函数的值域问题,属中档题.29.(1)0;(2)见解析;(3){x|x<0或x>5} 【解析】 【分析】 【详解】试题分析:(1)利用已知条件通过x=y=0,直接求f (0);(2)通过函数的奇偶性的定义,直接证明f (x )是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等12f(x 2)−f(x)>12f(3x)的解集即可.试题解析:(1)令x =y =0,得f(0)=f(0+0)=f(0)+f(0), ∴f(0)=0 定义域关于原点对称y =−x ,得f(x)+f(−x)=f(0)=0, ∴f(−x)=f(x)∴f(x)是奇函数12f(x 2)−f(x)>12f(3x),f (x 2)−f (3x )>2f (x ),即f (x 2)+f (−3x )>2f (x ),又由已知得:f(2x)=2f (x )∴f (x 2−3x )>f (2x ),由函数f (x )是增函数,不等式转化为x 2−3x >2x .∴x 2−5x >0,∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法. 30.(1){}11x x -<<(2)函数()f x 为奇函数,证明见解析(3){}01x x <<【解析】【分析】(1)根据题意,求函数定义域结合对数函数真数大于零得到关于x 的不等式组,求解即可得出答案。
2019-2020学年黑龙江省哈尔滨市第三中学高一上学期期中数学试题(解析版)

2019-2020学年黑龙江省哈尔滨市第三中学高一上学期期中数学试题一、单选题1.下列函数中,在区间()1,2上为增函数的是( ) A .1y x= B .y x = C .21y x =-+D .243y x x =-+【答案】B【解析】根据基本初等函数的单调性判断出各选项中函数在区间()1,2上的单调性,可得出正确选项. 【详解】对于A 选项,函数1y x=在区间()1,2上为减函数; 对于B 选项,当()1,2x ∈时,y x =,则函数y x =在区间()1,2上为增函数; 对于C 选项,函数21y x =-+在区间()1,2上为减函数; 对于D 选项,二次函数243y x x =-+在区间()1,2上为减函数.故选:B. 【点睛】本题考查基本初等函数在区间上的单调性的判断,熟悉一次、二次、反比例函数的单调性是解题的关键,考查推理能力,属于基础题.2.若函数()f x 对定义域内任意两个自变量x 、y 都有()()()f x y f x f y +=,则()f x 可以是( )A .()21f x x =+B .()2f x x =C .()1f x x=D .()2xf x =【答案】D【解析】对各选项中的函数()y f x =验证是否满足()()()f x y f x f y +=,从而可得出正确选项. 【详解】对于A 选项,()21f x x =+,则()()21+=++f x y x y ,()()()()21214221=++=+++f x f y x y xy x y ,则()()()f x y f x f y +≠;对于B 选项,()2f x x =,则()()2222+=+=++f x y x y x xy y ,()()22=f x f y x y ,则()()()f x y f x f y +≠;对于C 选项,()1f x x=,()1+=+f x y x y ,()()1=f x f y xy ,则()()()f x y f x f y +≠;对于D 选项,()2++=x yf x y ,()()222+=⋅=xyx yf x f y ,则()()()f x y f x f y +=.因此,()2xf x =满足()()()f x y f x f y +=.故选:D. 【点睛】本题考查函数解析式的运算,解题的关键就是对函数解析式逐一进行验证,考查计算能力,属于中等题.3.13=⎛⎫⎪⎝⎭a ( )A .1a -B .12aC .aD .1918a【答案】B【解析】根据根式与指数幂的互化,以及指数幂的运算可得出结果. 【详解】7172132632213333⨯-=====⎛⎫ ⎪⎝⎭aaaaaaa .故选:B. 【点睛】本题考查指数幂的运算,同时也考查了根式与分数指数幂的互化,考查计算能力,属于基础题. 4.已知()f x =()32-f x 的定义域为( )A .15,33⎡⎤⎢⎥⎣⎦B .51,3⎡⎤-⎢⎥⎣⎦C .[]3,1-D .1,13⎡⎤⎢⎥⎣⎦【答案】A【解析】求出函数()y f x =的定义域为[]1,3-,然后解不等式1323-≤-≤x 可得出函数()32=-y f x 的定义域. 【详解】对于函数()f x =2230x x -++≥,即2230x x --≤,解得13x -≤≤,所以,函数()y f x =的定义域为[]1,3-.对于函数()32=-y f x ,1323-≤-≤x ,解得1533≤≤x . 因此,函数()32=-y f x 的定义域为15,33⎡⎤⎢⎥⎣⎦.故选:A. 【点睛】本题考查具体函数以及复合函数定义域的求解,解题时要注意以下两个问题:定义域为自变量的取值范围、中间变量的取值范围一致,考查计算能力,属于中等题.5.若方程10m --=有解,则实数m 的取值范围为( )A .[]0,3B .()1,-+∞C .[)0,+∞D .(]1,3-【答案】A【解析】由参变量分离法得出1+=m ,求出函数=y1m +的取值范围即为函数=y m 的取值范围.【详解】由10m --=得1+=m ,则1m +的取值范围即为函数=y .2044≤-≤x ,02∴≤≤,14∴≤≤,即函数=y []1,4.解不等式114≤+≤m ,解得03m ≤≤. 因此,实数m 的取值范围是[]0,3. 故选:A. 【点睛】本题考查方程有解的问题,利用参变量分离法将参数的取值范围转化为与函数值域相关的问题求解,考查化归与转化思想,属于中等题.6.设2log 3a =,3log 2b =,=c a 、b 、c 的大小关系为( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【答案】C【解析】比较a 、b 、c 与中间值1和2的大小关系,可得出这三个数的大小关系. 【详解】函数2log y x =为增函数,则222log 2log 3log 4<<,即12a <<; 函数3log y x =为增函数,则33log 2log 31b =<=;函数y =2=>=c .因此,c a b >>. 故选:C. 【点睛】本题考查指数幂与对数式的大小比较,一般利用中间值法结合指数函数、对数函数的单调性来比较,考查分析问题和解决问题的能力,属于中等题.7.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=ðU A B ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个【答案】C【解析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选:C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.8.设函数()()221,14,1xx ax x f x a x ⎧-++≤⎪=⎨->⎪⎩,若()f x 在R 上单调递增,则a 的取值范围是( ) A .413a ≤< B .413a <≤C .13a ≤<D .413a ≤≤【答案】D【解析】根据题意得知221=-++y x ax 在(],1-∞上为增函数,且函数()4=-xy a 在()1,+∞上为增函数,以及212114-+⨯+≤-a a ,由此列不等式组可求出实数a 的取值范围. 【详解】由于函数()()221,14,1xx ax x f x a x ⎧-++≤⎪=⎨->⎪⎩在R 上为增函数, 则函数221=-++y x ax 在(],1-∞上为增函数,该二次函数图象开口向下,对称轴为直线x a =,所以1a ≥;函数()4=-xy a 在()1,+∞上为增函数,则41a ->,得3a <. 且有212114-+⨯+≤-a a ,解得43a ≤. 综上所述,413a ≤≤. 故选:D. 【点睛】本题考查分段函数的在实数集上的单调性,一般要确保分段函数每支都保持原函数的单调性,同时也要注意间断点处函数值的大小关系,考查分析问题和解决问题的能力,属于中等题.9.已知定义域为R 的奇函数()f x 满足()20f =,若对任意1x 、()20,x ∈+∞,且12x x ≠,()()12120f x f x x x ->-恒成立,则不等式()0xf x >的解集为( )A .()(),22,-∞-+∞B .()(),20,2-∞-C .()()2,02,-+∞D .()()2,00,2-【答案】A【解析】分析出函数()y f x =在(),0-∞和()0,∞+上都是增函数,然后分0x >和0x <两种情况,利用函数()y f x =的单调性解不等式()0xf x >,即可得出该不等式的解集. 【详解】函数()y f x =是定义在R 上的奇函数,且()20f =,则()20f -=,()00f =, 对任意1x 、()20,x ∈+∞,且12x x ≠,()()12120f x f x x x ->-恒成立,则函数()y f x =在()0,∞+上为增函数,且在(),0-∞上也为增函数.当0x >时,由()0xf x >,可得()0f x >,即()()2f x f >,解得2x >; 当0x <时,由()0xf x >,可得()0f x <,即()()2<-f x f ,解得2x <-. 因此,不等式()0xf x >的解集为()(),22,-∞-+∞.故选:A. 【点睛】本题考查利用函数的奇偶性与单调性解函数不等式,将不等式转化为函数的两个函数值的大小关系是解题的关键,考查分析问题和解决问题的能力,属于中等题. 10.()()248525125log 125log 25log 5log 2log 4log 8++⋅++=( ) A .0 B .1C .9D .13【答案】D【解析】利用换底公式将底数和真数化简,合并同类项之后再相乘可得出结果. 【详解】由换底公式可得,原式()()23233223252255log 5log 5log 5log 2log 2log 2=++⋅++()222555251133log 5log 5log 5log 2log 2log 2log 53log 21333⎛⎫=++⋅++=⨯= ⎪⎝⎭.故选:D. 【点睛】本题考查对数的计算,考查换底公式的应用,解题的关键就是将底数和真数利用换底公式化小,考查计算能力,属于中等题.11.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]8,10-上所有根的和为( ) A .0 B .8C .16D .32【答案】C【解析】利用题意可得出函数()y f x =的图象关于直线1x =对称,关于点()2,0对称,并且周期为4,作出图象得知,函数12y x =-的图象与函数()y f x =在[)8,6--上没有交点,并且函数12y x =-在[)(]6,22,10-上的图象关于点()2,0对称,且函数()y f x =在区间[]6,10-上的图象也关于点()2,0对称,然后利用对称性得出两个函数交点横坐标之和. 【详解】()()2=-+f x f x ,即()()2f x f x +=-,()()()42f x f x f x ∴+=-+=,所以,函数()y f x =是以4为周期的周期函数.又()()2f x f x =-,则函数()y f x =的图象关于直线1x =对称.()()()22∴+=-=--f x f x f x ,()()220∴++-=f x f x ,则函数()y f x =的图象关于点()2,0对称,易知函数12y x =-的图象也关于点()2,0对称,如下图所示:函数12y x =-的图象与函数()y f x =在[)8,6--上没有交点,并且函数12y x =-在[)(]6,22,10-上的图象关于点()2,0对称,且函数()y f x =在区间[]6,10-上的图象也关于点()2,0对称,两个函数在区间[]6,10-上共有8个公共点,且这些公共点呈现4对关于点()2,0对称,因此,方程()12f x x =-在[]8,10-上所有根的和为4416⨯=.故选:C. 【点睛】本题考查方程根之和问题,一般利用数形结合思想,转化为两函数交点横坐标之和的问题,借助函数图象的对称性来求解,考查数形结合思想的应用,属于难题.12.已知函数()18,21221512,12182x x xf x ax a x ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩,若对于任意的实数1x 、2x 、[]32,18x ∈,均存在以()1f x 、()2f x 、()3f x 为三边边长的三角形,则a 的取值范围是( ) A .35412a -<< B .53124a -<< C .304a ≤<D .304a -<≤ 【答案】B【解析】对实数a 分0a <、0a =、0a >三种情况讨论,求出函数()y f x =的最大值()max f x 和最小值()min f x ,由题意得出()()max min 2f x f x <,由此可求出实数a 的取值范围. 【详解】当212x ≤≤时,()1862x f x x =+≥=,当且仅当6x =时,等号成立,且()210f =,()15122f =,此时,()610f x ≤≤; ①若0a <时,函数()15122f x ax a =-+在区间(]12,18上单调递减,则()()15182f f x ≤<,即()1515622a f x +≤<,那么,当[]2,18x ∈时,()min 15min 6,62f x a ⎧⎫=+⎨⎬⎩⎭,()max 10f x =, 由题意可得()()maxmin 2f x f x <,则有10261510262a <⨯⎧⎪⎨⎛⎫<⨯+ ⎪⎪⎝⎭⎩,解得512a >-,此时,5012a -<<; ②当0a =时,且当1218x <≤时,()152f x =,则()min 6f x =,()max 10f x =,()()max min 2f x f x <成立,此时0a =;③当0a >时,函数()15122f x ax a =-+在区间(]12,18上单调递增,则()()51812f x f <≤,即()1515622f x a <≤+,则()min 6f x =,()max 15max 10,62f x a ⎧⎫=+⎨⎬⎩⎭,由题意可得()()maxmin 2f x f x <,则有1062156622a <⨯⎧⎪⎨+<⨯⎪⎩,解得34a <,此时304a <<. 综上所述,53124a -<<. 故选:B. 【点睛】本题考查函数最值的应用,同时也考查了分段函数的最值,解题的关键就是将题意转化为关于函数最值相关的不等式求解,考查分类讨论思想的应用,属于中等题.二、填空题13.函数()3log 21y x =-的定义域是__________. 【答案】1,2⎛⎫+∞⎪⎝⎭【解析】利用对数的真数大于零可得出函数()3log 21y x =-的定义域. 【详解】由题意可得210x ->,解得12x >. 因此,函数()3log 21y x =-的定义域是1,2⎛⎫+∞⎪⎝⎭. 故答案为:1,2⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查对数函数定义域的求解,求解时要注意对底数和真数进行限制,列出不等式(组)求解即可,考查计算能力,属于基础题. 14.不等式127x x -++≥的解集为__________. 【答案】(][),43,-∞-+∞【解析】分2x -≤、21x -<<、1x ≥三种情况去绝对值,解出不等式,即可得出该不等式的解集. 【详解】当2x -≤时,由127x x -++≥,得12217x x x ---=--≥,解得4x ≤-,此时4x ≤-;当21x -<<时,由127x x -++≥,得1237x x -++=≥不成立,此时,x ∈∅; 当1x ≥时,由127x x -++≥,得12217x x x -++=+≥,解得3x ≥,此时3x ≥.综上所述,不等式127x x -++≥的解集为(][),43,-∞-+∞.故答案为:(][),43,-∞-+∞.【点睛】本题考查绝对值不等式的解法,一般利用分类讨论去绝对值的方法求解,考查分类讨论思想与运算求解能力,属于中等题.15.函数y =在[]0,2上是减函数,则实数a 的取值范围是__________. 【答案】()1,10,2⎛⎤-∞- ⎥⎝⎦【解析】先由0,10a ax ≠-≥在[]0,2上恒成立,得出1,02a a ≤≠,然后分1a <-和10a -<<、102a <≤三种情况分类讨论,结合函数y =为减函数得出实数a 的取值范围. 【详解】由题意可知,0,a ≠不等式10ax -≥在[]0,2上恒成立,则100120a a -⨯≥⎧⎨-≥⎩,得12a ≤.当1a <-时,10a +<,则函数y =在[]0,2上是减函数,合乎题意;当10a -<<时,10a +>,则函数y =在[]0,2上是增函数,不合乎题意;当102a <≤时,10a +>,则函数y =在[]0,2上是减函数,合乎题意. 综上所述,实数a 的取值范围是()1,10,2⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查利用函数的单调性求参数,解题时除了对参数的取值进行分类讨论外,还应注意函数在定义域上有意义,考查分析问题和解决问题的能力,属于中等题. 16.设函数()()22224212ax a x f x x--+=,若对于任意[)1,x ∈+∞,()1f x ≤恒成立,则a 的取值范围是__________.【答案】112⎡⎤-+⎢⎥⎣⎦ 【解析】由题意得出对于任意[)1,x ∈+∞,()2222421112ax a x x--+-≤≤,转化为不等式组()()22222342021420a x ax a x ax ⎧++-≥⎪⎨-+-≤⎪⎩对任意的[)1,x ∈+∞恒成立,分析二次函数在区间[)1,+∞上的单调性,转化为关于函数最值的不等式来求解,从而可得出实数a 的取值范围. 【详解】由题意得出对于任意[)1,x ∈+∞,()2222421112ax a x x--+-≤≤,则不等式组()()22222342021420a x ax a x ax ⎧++-≥⎪⎨-+-≤⎪⎩对任意的[)1,x ∈+∞恒成立.先考查二次不等式()2223420a x ax ++-≥对任意的[)1,x ∈+∞恒成立.构造函数()()222342g x a x ax =++-,该二次函数图象开口向上,对称轴为直线2223ax a =-+. 因为22230a a ++≥恒成立,所以22123aa -≤+,此时,函数()y g x =在区间[)1,+∞上单调递增,则()()2min 12410g x g a a ==++≥,解得1a ≤-或1a ≥- 下面来考查不等式()221420a x ax -+-≤对任意的[)1,x ∈+∞恒成立,则2210a -≤.构造函数()()222142h x a x ax =-+-.①当2210a -=时,即当2a =±.若2a =,则()2h x =-,当1x ≥时,()2h x ≥,不合乎题意;若2a =-,则()20h x ≤-<,合乎题意;②当2210a -<时,即当a <<()y h x =的图象开口向下,对称轴为直线2212a x a =-.当22112a a ≤-时,即当1122a +-≤≤时,函数()y h x =在[)1,+∞上单调递减,则()()2max 12430h x h a a ==+-≤a ≤≤122a -<≤;当22112a a >-时,即当a <a >时,23280a ∆=-≤,解得1122a -≤≤12a <≤.由上可知,当12a ⎡⎤∈⎢⎥⎣⎦时,不等式()2221430a x ax -+-≤对任意的[)1,x ∈+∞恒成立.综上所述,当11,22a ⎤∈-⎢⎥⎣⎦时,不等式()1f x ≤对任意的[)1,x ∈+∞恒成立.因此,实数a 的取值范围是11,22⎤-⎢⎥⎣⎦. 【点睛】本题考查二次不等式在区间上恒成立问题,解题时要对二次函数的首项系数、对称轴与定义域的位置关系进行分类讨论,转化为与函数最值相关的不等式来求解,考查分类讨论思想的应用,属于中等题.三、解答题17.计算下列各式的结果:(1)11565531log 3log log 3215⎛⎫⎛⎫++⋅ ⎪ ⎪⎝⎭⎝⎭; (2)()())1121122329680.0124---⎛⎫++⨯--⎪⎝⎭.【答案】(1)1415-;(2)1415-. 【解析】(1)利用对数的运算律以及换底公式可计算出结果; (2)利用指数的运算律可计算出结果. 【详解】(1)原式1216552111111114log 3log 2log 115555621515⎛⎫=⨯+⨯=+⨯÷=-+=- ⎪⎝⎭; (2)原式)()()112212223232312102---⎡⎤⎛⎫⎡⎤=+⨯-⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦)1211114121431061015=+⨯--=--=-. 【点睛】本题考查指数与对数的运算律的应用,同时考查了换底公式的应用,考查计算能力,属于基础题.18.已知方程2504x ax a -++=有两个不相等的实数根,设a 的取值集合为A ,设关于x 的不等式()()()()12350x x x x ----≥的解集为B ,求AB 及R B A ð.【答案】{5A B x x ⋂=>或}1x <-,(){5R A B x x ⋂==ð或11x -≤≤或}23x ≤≤.【解析】由>0∆可得出集合A ,解不等式()()()()12350x x x x ----≥可得出集合B ,然后利用交集与补集的定义可得出集合A B 及R B A ð.【详解】由于方程2504x ax a -++=有两个不相等的实数根,则25404a a ⎛⎫∆=-+> ⎪⎝⎭,即2450a a -->,解得1a <-或5a >,{1A a a ∴=<-或}5a >.解不等式()()()()12350x x x x ----≥,得1x ≤或23x ≤≤或5x ≥,{1B x x ∴=≤或23x ≤≤或}5x ≥,则{5A B x x ⋂=>或}1x <-, {}15R A x x =-≤≤ð,所以,(){5R A B x x ⋂==ð或11x -≤≤或}23x ≤≤.【点睛】本题考查集合的运算,考查一元二次方程根的个数的判断以及高次不等式的解法,考查计算能力,属于中等题. 19.已知()42135x f x a++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点; (2)若()235f x a>+,求x 的取值范围. 【答案】(1)()7235x f x a+=+,定点()7,8-;(2)见解析. 【解析】(1)令21x t +=,可得出12t x -=,然后利用换元法可求出函数()y f x =的解析式,并利用指数等于零求出函数()y f x =图象所过定点的坐标; (2)由()235f x a>+,可得出722x a a +->,然后分01a <<和1a >两种情况讨论,利用函数xy a =的单调性可解出不等式722x a a +->.【详解】(1)令21x t +=,可得出12t x -=,()174223535t t f t a a -++∴=+=+,()7235x f x a+∴=+,令702x +=,得7x =-,且()07358f a -=+=, 因此,函数()y f x =图象恒过的定点坐标为()7,8-;(2)由()235f x a >+,即7223355x a a++>+,可得722x a a +->.当01a <<时,函数xy a =是减函数,则有722x +<-,解得11x <-; 当1a >时,函数xy a =是增函数,则有722x +>-,解得11x >-. 【点睛】本题考查利用换元法求函数解析式,同时也考查了指数型函数图象过定点以及指数不等式的求解,一般在解指数不等式时,需要对底数的取值范围进行分类讨论,考查分析问题和解决问题的能力,属于中等题.20.已知函数()f x 的定义域为()1,1-,且()21xf x x =+. (1)用函数的单调性定义证明函数()f x 的单调性;(2)若()f x 满足()()2240f a f a -+-<,求实数a 的取值范围.【答案】(1)见解析;(2))2.【解析】(1)任取1211x x -<<<,作差()()12f x f x -,因式分解并判断出()()12f x f x -的符号,利用单调性的定义可得出函数()y f x =在()1,1-上单调递增;(2)利用奇偶性的定义可证明出函数()y f x =是定义在()1,1-上的奇函数,由()()2240f a f a -+-<可得出()()242f a f a -<-,再利用函数()y f x =的单调性并结合函数()y f x =的定义域可解出该不等式. 【详解】(1)任取1211x x -<<<,则()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()()()()()()()()()2212121212211212122222221212121111111x x x x x x x x x x x x x x x x xx xx xx -+--+---===++++++,1211x x -<<<,120x x ∴-<,121x x <,则1210x x ->,2110x +>,2210x +>,()()120f x f x ∴-<,则()()12f x f x <,∴函数()21xf x x =+在()1,1-上为增函数; (2)函数()y f x =的定义域为()1,1-,关于原点对称, 且()()()2211xxf x f x x x --==-=-+-+,所以,函数()y f x =是奇函数, 由()()2240f a f a -+-<,得()()()2422f a f a f a -<--=-,由于函数()y f x =是定义在()1,1-上的增函数,所以2242121141a a a a ⎧-<-⎪-<-<⎨⎪-<-<⎩,解得2a <<.因此,实数a的取值范围是)2.【点睛】本题考查利用定义法证明函数的单调性,同时也考查了利用奇偶性和单调性解函数不等式,同时也不要忽略定义域对自变量的影响,考查分析问题和解决问题的能力,属于中等题.21.已知()2f x x bx c =++,其对称轴为1x =,且()22f =.(1)求()y f x =的解析式;(2)若对任意1,82x ⎡⎤∈⎢⎥⎣⎦及任意[]0,2t ∈,()()229140f x t mx t +--+>恒成立,求实数m 的取值范围.【答案】(1)()222f x x x =-+;(2)113,4⎛⎫--⎪⎝⎭. 【解析】(1)由二次函数()y f x =的对称轴可得出b 的值,再由()22f =可求出实数c 的值,从而可得出函数()y f x =的解析式;(2)由题意知,对任意的1,82x ⎡⎤∈⎢⎥⎣⎦及任意[]0,2t ∈,不等式()22229160x m tm x t +---+>恒成立,可得出0t =和2t =均满足不等式,由此可得出不等式组()()22221602220x m x x m x ⎧+-+>⎪⎨-+->⎪⎩对任意的1,82x ⎡⎤∈⎢⎥⎣⎦恒成立,利用参变量分离法得出1622222m x xm x x ⎧-<+⎪⎪⎨⎪+<-⎪⎩,分别求出函数16y x x =+、2y x x =-在区间1,82⎡⎤⎢⎥⎣⎦的最小值,可解出实数m 的取值范围. 【详解】(1)二次函数()2f x x bx c =++的对称轴为直线12bx =-=,得2b =-, 则()22f x x x c =-+,又()22f c ==,()222f x x x ∴=-+;(2)由题意知,不等式()22229160x m tm x t +---+>对任意的1,82x ⎡⎤∈⎢⎥⎣⎦及任意[]0,2t ∈恒成立,构造函数()()2222916h t x m mt x t =+---+,由题意可得()()()()2202216022220h x m x h x m x ⎧=+-+>⎪⎨=-+->⎪⎩对任意的1,82x ⎡⎤∈⎢⎥⎣⎦恒成立, 所以1622222m x x m x x ⎧-<+⎪⎪⎨⎪+<-⎪⎩对任意的1,82x ⎡⎤∈⎢⎥⎣⎦恒成立,对于函数16y x x =+,当1,82x ⎡⎤∈⎢⎥⎣⎦时,由基本不等式得8y ≥=,当且仅当4x =时,等号成立,所以16y x x =+在区间1,82⎡⎤⎢⎥⎣⎦上的最小值为8,228m ∴-<,得3m >-; 由于函数2y x x =-在区间1,82⎡⎤⎢⎥⎣⎦上单调递增,则当12x =时,函数2y x x =-取得最小值72-,7222m ∴+<-,解得114m <-. 综上所述,实数m 的取值范围是113,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查二次函数解析式的求解,同时也考查了二次不等式的恒成立问题,涉及主元法,在解题时充分利用参变量分离法的思想进行求解,可简化计算,考查分析问题和解决问题的能力,属于难题.22.已知()42x xa f x +=为偶函数. (1)求实数a 的值,并写出()f x 在区间[)0,+∞上的增减性和值域(不需要证明); (2)令()()()2g x f x tf x =+,其中0t >,若()g x 对任意1x 、[]20,1x ∈,总有()()214g x g x -≤,求t 的取值范围;(3)令()()()2h x f x f x =+,若()h x 对任意1x 、[]()2120,1x x x ∈≠,总有()()()()2121h x h x s f x f x -≤-,求实数s 的取值范围.【答案】(1)1a =,在[)0,+∞上是增函数,值域为[)2,+∞;(2)70,2⎛⎤ ⎥⎝⎦;(3)[)6,+∞.【解析】(1)利用偶函数的定义()()f x f x -=,作差变形可求出1a =,结合函数()y f x =的解析式写出该函数在区间[)0,+∞上的单调性,并利用单调性得出函数()y f x =在该区间上的值域;(2)由题意得出()()max min 4g x g x -≤,且()()()4422xxxx g x t --=+++,换元5222,2x x m -⎡⎤=+∈⎢⎥⎣⎦,构造函数()22h m m tm =+-,由0t >可得出二次函数()y h m =的对称轴02t m =-<,分析函数()y h m =在区间52,2⎡⎤⎢⎥⎣⎦上的单调性,求出函数()y h m =的最大值和最小值,结合不等式()()max min 4h m h m -≤求出实数t 的取值范围;(3)由()()()()2121h x h x s f x f x -≤-可得出112222221x x x x s --≥++++,求出不等式右边代数式的取值范围,可得出实数s 的取值范围. 【详解】(1)函数()42x xaf x +=为偶函数,则()()f x f x -=, 即()()1444144421222422xxx x x x x x x x x xxaa a a a af x f x --+++++⋅+--=-=-=⋅-()()()()()()1444411410222xxxx x xxxa a a a a +⋅-+⋅-----====,由题意知,对任意的x ∈R ,()()14102x a --=恒成立,则10a -=,1a \=,()41222x x x x f x -+∴==+,该函数在区间[)0,+∞上为增函数,且()()02f x f ≥=, 所以,函数()y f x =在区间[)0,+∞上的值域为[)2,+∞; (2)由题意知,()()max min 4g x g x -≤,且()()()4422xxxx g x t --=+++,设22x x m -=+,[]0,1x ∈,则52,2m ⎡⎤∈⎢⎥⎣⎦,且2442x x m -+=-,设函数()22h m m tm =+-,则()()m a xm i n4h m h m -≤,二次函数()y h m =的对称轴为直线2t m =-. 0t >,02t ∴-<,则函数()y h m =在区间52,2⎡⎤⎢⎥⎣⎦上单调递增,则()()min 222h m h t ==+,()max 5517224h m h t ⎛⎫==+⎪⎝⎭,()()()max min 517192242424h m h m t t t ⎛⎫∴-=+-+=+≤ ⎪⎝⎭,解得72t ≤,0t >,702t ∴<≤,因此,实数t 的取值范围是70,2⎛⎤⎥⎝⎦;(3)()()()2222222x x x x h x f x f x --=+=+++,()()()()2222111122222122222222x x x x x x x x h x h x ----∴-=+++-+++()()()22212121222222222222x x x x x x x x ----=-+-+-+-()()2121212122221122222222x x x x x x x x --=-+-+-+-()()1221212112222222222222222x x x x x x x x x x --+-=-++-+-()()()2112212112222222222122222x x x x x x x x x x +--+--=+-+-()()()()()21122112212112222221222122222x x x x x x x x x x x x x x ++--+--++=+-+-,()()()()1221212121211221112222222222222x x x x x x x x x x x x x x f x f x --+--=-+-=-+-=-+()()21121222212x x x x x x ++--=,由()()()()2121h x h x s f x f x -≤-, 可得()()()()()21122112221112222221222122222x x x x x x x x x x x x x x ++--+--++++--()()21121222212x x x x x x s++--≤,()()()2112212211121222211122112222122x x x x x x x x x x x x x x s +--++++⎛⎫∴≥+=+++=++++ ⎪⎝⎭,由于函数()22x xf x -=+在[]0,1上单调递增,且101x ≤≤,201x ≤≤,1152222x x -∴≤+≤,2252222x x-≤+≤,又12x x ≠,11225222216x x x x --∴<++++<,所以,6s ≥,因此,实数s 的取值范围是[)6,+∞. 【点睛】本题考查利用偶函数的定义求参数、指数型函数不等式的综合问题,将问题转化为二次函数问题是解题的关键,同时也考查了参变量分离法的应用,考查分析问题和解决问题的能力,属于难题.。
黑龙江省哈三中高一数学上学期期中试题

黑龙江省哈三中2014-2015学年高一数学上学期期中试题考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合{}3,1,0,1,3A =--,集合{}2,1,0,1B =--,则A B ⋂=A .{}3,1,3-B . {}1C . {}1,0,1-D . {}1,0,3-2. 若函数()2log 2-=x x f ,则函数()f x 定义域为A .()+∞,4B .)[∞+,4C . ()4,0D . ](4,03. 下列各组中的两个函数是同一函数的是A .21()()11x f x g x x x -==-+与 B . )0()()0()(22≥=≥=x x x g r r r f ππ与C .x a a x f log )(=)1,0(≠>a a 且与 =)(x g x a a log (1,0≠>a a 且)D .()()f x x g t ==与4. 已知函数()])(()22,,21,,2,1x x f x x x ⎧-∈-∞-⋃+∞⎡⎪⎣=⎨-∈-⎪⎩,则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-23f f A .41 B . 23 C .1631- D .23- 5. (){}**,5,,P x y x y x N y N =+=∈∈,则集合的非空子集的个数是A .3B .4C .15D .16 6. 设0.89a =,0.4527b =, 1.51()3c -=,则,,a b c 大小关系为 A .a b c >> B .a b c << C .a c b >> D .b c a >> 7. 若函数()246f x x x =++,则()x f 在)[0,3-上的值域为 A .[]6,2 B . )[6,2 C .[]3,2 D .[]6,38. 若不等式312≤-x 的解集恰为不等式012≥++bx ax 的解集,则=+b aA .0B . 2C .2-D .49. 计算:3321212121(log 3)(log 7)3log 3log 7++=A .0B .1C .1-D .210. 定义在R 的偶函数,当0≥x 时,()x x x f 22-=,则()3f x <的解集为A .()3,3-B .[]3,3-C .()(),33,-∞-⋃+∞D .](),33,-∞-⋃+∞⎡⎣ 11. 若函数()⎪⎩⎪⎨⎧>-≤-+=1,1,2212x a a x ax x x f x 在()+∞,0上是增函数,则a 的范围是 A .](2,1 B . )[2,1 C .[]2,1 D .()+∞,112. 设f 为()()+∞→+∞,0,0的函数,对任意正实数x ,()()x f x f 55=,()32--=x x f ,51≤≤x ,则使得()()665f x f =的最小实数x 为A .45 B. 65 C. 85 D. 165第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.{}022=--=x x x A ,{}01=-=ax x B ,若B B A =⋂,则=a .14. 已知32a =,95b =,则22327a b -=________________.15. 已知41122-+=⎪⎭⎫ ⎝⎛+x x x x f ,则函数()x f 的表达式为__________________. 16. 若函数)(x f , )(x g 分别是R 上的奇函数、偶函数,且满足xx g x f 10)()(=-,则)3(),2(),1(g f f 从小到大的顺序为_______________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题10分) {}13<-=x x A ,103x B xx ⎧-⎫=>⎨⎬-⎩⎭,求,()R A B A C B ⋃⋂.18.(本大题12分)判断函数()212f x x x =- 在()0,+∞上的单调性,并加以证明.19.(本大题12分)解关于x 的不等式12ax ≤-,(其中a 为常数)并写出解集.20.(本大题12分)求下列函数的值域:(Ⅰ) 5734x y x +=+ (0x >);(Ⅱ) 34y x =+21.(本大题12分)已知函数()(0,1)x x f x k a a a a -=⋅->≠为R 上的奇函数,且8(1)3f =.(Ⅰ)解不等式:2(2)(4)0f x x f x ++->;(Ⅱ)若当[1,1]x ∈-时,121x x b a +->恒成立,求b 的取值范围.22. (本大题12分) 已知函数b a x f x x +-=22)(.(Ⅰ) 当0,1==b a 时, 判断函数)(x f 的奇偶性, 并说明理由;(Ⅱ) 当4==b a 时, 若5)(=x f , 求x 的值;(Ⅲ) 若4-<b , 且b 为常数, 对于任意(]2,0∈x , 都有0)(log 2<x f 成立, 求a 的取值范围.哈三中2014—2015学年度上学期高一学年第一模块数学试卷答案1C 2B 3B 4A 5C 6C 7B 8A 9B 10A 11A 12B 13 10,1,2- 14.645 15。
2020-2021学年黑龙江省哈尔滨三中高一(上)期中数学试卷 (解析版)

2020-2021学年黑龙江省哈尔滨三中高一(上)期中数学试卷一、选择题(共12小题).1.已知全集U={2,4,6,8,10},集合A={2,4},B={4,6},则如图所示的阴影区域表示的集合为()A.{8,10}B.{4,8}C.{4,10}D.{2,4,6,10} 2.设命题P:∃n∈N,n3<n,则¬P为()A.∀n∉N,n3≥n B.∀n∉N,n3≤n C.∃n∈N,n3>n D.∀n∈N,n3≥n 3.已知a=0.50.2,b=0.50.1,c=0.30.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.c<a<b D.b<c<a4.若函数f(x)的定义域为[0,4],则函数f(2x)的定义域为()A.(0,2]B.[0,8]C.[0,4]D.[0,2]5.下列各组函数中,表示同一个函数的是()A.f(x)=2x+3,g(t)=B.f(x)=,g(t)=C.f(x)=,g(t)=tD.f(x)=3x,g(t)=3t6.函数y=的值域为()A.(﹣∞,]B.(﹣∞,]C.(0,]D.(0,]7.某件商品经过三次降价,由原来的125元降到27元,则该商品平均降价的百分率为()A.40%B.30%C.60%D.65%8.函数y=的单调递增区间是()A.[1,+∞)B.(﹣∞,1]C.[0,2]D.[1,2]9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<“和“>”“符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则B.若a>b>0,则C.若a+b=2,则ab<1D.若c<b<a且ac<0,则cb2<ab210.已知函数f(x)=的定义域为R,则m的取值范围是()A.﹣1<m<2B.﹣1<m≤2C.﹣1≤m≤2D.﹣1≤m<2 11.已知f(x)的图象为如图(1),把y=f(x)经过适当的变换得到g(x),其图象为(2),那么g(x)用f(x)可以表示为()A.g(x)=f(|x|)B.g(x)=|f(x)|C.g(x)=f(﹣|x|)D.g(x)=﹣f(﹣|x|)12.若函数f(x)在定义域内存在实数x0,f(3)=﹣f()成立,则称f(x)为“理想函数”,若f(x)=x2﹣2mx+m2﹣2为定义域R上的“理想函数”,则实数m的取值范围是()A.[1﹣,]B.(1﹣,]C.[,]D.(,]二、填空题(共4小题).13.已知f(x)=,则f[f(1)]=.14.已知a>0,b>0,化简:(3a b)(﹣8a b)÷(﹣6a b)=.15.若∃x0∈[0,m],使﹣x2+4x﹣3≥0,则实数m的范围为.16.已知函数f(x)=,若关于x的方程f(|x|﹣2)=k有6个不同的实数根,则实数k的取值范围为.三、解答题(共6小题).17.(10分)设集合A={x|<0}.B={x|x2﹣4ax+3a2<0,a>0).(1)若a=4,求(∁R A)∩B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.18.(12分)已知a>0,b>0.(1)求证:a3+b3≥a2b+ab2;(2)若a+b=3,求的最小值.19.(12分)已知函数f(x)是定义在(﹣1,1)上的奇函数,且f(x)=(1)求函数f(x)的解析式;(2)用函数单调性的定义证明:f(x)在(﹣1,1)上为单调递增函数.20.(12分)已知函数f(x)=.(1)求f(1)及函数f(x)的值域;(2)指出函数f(x)在其定义域内的单调性(只需写出结论,不需要证明);(3)应用(2)的结论,解关于x的不等式f[ax2+(2a﹣1)x﹣1]≥.21.(12分)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有如下公式:,,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.22.(12分)已知关于x的函数f(x)=ax2+4x(a<0),对于给定的负实数a,总能确定一个最大的正数T(a),当0≤x≤T(a)时,恒有﹣3≤f(x)≤2.(1)求T(﹣1)的值;(2)求T(a)的表达式;(3)求T(a)的最大值.参考答案一、选择题(共12小题).1.已知全集U={2,4,6,8,10},集合A={2,4},B={4,6},则如图所示的阴影区域表示的集合为()A.{8,10}B.{4,8}C.{4,10}D.{2,4,6,10}【分析】先求出A∪B,阴影区域表示的集合为∁U(A∪B),由此能求出结果.解:∵全集U={2,4,6,8,10},集合A={2,4},B={4,6},∴A∪B={2,4,6},∴如图所示阴影区域表示的集合为:∁U(A∪B)={8,10}.故选:A.2.设命题P:∃n∈N,n3<n,则¬P为()A.∀n∉N,n3≥n B.∀n∉N,n3≤n C.∃n∈N,n3>n D.∀n∈N,n3≥n 【分析】根据含有量词的命题的否定即可得到结论.解:命题P:∃n∈N,n3<n为特称命题,则命题的否定为:∀n∈N,n3≥n.故选:D.3.已知a=0.50.2,b=0.50.1,c=0.30.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.c<a<b D.b<c<a【分析】先利用幂函数y=x0.2在(0,+∞)上单调递增,比较出a,c的大小关系,再利用指数函数y=0.5x在R上单调递减,比较出a,b的大小关系,从而得到a,b,c的大小关系.解:∵幂函数y=x0.2在(0,+∞)上单调递增,且0.5>0.3,∴0.50.2>0.30.2,即a>c,∵指数函数y=0.5x在R上单调递减,且0.2>0.1,∴0.50.2<0.50.1,即a<b,∴c<a<b,故选:C.4.若函数f(x)的定义域为[0,4],则函数f(2x)的定义域为()A.(0,2]B.[0,8]C.[0,4]D.[0,2]【分析】根据f(x)的定义域求出f(2x)的定义域即可.解:由题意得:0≤2x≤4,解得:0≤x≤2,故函数f(2x)的定义域是[0,2],故选:D.5.下列各组函数中,表示同一个函数的是()A.f(x)=2x+3,g(t)=B.f(x)=,g(t)=C.f(x)=,g(t)=tD.f(x)=3x,g(t)=3t【分析】可看出A,B选项中的两个函数的定义域都不相同,不是同一个函数;选项C 的两函数的对应关系不同,不是同一个函数,从而只能选D.解:A.f(x)的定义域为R,g(t)的定义域为{t|t≠0},定义域不同,不是同一个函数;B.f(x)的定义域为{x|x≤﹣2或x≥2},g(t)的定义域为{t|t≥2},定义域不同,不是同一个函数;C.,,对应关系不同,不是同一个函数;D.f(x)=3x和g(t)=3t的定义域和对应关系都相同,是同一个函数.故选:D.6.函数y=的值域为()A.(﹣∞,]B.(﹣∞,]C.(0,]D.(0,]【分析】求解t=x2+x+1的值域,结合反比例函数的性质可得函数y=的值域;解:设t=x2+x+1=,即t∈[,+∞),函数y=转化为y=(),根据反比例函数的性质,可得0<y.故选:C.7.某件商品经过三次降价,由原来的125元降到27元,则该商品平均降价的百分率为()A.40%B.30%C.60%D.65%【分析】设降价百分率为x%,由题意知125(1﹣x%)3=27,由此能够求出这种商品平均降价的百分率.解:设降价百分率为x%,∴125(1﹣x%)3=27,即1﹣x%=0.6解得x=40.故选:A.8.函数y=的单调递增区间是()A.[1,+∞)B.(﹣∞,1]C.[0,2]D.[1,2]【分析】令t=x2﹣2x,求出该二次函数的减区间,利用复合函数的单调性即可得到函数y=的单调递增区间.解:令t=x2﹣2x,其图象是开口向上的抛物线,对称轴方程为x=1,则函数t=x2﹣2x在(﹣∞,1]上是减函数,由外层函数y=是减函数,由复合函数的单调性可得,函数y=的单调递增区间是(﹣∞,1].故选:B.9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<“和“>”“符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则B.若a>b>0,则C.若a+b=2,则ab<1D.若c<b<a且ac<0,则cb2<ab2【分析】由a>b>0,通过作差即可判断B,取特殊值即可判断ACD.解:A.取a=﹣2,b=1,可知>不成立,因此A不正确;B.∵a>b>0,∴﹣=>0,∴>,因此B正确;C.取a=b=1时,ab=1,因此C不正确;D.取b=0时,cb2<ab2不正确,因此D不正确.故选:B.10.已知函数f(x)=的定义域为R,则m的取值范围是()A.﹣1<m<2B.﹣1<m≤2C.﹣1≤m≤2D.﹣1≤m<2【分析】根据二次函数的性质以及二次根式的性质求出函数的定义域即可.解:由题意得:m+1=0即m=﹣1时,f(x)=恒成立,符合题意,m+1≠0时,f(x)的定义域是R,只需,解得:﹣1<m≤2,综上:m∈[﹣1,2],故选:C.11.已知f(x)的图象为如图(1),把y=f(x)经过适当的变换得到g(x),其图象为(2),那么g(x)用f(x)可以表示为()A.g(x)=f(|x|)B.g(x)=|f(x)|C.g(x)=f(﹣|x|)D.g(x)=﹣f(﹣|x|)【分析】由图(1)到图(2)由轴左边的没有变化,右边的是结果沿x轴翻折得到的,即可判断.解:f(x)的图象关于原点对称,g(x)的图象关于y轴对称,由图(1)到图(2)由轴左边的没有变化,右边的是结果沿x轴翻折得到的,故g(x)=f(﹣|x|),故选:C.12.若函数f(x)在定义域内存在实数x0,f(3)=﹣f()成立,则称f(x)为“理想函数”,若f(x)=x2﹣2mx+m2﹣2为定义域R上的“理想函数”,则实数m的取值范围是()A.[1﹣,]B.(1﹣,]C.[,]D.(,]【分析】因为函数满足新定义,则问题由存在问题转化为求方程解的问题,进而可以求解.解:f(x)=x2﹣2mx+m2﹣2为定义域R上的“理想函数”,∴()2﹣2m•3+m2﹣2=﹣(3)2+2m•﹣m2+2,∴2m2﹣4=﹣(3)2﹣()2+2m(3+)=﹣(3+)2+2+2m(3+),∴2m2﹣6=﹣(3+)2+2m(3+),设t=3+,则t≥2,∴2m2﹣6+t2﹣2mt=0,即t2﹣2mt+2m2﹣6=0在t∈[2,+∞)有解,令g(t)=t2﹣2mt+2m2﹣6,t∈[2,+∞),其对称轴为x=m,当m≥2时,则△=4m2﹣4(2m2﹣6)≥0,解得2≤m≤,当m<2时,f(2)=4﹣4m+2m2﹣6≤0,解得1﹣≤m<2,综上所述m的取值范围为[1﹣,6],故选:A.二、填空题;本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上.13.已知f(x)=,则f[f(1)]=10.【分析】利用分段函数的性质求解.解:∵函数f(x)=,∴f(1)=2×12+1=3,f[f(1)]=f(3)=2×3+4=10.故答案为:10.14.已知a>0,b>0,化简:(3a b)(﹣8a b)÷(﹣6a b)=4a.【分析】利用有理数指数幂的运算性质求解.解:原式=﹣24÷(﹣6)==4a.故答案为:4a.15.若∃x0∈[0,m],使﹣x2+4x﹣3≥0,则实数m的范围为[1,+∞)..【分析】由题意求出不等式﹣x2+4x﹣3≥0的解集,即可得出实数m的范围.解:∃x0∈[0,m],使﹣x2+4x﹣3≥0成立,可令﹣x2+4x﹣3≥0,得x2﹣4x+3≤0,解得1≤x≤3,所以实数m的范围是[1,+∞).故答案为:[1,+∞).16.已知函数f(x)=,若关于x的方程f(|x|﹣2)=k有6个不同的实数根,则实数k的取值范围为.【分析】作出函数f(x)的图象,根据图象可知方程f(t)=k的实根个数可能为0,1,2,3,4,而t=|x|﹣2最多有2个实根,由此分类讨论即可得出结果.解:作出函数f(x)的图象如图所示,由图可知方程f(t)=k的实根个数可能为0,1,2,3,4,且当k<﹣2时,方程f(t)=k无实根,当k=﹣2时,方程f(t)=k有唯一实根,当﹣2<k<0时,方程f(t)=k有2个实根,当k=0或k≥1时,方程f(t)=k有3个实根,当0<k<1时,方程f(t)=k有4个实根,而t=|x|﹣2最多有2个实根,此时t∈(﹣2,+∞),故方程f(|x|﹣2)=k有6个不同的实数根等价于f(t)=k的实根至少有3个,当k=0时,f(t)=k的三个根均大于﹣2,符合题意;当时,f(t)=k的四个根均大于﹣2,f(|x|﹣2)=k有8个不同的实数根,不合题意;当时,此时f(|x|﹣2)=k有7个不同的实数根,不合题意;当时,f(t)=k只有三个均大于﹣2的不同实根,符合题意.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)设集合A={x|<0}.B={x|x2﹣4ax+3a2<0,a>0).(1)若a=4,求(∁R A)∩B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.【分析】(1)分别化简集合A,B,根据集合的补集和交集即可求出;(2)命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,可得B⫋A,即可得到,解得即可.解:(1)由<0,解得﹣5<x<,故A=(﹣5,),∴∁R A=(﹣∞,﹣5]∪[,+∞)当a=4时,x2﹣16x+48<0,解得4<x<12,即B=(4,12),∴(∁R A)∩B=[,12),(2)由x2﹣4ax+3a2<0,可得(x﹣a)(x﹣3a)<0,解得a<x<3a,即B=(a,3a),命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,∴B⫋A,∴,解得0<a≤,故实数a的取值范围(0,].18.(12分)已知a>0,b>0.(1)求证:a3+b3≥a2b+ab2;(2)若a+b=3,求的最小值.【分析】(1)根据条件,可得a3+b3﹣a2b﹣ab2≥0,从而证明不等式成立;(2)根据条件,可得=,然后利用基本不等式,即可求出的最小值.解:(1)证明:∵a>0,b>0.∴a3+b3﹣a2b﹣ab2=a2(a﹣b)+b2(b﹣a)=(a2﹣b2)(a﹣b)=(a﹣b)2(a+b)≥0,∴a3+b3≥a2b+ab2.(2)∵a>0,b>0,a+b=3,∴==,当且仅当,即a=1,b=2时取等号,∴的最小值为3.19.(12分)已知函数f(x)是定义在(﹣1,1)上的奇函数,且f(x)=(1)求函数f(x)的解析式;(2)用函数单调性的定义证明:f(x)在(﹣1,1)上为单调递增函数.【分析】(1)根据f(0)=0,求出b的值,求出函数的解析式即可;(2)根据函数的单调性的定义证明即可.解:(1)函数f(x)是定义在(﹣1,1)上的奇函数,则f(0)=0,则f(0)=b+1=0,解得:b=﹣1,故f(x)=;(2)任意x1,x2∈(﹣1,1),设x1<x2,则f(x1)﹣f(x2)=﹣=,∵+1>0,+1>0,x2﹣x1>0,且x1,x2∈(﹣1,1),x1x2﹣1<0,∴f(x1)﹣f(x2)<0,即f(x)在(﹣1,1)上递增.20.(12分)已知函数f(x)=.(1)求f(1)及函数f(x)的值域;(2)指出函数f(x)在其定义域内的单调性(只需写出结论,不需要证明);(3)应用(2)的结论,解关于x的不等式f[ax2+(2a﹣1)x﹣1]≥.【分析】(1)求出f(1)的值,根据函数的单调性求出f(x)的值域即可;(2)根据函数的解析式求出函数的单调性即可;(3)问题转化为(x+2)(ax﹣1)≥0,通过讨论a的范围,求出x的范围即可.解:(1)f(1)==,f(x)==1﹣,x→+∞时,f(x)→1,x→﹣∞时,f(x)→0,故f(x)的值域是(0,1);(2)f(x)在R单调递增;(3)由(1)f(1)=,f[ax2+(2a﹣1)x﹣1]≥即f[ax2+(2a﹣1)x﹣1]≥f(1),即ax2+(2a﹣1)x﹣2≥0,即(x+2)(ax﹣1)≥0,①a=0时,﹣(x+2)≥0,解得:x≤﹣2,②a>0时,∵>0>﹣2,解得:x≥或x≤﹣2,③﹣<x<0时,<﹣2,要使(x+2)(ax﹣1)≥0,解得:≤x≤﹣2,④a=﹣时,(x+2)(ax﹣1)=﹣(x+2)≤0,解得:x=﹣2,⑤a<﹣时,>﹣2,解得:﹣2≤x≤.21.(12分)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有如下公式:,,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.【分析】(Ⅰ)对乙种产品投入资金x万元,对甲种产品投入资金(200﹣x)万元,那么y=(200﹣x)+60+70+6,化简整理,再由投入资金都不低于25万元,解不等式求得定义域;(Ⅱ)令t=,则y=﹣t2+6t+230,由配方和二次函数的值域求法,即可得到所求最大值.解:(Ⅰ)根据题意,对乙种产品投入资金x万元,对甲种产品投入资金(200﹣x)万元,那么y=(200﹣x)+60+70+6=﹣x+6+230,由,解得25≤x≤175,所以函数的定义域为[25,175];(Ⅱ)令t=,则y=﹣t2+6t+230=﹣(t﹣6)2+248,因为x∈[25,175],所以t∈[5,5],当t∈[5,6]时函数单调递增,当t∈[6,5]时函数单调递减,所以当t=6时,即x=36时,y max=248,答:当甲种产品投入资金164万元,乙种产品投入资金36万元时,总利润最大.最大总利润为248万元.22.(12分)已知关于x的函数f(x)=ax2+4x(a<0),对于给定的负实数a,总能确定一个最大的正数T(a),当0≤x≤T(a)时,恒有﹣3≤f(x)≤2.(1)求T(﹣1)的值;(2)求T(a)的表达式;(3)求T(a)的最大值.【分析】(1)当a=﹣1时,f(x)=﹣x2+4x=﹣(x﹣2)2+4,要使存在一个最大的正数T(﹣1),在区间[0,T(﹣1)]上,﹣3≤f(x)≤2恒成立,T(a)只能是﹣x2+4x =2较小的根即可;(2)利用二次函数的性质求出函数的最大值,研究二次函数的最值与2的大小关系,分类讨论,可求T(a)的表达式;(3)由(2)中所得的表达式,求其最值即可.解:(1)当a=﹣1时,f(x)=﹣x2+4x=﹣(x﹣2)2+4,因为函数f(x)的最大值大于2,要使存在一个最大的正数T(﹣1),当0≤x≤T(﹣1)时,恒有﹣3≤f(x)≤2,所以T(﹣1)只能是﹣x2+4x=2较小的根2﹣.(2)由a<0,f(x)=a(x+)2﹣,当﹣>2,即﹣2<a<0时,要使﹣3≤f(x)≤2,在区间[0,T(a)]上恒成立,要使得正数T(a)最大,正数T(a)只能是ax2+4x=2的较小的根,即T(a)=;当﹣≤2,即a≤﹣2时,要使﹣3≤f(x)≤2,在区间[0,T(a)]上恒成立,要使得正数T(a)最大,正数T(a)只能是ax2+4x=﹣3的较大的根,即T(a)=;所以T(a)=.(2)当﹣2<a<0时,T(a)==<1;当a≤﹣2时,T(a)==≤;所以T(a)的最大值为.。
黑龙江哈三中―度高一数学上学期期中考试【会员独享】

黑龙江哈三中2011—2012学年度高一上学期期中考试(数学)考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分,考试时间为120分钟.(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()U C A B ⋂=A .{3}B .{4,5}C .{1245},,,D .{3,4,5}2. 下列四组函数中表示同一个函数的是A .()f x x =与()g x =B .0()f x x =与()1g x =C .()f x x =与2()x g x x= D .()f x =()g x =3. 已知函数()3log 03 0xx x f x x >⎧=⎨≤⎩,则))91((f f 的值是A .9B .91C .9-D .19- 4. 函数222x xy -+=的单调递减区间为A .(,1]-∞B .[1,)+∞C .[0,2]D .[1,)-+∞5. 下列各式成立的是A .1777()m n m n= B .=C .34()x y =+D =6. 下列各函数中,值域为()+∞,0的是A .22x y-= B .x y 21-= C .12++=x x y D .113+=x y7. 已知函数3()2f x ax bx =+-,若(2011)10f =,则(2011)f -的值为A .10B .10-C .14-D .无法确定 8. 若函数ax y =与xb y -=在),0(+∞上都是减函数,则bx ax y +=2在),0(+∞上是A .增函数B .减函数C .先增后减D .先减后增9. 若偶函数)(x f 在[0,)x ∈+∞上的表达式为)1()(x x x f -=,则(,0]x ∈-∞时,()f x =A .(1)x x --B .)1(x x -C .(1)x x -+D .(1)x x + 10. 若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是A .3(0,]4B .3[0,]4C .3(,)4+∞ D .3[0,)411. 若函数)(x f 为奇函数,且在),0(+∞上是增函数,又0)2(=f ,则0)()(<--xx f x f的解集为A .)2,0()0,2(⋃-B .)2,0()2,(⋃--∞C .),2()2,(+∞⋃--∞D .),2()0,2(+∞⋃-12. 当函数的自变量取值区间与值域区间相同时,我们称这样的区间为该函数的保值区间.函数的保值区间有],(m -∞、],[n m 、),[+∞n 三种形式.以下四个图中:虚线 为二次函数图像的对称轴,直线l 的方程为x y =,从图象可知,下列四个二次函数中有第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13. 已知:集合{023}M =,,,定义集合运算A ※A{|,,}x x a b a A b A =+∈∈,则M ※M = .14. 关于x 的不等式0ax b ->的解集为()+∞,1,则关于x 的不等式02>-+x bax 的解集为 . 15. 某种细胞分裂时,由于在分裂过程中,有些细胞会自动消亡,分裂次数)(*N n n ∈与第n 次得到的细胞总数y 近似的满足关系n y 5.1=)(*N n ∈,则由1个细胞分裂达到 10个细胞所需的分裂次数至少是_____次.(lg30.4771,lg20.3010==)D AFC H16. 已知函数)(x f y =是R 上的偶函数,对于R x ∈,都有)3()()6(f x f x f +=+成立,当],3,0[,21∈x x 且21x x ≠时,都有0)()(2121>--x x x f x f ,给出下列命题:①0)3(=f ; ②直线6-=x 是函数)(x f y =的图象的一条对称轴; ③函数)(x f y =在]6,9[--上为增函数;④方程0)(=x f 在]9,9[-上有四个实根. 其中正确的命题序号是___________.(把所有正确命题的序号都填上) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知全集U R =,集合{}|15A x x =≤≤,{}2|10160B x x x =-+<, 求A B ⋃,()U C A B ⋂. 18.(本小题满分12分)(I ) 计算:222(lg50)lg 2lg(50)lg 2+⨯+;(II ) 已知32121=+-xx ,求22122x x x x --+-+-的值.19.(本小题满分12分)已知函数)(122)(R x a x f x∈+-= (I ) 若函数为奇函数,求实数a 的值;(II ) 在(I )的条件下,求函数)(x f 的值域.20.(本小题满分12分)如图,现有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知(2)AB a a =>,2BC =,且AE AH CF CG ===,设AE x =,绿地面积为y .(I ) 写出y 关于x 的函数关系式,并指出其定义域;(II ) 当AE 为何值时,绿地面积y 最大? 21.(本小题满分12分)函数()x f 的定义域为R ,并满足以下条件:①对任意的0)(,>∈x f R x 有; ②对任意的,x y R ∈,都有()[()]yf xy f x =;③1)31(>f . (I ) 求(0)f 的值;(II ) 求证:()f x 是(,)-∞+∞上的单调递增函数; (III ) 解关于x 的不等式:(1)[(2)]1x f x a +->.22.(本小题满分12分)已知函数()223x xf x m =⋅+⋅,m R ∈.(I ) 当9m =-时,求满足(1)()f x f x +>的实数x 的范围; (II ) 若9()()2xf x ≤对任意的x R ∈恒成立,求实数m 的范围;(III ) 若存在m 使()xf x a ≤对任意的x R ∈恒成立,其中a 为大于1的正整数,求a 的最小值.参考答案一、选择题二、填空题13.{}0,2,3,4,5,6 14.{}|12x x x <->或 15.6 16.①②④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.{}|18A B x x ⋃=≤<, {}()|58U C A B x x ⋂=<< 18.(1)4; (2)9 19.(1)1a =; (2)(1,1)-20.(1)22(2)y x a x =-++ 02x <≤;(2)当26a <≤时,24a x +=时,2max (2)8a y +=;当6a >时,2x =时,max 24y a =-.21.(1)1;(2)略;(3)当12a =-时,(,1)(1,)-∞-⋃-+∞; 当12a >-时,(,1)(2,)a -∞-⋃+∞;当12a <-时, (,2)(1,)a -∞⋃-+∞.22.(1)2x >; (2)1m ≤-;(3)min 4a =.。
黑龙江省哈尔滨市第三中学2019-2020学年高一上学期期中考试数学(国际部)试题

哈三中2019-2020学年度(国际部)上学期高一学年第一模块考试数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷一、选择题(本题共有12小题,每小题5分, 共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合{}0,1,2M =,{}2|320N x x x =-+≤,则M N = A . {}1 B . {}2 C . {}0,1 D . {}1,22.下列函数中,在各自定义域内为增函数的是A .22y x =-B .3y x= C .1y = D .2(2)y x =-+ 3. 若集合{}1,1A =-,{}0,2B =,则集合{},,z z x y x A y B =+∈∈中的元素的个数为A .5B . 4C . 3D . 24 .知集合{A =,{}1,B m = ,AB A =, 则m = A . 0或3 B . 0或3C . 1或D .1或3 5.函数)(12R x x x y ∈++=的递减区间是A .),21[+∞-B .),1[+∞-C .1(,]2-∞-D .),(+∞-∞ 6.(){}64,=+=y x y x A ,(){}723,=+=y x y x B ,则=B AA.{}2或1==y x xB.{}2,1C. (){}2,1 D. ()2,1 7. 与函数122+=x y 不相同的函数是A.122++=x x yB. ()2212+=x yC.122+=x yD. ()()11122+++=x x x y8 .函数()xx x y -+=032的定义域是 A. ⎭⎬⎫⎩⎨⎧-≠<230x x x 且 B. {}0<x xC. {}0>x xD. ⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且9.下列说法中,正确的是A .偶函数的图象一定与y 轴相交B .若奇函数)(x f y =在0=x 处有定义,则0)0(=fC .既是奇函数又是偶函数的函数一定是R x x f ∈=,0)(D .图象过原点的增函数(或减函数)一定是奇函数10.函数中,既是奇函数又在定义域上为增函数的是A. ()13+=x x fB.()x x f 1=C. ()x x f 11-=D. ()3x x f =11.函数()842--=x x x f 的定义域为[0,]a ,值域为[12,8]--,则a 的取值范围是A. []4,0B. []6,4C. []6,2D. []4,212.已知定义域为R 的奇函数()f x 满足()02=f ,若对任意()+∞∈,0,21x x ,且21x x ≠,()()02121>--x x x f x f 恒成立,则不等式()0>x xf 的解集为A .()()202+-∞,,B .()()200,2-,C .()()+∞-∞-,22,D .()()2,02, -∞-第Ⅱ卷二、填空题(本题共4小题, 每小题5分)13.设函数)(x f 满足:对任意的1x ,2x R ∈都有[]0)()()(2121>-⋅-x f x f x x 则)()3(π--f f 与的大小关系是___________.14. 已知8)(35-++=cx bx ax x f ,且10)(=d f ,则()=f d -__________.15.不等式2223503134x x x x --≥-+的解集为________________.16.设定义在[],22-上的偶函数()f x 在区间[],20上单调递减,若(1)(1)f m f -<,则实数m 的取值范围是_______________.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知集合{}63A x x x =><-或,{}3B x a x a =<<+,若AB A =,求实数a 的取值范围.18. 判断下列函数奇偶性: (1)()f x =+(2)()f x =19.已知函数222)(a ax x x f --=在区间]2,0[上的最大值为1-,求实数a 的值.20.用函数单调性定义证明,求证:函数11)(--=xx f 在区间(),0-∞上是单调增函数21.函数)(x f ,()1,1x ∈-为奇函数,且0)1()1(2<-+-a f a f . 若)(x f 是()1,1-上的减函数,求实数a 的取值范围.22.若函数cbx ax x f ++=1)(2是奇函数,(),,a b c N ∈ 且(1)2f =,(2)3f < (1)求实数a ,b ,c 的值;(2)判断函数()f x 在]1,[--∞上的增减性,并证明.一、1-5 DCCBC 6-10 DDABD 11-12AC二、13、f(-3)>f(-) 14、-26 15、{x|x>4或<x≤或x≤-1} 16、2<m≤3或-1≤m<0三、17、∵A∪B=A,∴B⊆A,且A={x|x>6或x<﹣3},B={x|a<x<a+3},∴a+3≤﹣3或a≥6,∴a≤﹣6或a≥6,∴a的取值范围为{a|a≤﹣6或a≥6}.18、(1)对于,有,解可得x=1,即函数的定义域为{x|x=1},其定义域不关于原点对称,为非奇非偶函数;(2)对于,有,解可得:﹣6<x≤6且x≠0,即函数的定义域为{x|﹣6<x≤6且x≠0},其定义域不关于原点对称;为非奇非偶函数.19、f(x)的对称轴为x=a,①a≤0时,f(x)在[0,2]上单调递增,∴f(x)在[0,2]上的最大值为f(2)=4﹣4a﹣a2=﹣1,解得a=﹣5或1,∴a=﹣5;②0<a<2时,f(x)在[0,2]上的最大值为f(0)=﹣a2=﹣1,或f(2)=4﹣4a﹣a2=﹣1,且0<a<2,∴解得a=1,③a≥2时,f(x)在[0,2]上单调递减,∴f(x)在[0,2]上的最大值为f(0)=﹣a2=﹣1,且a≥2,∴a∈∅,综上得,a=﹣5或1.20、证明:任取x1<x2<0,∵f(x1)﹣f(x2),由题设可得,x1﹣x2<0,x1•x2>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在区间(﹣∞,0)上是单调增函数.21、根据题意,函数f(x),x∈(﹣1,1)为奇函数,则f(1﹣a)+f(1﹣a2)<0⇒f(1﹣a)<﹣f(1﹣a2)⇒f(1﹣a)<f(a2﹣1),又由f(x)是(﹣1,1)上的减函数,则f(1﹣a)<f(a2﹣1)⇒ <<<<>,解可得:0<a<1,即a的取值范围为(0,1);故a的取值范围(0,1).22、(1)根据题意,函数是奇函数,(a,b,c∈N)且f(1)=2,则f(﹣1)=﹣2,又由f(2)<3,则有<且a、b、c∈N,解可得a=1,b=1,c=0;(2)由(1)可得:f(x)x,函数f(x)在(﹣∞,﹣1]上为增函数,设x1<x2≤﹣1,f(x1)﹣f(x2)=(x1)﹣(x2),又由x1<x2≤﹣1,则(x1﹣x2)<0且(x1x2﹣1)>0,则有f(x1)﹣f(x2)<0,故函数f(x)在(﹣∞,﹣1]上为增函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨三中2015-2016学年高一上学期期中考试
数学
考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150 分,考试时间为120 分钟.
(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.
第I 卷(选择题, 共60 分)
一、选择题(本大题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3,4},B={2,4,5},则A B=
2.函数的定义域是
3.已知函数f (x)满足,则
4.已知,则下列关系式中正确的是
5. 函数的单调递增区间为
6. 设集合,则a的取值范围是
7.若函数的图像恒在x轴上方,则a的取值范
围是
8.下列函数是偶函数且值域为的是
A.①② B.②③C.①④ .③④
9. 如图所示的韦恩图中,A ,B 是非空集合,定义集合A ⊙ B为阴影部分表示的集合.若
,,则A⊙B=
10.二次函数与指数函数的图象可以是
11. 已知函数f (x)是定义在R上的偶函数,且在上单调递增,若,则不等式解集为
12.设f (x)是定义在的函数,对任意正实数x,,且
,则使得的最小实数x为
A.172 B. 415 C. 557 D. 89
第Ⅱ卷(非选择题, 共90 分)
二、填空题(本大题共4 小题,每小题5 分,共20 分.将答案填在答题卡相应的位置
上)
13. 化简:的结果是.
14.已知函数f (x)为R上的奇函数,且x ≥ 0时,,则当x < 0时,
f (x)=____.
15.若函数是上的减函数,则实数a的
取值范围是.
16.下列四个说法:
(1)y =x +1与是相同的函数;
(2)若函数f (x)的定义域为[-1,1-,则f (x +1)的定义域为[0,2];
(3)函数f (x)在[0,+∞)时是增函数,在(-∞,0)时也是增函数,所以f (x)是
(-∞,+∞)上的增函数;
(4)函数在区间[3,+ ∞)上单调递减.
其中正确的说法是(填序号).
三、解答题(本大题共6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)已知集合
(Ⅰ)求A U C ;(Ⅱ)求 .
18.(12 分)用单调性定义证明函数在区间上是减函数.
19.(12 分)已知函数,求
(Ⅰ)的值;
(Ⅱ)若f (a) > 2,则a的取值范围.
20.(12 分)要建造一个容量为1200m3,深为6m 的长方体无盖蓄水池,池壁的造
价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能
使水池的总造价不超过61200 元(规定长大于等于宽).
21.(12分)设是方程x2 -2mx + 4m2 - 4m+1=0的两个不等实根,
(Ⅰ)将表示为m的函数g(m),并求其定义域;
(Ⅱ)设,求f (m)的值域.
22.(12 分)已知函数,定义域为R ;函数,定
义域为[-1,1].
(Ⅰ)判断函数f (x)的单调性(不必证明)并证明其奇偶性;
(Ⅱ)若方程g(x) =t有解,求实数t的取值范围;
(Ⅲ) 若不等式对一切恒成立,求m 的取值范围.
哈三中2015—2016学年度上学期
高一数学答案
1 2 3 4 5 6 7 8 9 10 11 12
C B A B A
D C C D D A B
二、填空题
13. 4a 14. x x +-2
15. [) 16. (4) 17.()[)+∞-∞-=,02,Y Y C A ,()⎥⎦
⎤⎢⎣⎡=⋂1,32B A C R
18.在()+∞,1内任取21,x x 且21x x <,()()()()
11211
221---=
-x x x x x f x f ,
211x x <<Θ,01,01,02112>->->-∴x x x x ,()()021>-∴x f x f , ()()21x f x f >∴,证得()x f 在()+∞,1上为单调递减函数 19.(I )51
1+=⎪⎭⎫
⎝⎛π
πf ,()[][]()48222531=+⨯-==+-=-f f f f (II )由已知可得不等式等价于⎩⎨⎧>+≤2530a a 或⎩⎨⎧>+≤<2510a a 或⎩
⎨⎧>+->2821
a a
即01≤<-a 或10≤<a 或31<<a ,即31<<-a
20.设池底的长为x 米,泳池的造价为y 元
由题意可得()[]6612002295)61200(135⨯÷÷⨯+⨯+÷⨯=x x y ,2010≥x 又由61200≤y 可得0200
30≤+
-x
x ,解得2010≤≤x , 答:水池长在[]
2010,10米范围内,满足题意
21.(I )对于014422
2=+-+-m m mx x ,0>∆得⎪⎭
⎫ ⎝⎛∈1,31m
()()28422212212
221-+-=-+=+=m m x x x x x x m g ,其定义域为⎪⎭
⎫ ⎝⎛1,31
(II )()2
2
23841
384m m m m m m f -+-=-+-=
令()3,11∈=m t 则()4
8312-+-=t t m f 则()m f 的值域为⎪
⎭⎫
⎢⎣⎡+∞⋃⎪⎭⎫ ⎝⎛-∞,3471,-
22.(I )()x f 在R 上单调递增 因为()()x f x f x x
-=-=--22
所以()x f 为奇函数
(II )可知t 的范围与()x g 的值域相同
()()
2222x x x g -⋅=令⎥⎦
⎤
⎢⎣⎡∈=2,212x t ,则()t t x g 22+-=的值域为[]10,
(III )由()()()
0132
≤--+m am f x g f 得()()()
132
---≤m am f x g f
由(I )得()()()
132
++-≤m am f x g f ,()132
++-≤m am x g 对一切[]1,1-∈x ,[]2,2-∈a
恒成立,则()()()
min 2max 13++-≤m am x g ,设()132
++-=m am a h ,则()1≥a h 对一切
[]2,2-∈a 恒成立
若0=m 则恒成立 若0≠m 则()()⎩
⎨
⎧≥-≥121
2h h 得(][)+∞-∞-∈,66,Y m
综上所述(][){}0,66,Y Y +∞-∞-∈m。