第八章-群体遗传学-36PPT课件
合集下载
医学遗传学8章群体

例MN血型(LM、LN共显性);M=LMLM、N=LNLN、MN=LMLN - 设;调查1000人, M=355人、N=165人、MN=480人
依基因频率和基因型频率关系换算出基因频率:
LM频率=0.355+1/2×0.480=0.595 LN频率=0.165+1/2×0.480=0.405
亲代:AA:Aa:aa=60:20:20 男 A a 女 0.7 0.3 A 0.7 AA 0.49 Aa 0.21 a 0.3 Aa 0.21 aa 0.09
按Hard-Weinbeng原则,随机婚配时,子代A和a 基因频率应保持不变,仍是 A=0.7;a=0.3 。
在遗传平衡的基础上,可推出以下结论: ①罕见的AR病:q值很小,p=1-q≈1;2pq≈2q 即杂合子(Aa)频率约是致病基因频率的2倍。 ②常见的AR病:q很小,P≈1,故携带者(Aa)与患者 的比例为2pq/q2,致病基因(q)的频率越低,该比值 越大,致病基因(a)几乎都在携带者(Aa)中。 如;尿黑酸尿症群体发病率(aa)q2=0.000001; q=0.001;携带者(Aa)与患者(aa)之比是2:0.001。 故携带者检出,对预防AR患儿出生有重要意义。
第八章 群体遗传学
学习要求 掌握:群体、基因频率、基因型频率 遗传平衡、基因库、选择系数 遗传漂变、适合度、遗传负荷、 熟悉:近婚系数的计算方法。 基因频率与基因型频率的转换。 了解:影响群体遗传平衡的各种因素。
精子
卵子
求;亲代100人A、a的基因频率? A=60×2+20=140; a=20×2+20=60 A=140/200=0.7; a=60/200=0.3
基因型 频率 AA 60 0.6 p2
aa 20 0.2 q2 合计 100 1.0 遗传平衡群体?
依基因频率和基因型频率关系换算出基因频率:
LM频率=0.355+1/2×0.480=0.595 LN频率=0.165+1/2×0.480=0.405
亲代:AA:Aa:aa=60:20:20 男 A a 女 0.7 0.3 A 0.7 AA 0.49 Aa 0.21 a 0.3 Aa 0.21 aa 0.09
按Hard-Weinbeng原则,随机婚配时,子代A和a 基因频率应保持不变,仍是 A=0.7;a=0.3 。
在遗传平衡的基础上,可推出以下结论: ①罕见的AR病:q值很小,p=1-q≈1;2pq≈2q 即杂合子(Aa)频率约是致病基因频率的2倍。 ②常见的AR病:q很小,P≈1,故携带者(Aa)与患者 的比例为2pq/q2,致病基因(q)的频率越低,该比值 越大,致病基因(a)几乎都在携带者(Aa)中。 如;尿黑酸尿症群体发病率(aa)q2=0.000001; q=0.001;携带者(Aa)与患者(aa)之比是2:0.001。 故携带者检出,对预防AR患儿出生有重要意义。
第八章 群体遗传学
学习要求 掌握:群体、基因频率、基因型频率 遗传平衡、基因库、选择系数 遗传漂变、适合度、遗传负荷、 熟悉:近婚系数的计算方法。 基因频率与基因型频率的转换。 了解:影响群体遗传平衡的各种因素。
精子
卵子
求;亲代100人A、a的基因频率? A=60×2+20=140; a=20×2+20=60 A=140/200=0.7; a=60/200=0.3
基因型 频率 AA 60 0.6 p2
aa 20 0.2 q2 合计 100 1.0 遗传平衡群体?
群体遗传学

3、遗传平衡定律的应用
判断一个群体是否达到遗传平衡
计算有显隐性之分的等位基因频率
如何判断一个群体是否达到遗传平衡?
假设:一对等位基因A和a,基因A频率为p,a频率为
q; 则基因型频率必须符合二项式:
(p + q)2 = p2 + 2pq + q2 = 1
基 因 型 的 频 率
基 因 型 的 频 率
男性患者 = 致病基因频率 = p
女性患者 = p2 + 2pq = 2p 男性患者
= 1/2
女性患者 结论:女性患病率是男性患病率的2倍
☆ 对于一种罕见的XR遗传病
致病基因频率q很低,
男性患者 = 致病基因频率 = q 女性患者 = 致病基因频率的平方 = q2 男性患者 女性患者 = q q2 = 1 q
基因型 aa 的频率为 R
从基因型频率直接计算基因频率
1、 调查中国朝鲜族人群1000例,其中TT、Tt、tt 基因型的例数分别是480人、420人、100人,
求T和t的基因频率分别是多少?
2、调查上海市汉族1788人,其中:M型血,397人; N型血,530人;MN型血,861人。求M和N 的基因频率分别是多少?
C: 0.82和0.18
(A)
2. 经调查,某学校的学生中各血型的比率如下:
IAIA 20% IBIB 10% IAIB 10% IAi 30% IBi 20% ii 10%
计算IB的基因频率。
10% + 1/2( 10% + 20%) = 25%
3. 某工厂有男女职工各200人,对他们进行调查时 发 现,女色盲5人,女性携带15人;男性色盲11人, 求XB、Xb的频率。 总基因数:200×2+200=600 XbXb 5个 XBXb 15个 XBXB 180个
群体遗传学

亲缘系数:有共同祖先的两个人在某一位点上具有 同一基因的概率。
1)常染色体基因
A 1 A2
A3A4 P2
同 胞 兄 妹 间 婚 配
P1
B1
B2
A1A1 = (1/2)4 A2A2 = (1/2)4 A3A3 = (1/2)4 A4A4 = (1/2×(1/2)4 = 1 / 4
8.在一个100人的群体中,AA为60%,Aa为20%,aa 为20%,那么该群体中______。 A.A基因的频率为0.3 B.a基因的频率为0.7 C.是一个遗传平衡群体 D.是一遗传不平衡群体 E.经过一代后基因频率和基因型频率都会发生变化
9.对于一种相对罕见的X连锁隐性遗传病,其男性发病率 为q, ______ 。 A.人群中杂合子频率为2pq B.女性发病率是p2 C.男性患者是女性患者的两倍 D.女性患者是男性 患者的两倍E.女性发病率为q2
一级亲属间的近婚系数为1/4
A 1 A2
A3A4 P2
舅 甥 女 间 婚 配
P1
B1
B2
A1A1 = (1/2)5 A2A2 = (1/2)5 A3A3 = (1/2)5 A4A4 = (1/2)5
C
F = 4 ×(1/2)5 = 1 / 8
◇ 二级亲属间的近婚系数为1/8
S
A 1 A2
A3A4 P2 B2 C2
2、计算AD病基因频率
群体发病率=AA+Aa=p2+2pq,p+q=1 实际计算时,致病基因频率p很低,AA纯合个体少,
p2可以忽略,因此: • p2 ≈0,q ≈1,发病率= p2+2pq ≈ 2pq ≈ 2p
• 所以对于AD遗传病: p= ½ 发病率
1)常染色体基因
A 1 A2
A3A4 P2
同 胞 兄 妹 间 婚 配
P1
B1
B2
A1A1 = (1/2)4 A2A2 = (1/2)4 A3A3 = (1/2)4 A4A4 = (1/2×(1/2)4 = 1 / 4
8.在一个100人的群体中,AA为60%,Aa为20%,aa 为20%,那么该群体中______。 A.A基因的频率为0.3 B.a基因的频率为0.7 C.是一个遗传平衡群体 D.是一遗传不平衡群体 E.经过一代后基因频率和基因型频率都会发生变化
9.对于一种相对罕见的X连锁隐性遗传病,其男性发病率 为q, ______ 。 A.人群中杂合子频率为2pq B.女性发病率是p2 C.男性患者是女性患者的两倍 D.女性患者是男性 患者的两倍E.女性发病率为q2
一级亲属间的近婚系数为1/4
A 1 A2
A3A4 P2
舅 甥 女 间 婚 配
P1
B1
B2
A1A1 = (1/2)5 A2A2 = (1/2)5 A3A3 = (1/2)5 A4A4 = (1/2)5
C
F = 4 ×(1/2)5 = 1 / 8
◇ 二级亲属间的近婚系数为1/8
S
A 1 A2
A3A4 P2 B2 C2
2、计算AD病基因频率
群体发病率=AA+Aa=p2+2pq,p+q=1 实际计算时,致病基因频率p很低,AA纯合个体少,
p2可以忽略,因此: • p2 ≈0,q ≈1,发病率= p2+2pq ≈ 2pq ≈ 2p
• 所以对于AD遗传病: p= ½ 发病率
遗传学第八章 核外遗传分析课件

遗传学 第八章 核外遗传分析
2、 性比(sex-ratio,SR)因子
◇SR因子是胞质中的一种原生动物,在雌蝇 和雄蝇中都能发现,但对发育中的雄性幼 虫是致死的,所以后代中雌蝇比例远大于 雄蝇比例。
◇将SR雌蝇的卵细胞质注入正常雌蝇可诱导 SR现象。
◇有证据表明,产生雄性致死毒素的可能是原 生动物内的病毒。
基因型与表型的关系
细胞质基因 正常(N) 不育(S)
核基因型
RfRf(可育) Rfrf(可育) rfrf(不育) N(RfRf)可育 N(Rfrf)可育 N(rfrf)可育 S(RfRf)可育 S(Rfrf)可育 S(rfrf)不育
遗传学 第八章 核外遗传分析
(二)可能的遗传机制 1、线粒体与雄性不育的关系 2、叶绿体与雄性不育的关系
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
• KSS综合征(Keams-Sayre Syndrome)是多 系统线粒体病,主要症状为眼肌麻痹和色素性视 网膜炎。患者骨骼肌细胞mtDNA有2.0kb7.0kb的缺失。 遗传学 第八章 核外遗传分析
五、叶绿体遗传及其分子基础
(一)衣藻的叶绿体遗传
◇ 衣藻细胞中只有一个叶绿体,约含50个 拷贝的环状ds-DNA分子。 ◇ 不同交配型(mt+,mt-)的单倍体衣藻 杂交,形成短暂2n时期,进行减数分裂。 ◇ 虽然杂交双方融合时为合子提供等量细 胞质,但叶绿体只由mt+方传递,表现单亲 遗传。
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
(二)叶绿体遗传的分子基础 1、叶绿体基因组
大小:环状双链DNA分子。大小120-190kb。 其基因序列中不含5-甲基胞嘧啶。
◆ cpDNA编码约100种蛋白质和RNAs,包 括45个编码RNA的基因,27个编码与基因表达 有关的蛋白的基因,18个编码类囊体膜的蛋白基 因和10个与电子传递功能有关的基因。
2、 性比(sex-ratio,SR)因子
◇SR因子是胞质中的一种原生动物,在雌蝇 和雄蝇中都能发现,但对发育中的雄性幼 虫是致死的,所以后代中雌蝇比例远大于 雄蝇比例。
◇将SR雌蝇的卵细胞质注入正常雌蝇可诱导 SR现象。
◇有证据表明,产生雄性致死毒素的可能是原 生动物内的病毒。
基因型与表型的关系
细胞质基因 正常(N) 不育(S)
核基因型
RfRf(可育) Rfrf(可育) rfrf(不育) N(RfRf)可育 N(Rfrf)可育 N(rfrf)可育 S(RfRf)可育 S(Rfrf)可育 S(rfrf)不育
遗传学 第八章 核外遗传分析
(二)可能的遗传机制 1、线粒体与雄性不育的关系 2、叶绿体与雄性不育的关系
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
• KSS综合征(Keams-Sayre Syndrome)是多 系统线粒体病,主要症状为眼肌麻痹和色素性视 网膜炎。患者骨骼肌细胞mtDNA有2.0kb7.0kb的缺失。 遗传学 第八章 核外遗传分析
五、叶绿体遗传及其分子基础
(一)衣藻的叶绿体遗传
◇ 衣藻细胞中只有一个叶绿体,约含50个 拷贝的环状ds-DNA分子。 ◇ 不同交配型(mt+,mt-)的单倍体衣藻 杂交,形成短暂2n时期,进行减数分裂。 ◇ 虽然杂交双方融合时为合子提供等量细 胞质,但叶绿体只由mt+方传递,表现单亲 遗传。
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
(二)叶绿体遗传的分子基础 1、叶绿体基因组
大小:环状双链DNA分子。大小120-190kb。 其基因序列中不含5-甲基胞嘧啶。
◆ cpDNA编码约100种蛋白质和RNAs,包 括45个编码RNA的基因,27个编码与基因表达 有关的蛋白的基因,18个编码类囊体膜的蛋白基 因和10个与电子传递功能有关的基因。
群体遗传学ppt课件

引言
群体或种群(population)是指生活在某一
地区的、能正常杂交繁衍后代的个体群。这样
的群体也叫孟德尔式群体(Mendelian
population)。
基因变异是人类进化的基础,构成了群体中的 个体多样性
不同人种
我国不同民族人群
群体遗传学(Population Genetics) 是研究群体的遗传结构,即基因频率和基 因型频率,应用数学手段研究群体中遗传结构 的变化规律及影响因素的学科。
可以看出在这一群体中第一代和第二代的 基因型频率是一致的。实际上无论经过多少代, 基因型频率将保持不变,每种基因型的个体数 量随着群体大小而增减,但是相对频率不变, 这就是Hardy-Weinberg平衡的推理。
二、Hardy-Weinberg平衡律的应用
1、Hardy-Weinberg平衡判定
例1:某一基因座的一对等位基因A和a,有三种基因型 AA,Aa/aA和aa,在随机1000人的群体中,观察 的基因型分布如下:AA为600人、Aa/aA为340人、 aa为60人。该群体是否实现了遗传平衡? 先求算基因频率: A =p=AA+1/2Aa=600/1000+1/2x340/1000 =0.77 a=q=aa+1/2Aa=60/1000+1/2x340/1000 =0.23 (将A=p=0.77,a=q=0.23代 入下表)
不同基因型频率的预期值和观察值
预期值(e) 基因型
观察值(o)
AA
Aa/aA aaΒιβλιοθήκη 592.9(p2×1000)
354.2(2pq×1000) 52.9(q2×1000)
600
340 60
群体遗传学-PPT课件

群体遗传结构:群体中各种等位
基因的频率以及由不同的交配体制所
产生的各种基因型在数量上的分布。
例:有一群体:AA 30个,Aa 60个, aa 10个 则基因型频率:AA P=30/100=0.3 Aa aa 基因频率: A H =60/100=0.6 Q=10/100=0.1 p=(302+60)/1002 =0.6
当q或s很小时qsq1q50精选ppt当纯合隐性个体致死或不能生育51精选ppt不同q值s值时的选择效率s05s01s001099075383820750518176050253131002501014717100100019018592492400010001900180590239023100010000190001800590023900230选择的效果与被选择基因的初始频率及选择系数有关52精选ppt对显性表型不利的选择aaaaaa合计a频率初始频率适合度1s1s1s2pq1s1s2pq1ssp1sp2p1sp2p1sp2p1sp2p相对频率53精选pptpsp1sp2p1sp2p54精选ppt当s或p很小时说明当选择系数很小或a基因频率很低时a基因频率的改变是很小的选择的作用不大
存活力(viability) 适合度 生殖成功(reproductive success) 将具有最高生殖效能的基因型的适应 值定为1,其它基因型在0~1之间。
选择系数(selective coefficient,s): 在选择的作用下降低的适合度。即s=1-w。 致死或不育的基因型,s=1,w=0。
(2) 对隐性纯合体不利的选择
AA Aa aa 合计 a频率
初始频率
适合度
p2
1
2pq
1 2pq 2pq
q2
遗传学第八章数量遗传课件.ppt

F3的表现型方差:
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VFr 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固
定遗传变异加性效应方差比重逐渐加大,而 不可固定的显性效应方差比重逐渐减小。
4. 回交世代的方差
B1群体: F1P 1 A aAA
其群体遗传组成: 1 AA 1 Aa 22
15
6
1
红粒有效基 6R 5R 4R 3R 2R 1R 0R 因数
红粒:白粒
63:1
小麦籽粒颜色生化基础:红粒基因R编码一种红色素合成 酶。R基因份数越多,酶和色素的量也就越多,籽粒的颜 色就越深。
当某性状由1对基因决定时,由于F1能够产生 具有等数R和等数r的雌配子和雄配子,所以
F1产生的雌配子与雄配子都各为,
两个方差加在一起 1 a 2 1 d 2 1 a 1 d a 2 1 d 2 1 a 1 d a 2 1 d 2 44 244 222
11 VB 1VB22VA2VD2VE
第四节 遗传率的估算及其应用
一、遗传率的概念
1、广义遗传率 遗传方差占总方差(表型方差)的比值
hB2
遗传方差 总方差
100 %
VG 100% VG VE
2、狭义遗传率:基因加性方差占总方差的比值
V P V A V D V I V E
h
2 N
基因加性方差 总方差
100 %
V A 100% VP
V A
VA VD VI
VE
100 %
二、遗传率的估算
•广义遗传率的估算
VE1 4VP11 2VF11 4VP2
第一节 数量性状的特征
遗传学第八章群体遗传学ppt课件

..\genetic movies\基因频率与群体遗传平衡.mov
• 例如:已知白化病的发病率为1/10000,求白化病致病基 因频率q和携带者频率。
• 白化病为AR遗传病,患者为致病基因的纯合子,因此:
• 发病率 = q2 = 1/10000 q = 1/100
•
p = 1 - q = 99/100
F= 4 (1/2)6=1/16
S
谢 谢!
• 打破群体平衡有五个因素,这五个因素是: • 随机交配的偏移,基因突变、选择、遗传漂移和
迁移。
随机交配 近亲繁殖 基因型频率改变 基因频率未变
二、突变和选择对基因频率的作用
• 基因突变对改变群体遗传组成的作用有两 个方面。
• 第一,它提供遗传变异的最原始材料。没 有突变,等位基因的重组和非等位基因的 重组无从发生作用。
• ※ 条件: • (1)在一个很大的群体;(2)随机婚配而非选择性婚配;(3)没有自然选择; • (4)没有突变发生;(5)没有大规模迁移 • ②群体处于平衡状态时,基因型频率和基因频的关系是:D=p2,H=2pq,R=q2。
• ③在任何一个大群体内,不论基因频率和基因型频率如何,只要经过一代随机交配, 这个群体就可以达到平衡。
舅甥女婚配(二级亲属)
A1A2
A3A4
二级亲属的近婚系数:
F= 4 (1/2)5=1/8
S A1A1 A2A2 A3A3 A4A4
A3A4
半同胞婚配
A1A2
A5A6
S A1A1 A2A2
半同胞的近婚系数:
F=2 (1/2)4=1/8
姨表兄妹婚配(三级亲属)
A1A2 A3A4
三级亲属的近婚系数:
四、群落
• 例如:已知白化病的发病率为1/10000,求白化病致病基 因频率q和携带者频率。
• 白化病为AR遗传病,患者为致病基因的纯合子,因此:
• 发病率 = q2 = 1/10000 q = 1/100
•
p = 1 - q = 99/100
F= 4 (1/2)6=1/16
S
谢 谢!
• 打破群体平衡有五个因素,这五个因素是: • 随机交配的偏移,基因突变、选择、遗传漂移和
迁移。
随机交配 近亲繁殖 基因型频率改变 基因频率未变
二、突变和选择对基因频率的作用
• 基因突变对改变群体遗传组成的作用有两 个方面。
• 第一,它提供遗传变异的最原始材料。没 有突变,等位基因的重组和非等位基因的 重组无从发生作用。
• ※ 条件: • (1)在一个很大的群体;(2)随机婚配而非选择性婚配;(3)没有自然选择; • (4)没有突变发生;(5)没有大规模迁移 • ②群体处于平衡状态时,基因型频率和基因频的关系是:D=p2,H=2pq,R=q2。
• ③在任何一个大群体内,不论基因频率和基因型频率如何,只要经过一代随机交配, 这个群体就可以达到平衡。
舅甥女婚配(二级亲属)
A1A2
A3A4
二级亲属的近婚系数:
F= 4 (1/2)5=1/8
S A1A1 A2A2 A3A3 A4A4
A3A4
半同胞婚配
A1A2
A5A6
S A1A1 A2A2
半同胞的近婚系数:
F=2 (1/2)4=1/8
姨表兄妹婚配(三级亲属)
A1A2 A3A4
三级亲属的近婚系数:
四、群落
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若某位点等位基因为共显性遗传,其表型可以反映出 基因型,可用基因型频率直接计算基因频率。
从基因型频率直接计算基因频率
❖ 举例: 人的MN血型,由一对共显性等位基因M和N 所决定,产生3种基因型M/M、M/N和N/N;
❖ 人群:调查上海市汉族1788人,其中:M型血,397 人;N型血,530人;MN型血,861人。
例 1 、 调 查 一 群 体 白 化 病 ( AR ) 的 发 病 率 (q2) 为 1/10,000,基因A和a及携带者Aa的频率是多少?
根据遗传平衡定律: (p + q)2 = p2 + 2pq + q2 = 1 患者aa基因型频率: q2=1/10000 致病基因a的频率: q =√1/10000 = 0.01 正常基因A的频率: p =1-q=0.99, 那么 携带者Aa的频率:2pq=2×0.99×0.01≈0.02 (1/50)
结论:任何一个基因位点上全部基因频率之和必为 100%或1。
基因型频率:群体中一组等位基因组成的不同基因型 所占的比率
举例: 一对等位基因A和a组成三种基因型-AA, Aa, aa。某一群体,若AA占1/4, Aa占1/2, aa占1/4, 则: AA的频率为25%, Aa的频率为50%, aa的频率为 25%, 全部基因型的频率之和为:0.25+0.50+0.25=1
医学遗传学
第八章 群体遗传学
群体:指一个物种生活在某一地区内、能相互 杂交的个体群,也称为孟德尔式群体 (Mendelian population)。
基因库:一个群体所具有的全部遗传信息称为 基因库(gene pool)。
群体遗传学:研究群体的遗传组成和遗传变 化规律的科学。即运用数学和统计学方 法,研究群体中基因的分布, 基因频率 和基因型频率的维持和变化的科学。
W.Weinberg
内容:
一个随机婚配的大群体中,如果没有突变 发生,没有自然选择影响,也没有个体大规 模的迁移,则群体中各种基因型频率和基因 频率世代保持不变,处于遗传平衡状态。
维持群体的遗传平衡所需要的条件:
① 群体要足够大,不会由于任何基因型传递而产 生频率的随意或太大的波动;
② 必须是随机交配而不带选择交配;
表型 基因型 个体数 基因型频率
基因频率
M M/M 397 N N/N 530 MN M/N 861
0.222 0.296 0.482
M为p
p=M/M+1/2×M/N =0.222+0.482/2=0.46
N为q q=N/N+1/2×M/N =0.296+0.482/2=0.54
总计
1788 1.000
③ 没有自然选择,所有的基因型(在一个座位上)都 同等存在;
④ 没有突变发生; 或者说有恒定的突变率,即由新 突变来替代因死亡而丢失的突变等位基因;
⑤ 没有个体的大规模迁移, 不会因迁移而产生群体 结构的变化。
如何判断一个群体是否达到遗传平衡?
假设:一对等位基因A和a,基因A频率为p,a频率为 q; 则基因型频率必须符合二项式: (p + q)2 = p2 + 2pq + q2 = 1
医学领域:研究人群中致病基因的频率,携 带者频率和遗传病的发病率,影响基因 频率的因素,探讨遗传病发生和分布的 规律,用于预防、监测和治疗遗传病。
第一节 基因频率和基因型频率
基因频率:群体中某一基因占该位点全部等位基因 的比率;即等位基因频率。
举例:某一位点仅一对等位基因,A和a,A的频率 (p)为70%,则a的频率(q)为30%,A和a的频率 和p+q=70%+30%=100%。
aa Aa AA
基 基基 因 因因 型 型型
的 频 率
的的 频频 率率
例. 某群体有1000人, 其中AA有600, aa有200人, Aa有 200人
基因型 个体数 基因型频率
基因频率
A/A 600 A/a 200 a/a 200
0.6
A为 p=0.6+0.2/2=0.
0.2
p7
a为 q=0.2+0.2/2=0.
0.2
q3
根据总基计因频1率0再00计算基1因.0型频率,得:p=+1AqA==0P.27=+00.7.32
=0.49 Aa=2pq=2×0.7×0.3=0.42 aa=q2=0.32
=0.09
实结际论观:察该值为群:体A未A=达0.到6、遗A传a=平0.2衡、。aa=0.2
遗传不平衡的群体如何达到遗传平衡状态?
人类大多数群体均处于遗传平衡状态,因此, 运用遗传平衡定律,可以:
1、隐性纯合基因型频率推算各等位基因频率;例1
;例2
3、X连锁基因,因男性是半合子,基因频率=基因 型频率=表型频率;女性中的基因频率及基因型 频率分布则与常染色体遗传相同,而且女性纯合 子的频率=相应男性表型频率的平方。例3
p+q=0.46+0.54=1
p=(397×2+861 )÷ (1788×2) = 0.46 q=(530×2+861 ) ÷ (1788×2 )= 0.54
第二节 群体的遗传平衡定律
一、Hardy-Weinberg 定律
遗传平衡定律( law of genetic equilibrium )
DH.Hardy
因罕见的常染色体隐性遗传病纯合子患者频率 (q2)很低,故: 2pq=2(1-q)q=2q-2q2≈2q 即:杂合携带者频率(2pq)约为致病基因频率 的2倍
同时,∵q很小,p≈1 ∴2pq/q2 =2q/q2 =2/q
即 : 杂 合 携 带 者 频 率 与 纯 合 患 者 之 比 为 2:q , 致 病基因多以携带者的方式存在于一个群体中
例2、调查190,177人的群体ABO血型的分布,其中A型为41.72%,B
型是8.56%,O型为46.68%,AB型为3.04 % ,计算IA、IB、i的基因
通过一次随机婚配,下一代即能达到遗传平衡状 态,Why?
精子 卵子 A(0.70) a(0.30)
A(0.70)
AA(0.49) Aa(0.21)
a(0.30)
Aa(0.21) aa(0.09)
在随机婚配的情况下,基因的频率是不会变的,但 基因型的频率,或者说基因型AA、Aa、aa的比例会 发生改变,从而达到遗传平衡。
从基因型频率直接计算基因频率
❖ 举例: 人的MN血型,由一对共显性等位基因M和N 所决定,产生3种基因型M/M、M/N和N/N;
❖ 人群:调查上海市汉族1788人,其中:M型血,397 人;N型血,530人;MN型血,861人。
例 1 、 调 查 一 群 体 白 化 病 ( AR ) 的 发 病 率 (q2) 为 1/10,000,基因A和a及携带者Aa的频率是多少?
根据遗传平衡定律: (p + q)2 = p2 + 2pq + q2 = 1 患者aa基因型频率: q2=1/10000 致病基因a的频率: q =√1/10000 = 0.01 正常基因A的频率: p =1-q=0.99, 那么 携带者Aa的频率:2pq=2×0.99×0.01≈0.02 (1/50)
结论:任何一个基因位点上全部基因频率之和必为 100%或1。
基因型频率:群体中一组等位基因组成的不同基因型 所占的比率
举例: 一对等位基因A和a组成三种基因型-AA, Aa, aa。某一群体,若AA占1/4, Aa占1/2, aa占1/4, 则: AA的频率为25%, Aa的频率为50%, aa的频率为 25%, 全部基因型的频率之和为:0.25+0.50+0.25=1
医学遗传学
第八章 群体遗传学
群体:指一个物种生活在某一地区内、能相互 杂交的个体群,也称为孟德尔式群体 (Mendelian population)。
基因库:一个群体所具有的全部遗传信息称为 基因库(gene pool)。
群体遗传学:研究群体的遗传组成和遗传变 化规律的科学。即运用数学和统计学方 法,研究群体中基因的分布, 基因频率 和基因型频率的维持和变化的科学。
W.Weinberg
内容:
一个随机婚配的大群体中,如果没有突变 发生,没有自然选择影响,也没有个体大规 模的迁移,则群体中各种基因型频率和基因 频率世代保持不变,处于遗传平衡状态。
维持群体的遗传平衡所需要的条件:
① 群体要足够大,不会由于任何基因型传递而产 生频率的随意或太大的波动;
② 必须是随机交配而不带选择交配;
表型 基因型 个体数 基因型频率
基因频率
M M/M 397 N N/N 530 MN M/N 861
0.222 0.296 0.482
M为p
p=M/M+1/2×M/N =0.222+0.482/2=0.46
N为q q=N/N+1/2×M/N =0.296+0.482/2=0.54
总计
1788 1.000
③ 没有自然选择,所有的基因型(在一个座位上)都 同等存在;
④ 没有突变发生; 或者说有恒定的突变率,即由新 突变来替代因死亡而丢失的突变等位基因;
⑤ 没有个体的大规模迁移, 不会因迁移而产生群体 结构的变化。
如何判断一个群体是否达到遗传平衡?
假设:一对等位基因A和a,基因A频率为p,a频率为 q; 则基因型频率必须符合二项式: (p + q)2 = p2 + 2pq + q2 = 1
医学领域:研究人群中致病基因的频率,携 带者频率和遗传病的发病率,影响基因 频率的因素,探讨遗传病发生和分布的 规律,用于预防、监测和治疗遗传病。
第一节 基因频率和基因型频率
基因频率:群体中某一基因占该位点全部等位基因 的比率;即等位基因频率。
举例:某一位点仅一对等位基因,A和a,A的频率 (p)为70%,则a的频率(q)为30%,A和a的频率 和p+q=70%+30%=100%。
aa Aa AA
基 基基 因 因因 型 型型
的 频 率
的的 频频 率率
例. 某群体有1000人, 其中AA有600, aa有200人, Aa有 200人
基因型 个体数 基因型频率
基因频率
A/A 600 A/a 200 a/a 200
0.6
A为 p=0.6+0.2/2=0.
0.2
p7
a为 q=0.2+0.2/2=0.
0.2
q3
根据总基计因频1率0再00计算基1因.0型频率,得:p=+1AqA==0P.27=+00.7.32
=0.49 Aa=2pq=2×0.7×0.3=0.42 aa=q2=0.32
=0.09
实结际论观:察该值为群:体A未A=达0.到6、遗A传a=平0.2衡、。aa=0.2
遗传不平衡的群体如何达到遗传平衡状态?
人类大多数群体均处于遗传平衡状态,因此, 运用遗传平衡定律,可以:
1、隐性纯合基因型频率推算各等位基因频率;例1
;例2
3、X连锁基因,因男性是半合子,基因频率=基因 型频率=表型频率;女性中的基因频率及基因型 频率分布则与常染色体遗传相同,而且女性纯合 子的频率=相应男性表型频率的平方。例3
p+q=0.46+0.54=1
p=(397×2+861 )÷ (1788×2) = 0.46 q=(530×2+861 ) ÷ (1788×2 )= 0.54
第二节 群体的遗传平衡定律
一、Hardy-Weinberg 定律
遗传平衡定律( law of genetic equilibrium )
DH.Hardy
因罕见的常染色体隐性遗传病纯合子患者频率 (q2)很低,故: 2pq=2(1-q)q=2q-2q2≈2q 即:杂合携带者频率(2pq)约为致病基因频率 的2倍
同时,∵q很小,p≈1 ∴2pq/q2 =2q/q2 =2/q
即 : 杂 合 携 带 者 频 率 与 纯 合 患 者 之 比 为 2:q , 致 病基因多以携带者的方式存在于一个群体中
例2、调查190,177人的群体ABO血型的分布,其中A型为41.72%,B
型是8.56%,O型为46.68%,AB型为3.04 % ,计算IA、IB、i的基因
通过一次随机婚配,下一代即能达到遗传平衡状 态,Why?
精子 卵子 A(0.70) a(0.30)
A(0.70)
AA(0.49) Aa(0.21)
a(0.30)
Aa(0.21) aa(0.09)
在随机婚配的情况下,基因的频率是不会变的,但 基因型的频率,或者说基因型AA、Aa、aa的比例会 发生改变,从而达到遗传平衡。