关于PID控制 PPT课件
合集下载
PID控制经典PPT

PID控制广泛应用于各种工业过程控制系统中,如温度、压力、流量等。
PID控制的基本概念
03
微分控制
通过微分项预测误差的变化趋势,提前调整输入信号,以减小超调和缩短调节时间。
01
比例控制
通过调整输入信号的比例系数,对误差进行直接控制,以快速减小误差。
02
积分控制
通过积分项对误差进行累积,并调整输入信号,以消除长期误差。
频率响应法
通过分析系统的频率特性,如幅频特性和相频特性,来评估PID控制器的性能,主要关注系统的稳定性和抗干扰能力。
误差积分法
通过对系统误差进行积分,得到一个反映系统误差累积的指标,以此评估PID控制器的性能,关注系统误差的控制能力。
阶跃响应法
通过调整比例系数,改变系统的放大倍数,影响系统的响应速度和稳态精度。适当增大比例系数可以提高系统的响应速度,但过大会导致系统不稳定;适当减小比例系数可以减小超调量,但过小会导致系统响应迟缓。
PID控制器在机器人控制系统中具有重要的作用,是实现机器人精确控制的关键之一。
04
PID控制的改进与发展
模糊PID控制
总结词:模糊PID控制是一种将模糊逻辑与PID控制相结合的方法,通过模糊化处理将不确定性和非线性因素引入PID控制器中,提高系统的鲁棒性和适应性。
神经网络PID控制
总结词:神经网络PID控制是一种基于神经网络的PID控制器,通过神经网络的自学习和自适应能力,实现对PID参数的在线调整和优化。
pid控制经典
CATALOGUE
目录
PID控制理论概述 PID控制器的设计 PID控制的应用 PID控制的改进与发展 PID控制性能的评估与优化
01
PID控制理论概述
PID控制的基本概念
03
微分控制
通过微分项预测误差的变化趋势,提前调整输入信号,以减小超调和缩短调节时间。
01
比例控制
通过调整输入信号的比例系数,对误差进行直接控制,以快速减小误差。
02
积分控制
通过积分项对误差进行累积,并调整输入信号,以消除长期误差。
频率响应法
通过分析系统的频率特性,如幅频特性和相频特性,来评估PID控制器的性能,主要关注系统的稳定性和抗干扰能力。
误差积分法
通过对系统误差进行积分,得到一个反映系统误差累积的指标,以此评估PID控制器的性能,关注系统误差的控制能力。
阶跃响应法
通过调整比例系数,改变系统的放大倍数,影响系统的响应速度和稳态精度。适当增大比例系数可以提高系统的响应速度,但过大会导致系统不稳定;适当减小比例系数可以减小超调量,但过小会导致系统响应迟缓。
PID控制器在机器人控制系统中具有重要的作用,是实现机器人精确控制的关键之一。
04
PID控制的改进与发展
模糊PID控制
总结词:模糊PID控制是一种将模糊逻辑与PID控制相结合的方法,通过模糊化处理将不确定性和非线性因素引入PID控制器中,提高系统的鲁棒性和适应性。
神经网络PID控制
总结词:神经网络PID控制是一种基于神经网络的PID控制器,通过神经网络的自学习和自适应能力,实现对PID参数的在线调整和优化。
pid控制经典
CATALOGUE
目录
PID控制理论概述 PID控制器的设计 PID控制的应用 PID控制的改进与发展 PID控制性能的评估与优化
01
PID控制理论概述
PID控制!!ppt课件

也就是说,若以距离y作为输入,以力f作为输出,则缓冲器可以称 为微分环节。
精选版课件ppt
28
微分控制器的输出只与偏差的变化速度有 关,而与偏差存在与否无关。 因此,纯粹的微分控制作用是无意义的, 一般都将微分控制作用与比例控制结合起 来使用。
精选版课件ppt
29
微分控制的作用:
1、微分控制的作用是有偏差信号e(t)的当
1、对当前时刻的偏差信号e(t) 进行放大或衰减后作为控制信 号输出。
2、比例系数Kp越大,控制作用
越强,系统的动态特性也越好,
动态特性主要表现为起动快,
对阶跃设定跟随的快。
精选版课件ppt
18
比例控制的作用: 3、对于有惯性的系统, Kp过大时会出现较 大的超调,甚至引起系统振荡,影响系统的 稳定性。
设流入的流量为 x,活塞的移动距离 为y,S为活塞的截面 积,t为时间。
当流入的流量为一定值x0时,可以得出: y=x0t/S
如果x是变化的,即为t的函数,则
也就是说,若以流入的流量x作为输入,以移动距离y作为输出,
则油缸是个积分环节。
精选版课件ppt
21
4、 积分(I)控制规律(过去):
具有积分控制规律的控制器称为积分(I)控制器, 其传递函数为:
输出信号和输入信号的关系:
精选版课件ppt
22
带I控制器的系统输入输出示意图
控制器输出信号的大小,不仅与偏差大小有关,还取决于偏 差存在的时间长短。
只要有偏差存在,控制器的输出就不断变化。偏差存在时间 越长,输出信号的变化量越大,直到达到输出极限。
只有余差为0,控制器的输出才稳定。
精选版课件ppt
精选版课件ppt
pid控制PPT课件

k
Kpe(k)Ki e(j)Kde(k)e(k1) j0
式中,u(k)为第k次采样时刻的控制器的输出值; e (k-1)和e (k)分别为第(k-1)次和第k次采样时刻的偏差值。
只要采样周期T足够小,数字PID控制与模拟PID控制就会十分
精确的接近。
ppt精选版
12
1.2.2 增量式PID控制算法
e(k )
0 e(k )
e(k) e0 e(k) e0
式中,e(k)为位置跟踪偏差,e0是一个可调参数,其 具体数值可根据实际控制对象由实验确定。若e0值 太小,会使控制动作过于频繁,达不到稳定被控对象
的目的;若e0太大,则系统将产生较大的滞后。
ppt精选版
35
1.2.9 带死区的PID控制算法
1.1 PID控制原理
闭环控制系统原理框图
图中所示为控制系统的一般形式。被控量y(t)的检测值c(t)与给定值r(t) 进行比较,形成偏差值e(t),控制器以e(t)为输入,按一定的控制规律 形成控制量u(t),通过u(t)对被控对象进行控制,最终使得被控量y(t)运 行在与给定值r(t) 对应的某个非电量值上。
ppt精选版
1
1.1 PID控制原理
模拟PID控制系统原理框图
ppt精选版
2
ppt精选版
3
1.1 PID控制原理
PID控制器各环节的作用如下:
(1)比例环节的数学式表示是:
Kp e(t)
在模拟PID控制器中,比例环节的作用是对偏差量e(t)瞬间 作出反应, 产生相应的控制量u(t),使减少偏差e(t)向减小的 方向变化。控制作用的强弱取决于比例系数Kp, Kp越大, 控制作用越强,则过渡过程越快,控制过程的静态偏差ess 也就越小,但是Kp越大,也越容易产生振荡,增加系统的超 调量,系统的稳定性会变差。
《PID控制原理》课件

智能PID控制器
随着人工智能技术的发展,将人工智能算法与PID控制器相结合,形成智能PID控制器,可以自动调整PID控制器的参数,提高控制效果。
自适应PID控制器
自适应PID控制器可以根据系统参数的变化自动调整PID控制器的参数,提高系统的适应性和鲁棒性。
多变量PID控制器
多变量PID控制器可以同时控制多个变量,提高系统的控制精度和效率。
02
CHAPTER
PID控制器的参数整定
PID控制器参数对系统性能的影响
PID控制器的参数直接决定了系统的响应速度、超调量、调节时间和稳定性等性能指标,因此合理整定PID控制器参数对控制系统至关重要。
PID控制器参数与系统动态特性的关系
PID控制器参数的选择与系统的动态特性密切相关,不同的系统需要不同的PID参数配置,以实现最佳的控制效果。
根据系统特性选择合适的PID控制器参数
不同类型的系统具有不同的动态特性,需要根据系统的具体情况选择合适的PID参数。例如,对于快速响应系统,应选择较大的比例增益和较小的积分时间常数;对于慢速响应系统,应选择较小的比例增益和较大的积分时间常数。
逐步调整PID控制器参数
在调整PID控制器参数时,应遵循逐步调整的原则,先调整比例增益,再调整积分时间常数和微分时间常数。每次调整后都需要观察系统的响应特性,根据实际情况进行调整。
微分环节
比例环节
根据误差信号的大小,成比例地调整输出信号。当误差较大时,输出信号也相应增大,以迅速减小误差;当误差较小时,输出信号逐渐减小,以避免超调。
积分环节
对误差信号进行积分运算。积分环节的作用是消除静差,提高系统的控制精度。通过积分运算,可以逐渐减小误差,直到误差为零。
微分环节
《PID控制原理》课件

PID调节器
PID调节器的设计方法多种多样。本节将介绍手动调节法和自动调节法,以及它们在不同情况下的应用。
PID控制器的设计与应用
了解PID控制器的稳定性和性能分析,以及参数选取方法对于在实际工程中应用PID控制器至关重要。
结论
PID控制器有其优点和缺点。本节将总结这些,并展望PID控制器的未来发展 方向。
参考文献
掌握PID控制原理所需要的理论基础、应用知识以及T课件
简介
PID控制器是自动控制领域中常用的控制算法之一。本节将介绍PID控制器的 概述、应用场景以及与传统控制器的区别。
PID控制器原理
在PID控制器中,P(比例)、I(积分)、D(微分)控制器起着重要的作用。了解这些基本原理是理 解PID控制器工作方式的关键。
自动控制原理PIDppt课件

KdTd 1 Td
s s
7
PID 控制器
(t)
K p e0
te0 Ti
K e e
t Td
d0
(t)
Kpe0 Kpe0 Ti
KdKpe0 Kpe0
(t) Td Ti
2Kpe0
8
t Td
d0
KdKpe0 Kpe0
e0 Kpe0 Td
e(t) (t)
(t)
6
PID 控制器
(t
)
K
p
e(t)
1 Ti
e(t)dt
Td
de(t)
dt
Gc
(s)
K
p
1
1 Ti s
Td
s
(t )
K p e0
te0 Ti
Td e0
(t )
实际PID控制器
Gc
(s)
K
p
1
1 Ti s
I
y(t)
P
PD
PI PID
5
PD控制器的动态特性
(t )
K p e(t) Td
de(t) dt
(理想)
Td: 微分时间
Gc (s)
(s)
E(s)
K p 1 Td s
(t) K p e0 Td e0 (t)
实际PD控制器
Gc
(s)
K
p
1
K d Td 1 Td
s s
(t)
Kp
e0
K e e
e0
e(t)
(t) K pe0
PI
控制器
(t
)
K
p
e(t
)
变频器课件PID控制功能 PPT

• 解决的办法是使抑制误差的作用变化“超前”, 即在误差接近于零时,抑制误差仅是放大误差的 幅值,而目前需要增加的是微分项。它能预测误 差变化的趋势。
3.变频器内置PID功能
• PID闭环运行,必须首先选择PID闭环功能有 效的情况下,变频器按照给定值和反馈值进行 PID调节。PID调节是过程控制中应用得十分普遍 的一种控制方式。它是使控制系统的被控物理量 能够迅速而准确地接近于控制目标的基本手段。
• (3)多段速只有在在外部操作模式或PU/外部组合 操作模式(Pr.79 = 3,4)中有效。
• (4)当用Pr.180~Pr.186改变端子功能分配时,有 可能对其他的功能产生影响。请确定各端子的功能 后再进行设定。
图3.14 多段速运行示意图
• 对于变频器来说,比例控制实际上就是 将偏差信号(XT-XF)放大了KP倍后再作 为频率给定信号。
•
• (2)积分控制 • 在积分控制中,控制器的输出与输入偏差信号
的积分成正比关系。即使给定频率信号XG的变化 与KP(XT-XF)对时间的积分成正比。
• 对一个自动控制系统,如果在进入稳态后存在 稳态误差,则称这个系统为有稳态误差的系统, 简称有差系统。为了消除稳态误差,在控制器中 必须引入积分项。积分项对偏差取决于时间的积
• 在PID调节中,必须有两种控制信号: • (1)给定值(又称为设定值)。它是与被控物理
量的控制目标对应的信号。 • 在PID方式中,它指的是对测量值全范围中确定
一个符合现场控制要求的一个数值,并以该数值 为目标值,使系统最终稳定在此值的水平上或范 围内,并且越接近越好。
• 一方面,给定值是和所选传感器的量程有 关的。给定信号的大小由传感器量程的百 分数表示。例如,当目标压力为0.7MPa时, 如所选压力传感器的量程为0-1.0MPa(420mA电流输出),则对应于0.7MPa的给 定量为70%; 如所选压力传感器的量程为 0-5.0MPa(4-20mA电流输出),则对应 于0.6MPa的给定量为14%。
3.变频器内置PID功能
• PID闭环运行,必须首先选择PID闭环功能有 效的情况下,变频器按照给定值和反馈值进行 PID调节。PID调节是过程控制中应用得十分普遍 的一种控制方式。它是使控制系统的被控物理量 能够迅速而准确地接近于控制目标的基本手段。
• (3)多段速只有在在外部操作模式或PU/外部组合 操作模式(Pr.79 = 3,4)中有效。
• (4)当用Pr.180~Pr.186改变端子功能分配时,有 可能对其他的功能产生影响。请确定各端子的功能 后再进行设定。
图3.14 多段速运行示意图
• 对于变频器来说,比例控制实际上就是 将偏差信号(XT-XF)放大了KP倍后再作 为频率给定信号。
•
• (2)积分控制 • 在积分控制中,控制器的输出与输入偏差信号
的积分成正比关系。即使给定频率信号XG的变化 与KP(XT-XF)对时间的积分成正比。
• 对一个自动控制系统,如果在进入稳态后存在 稳态误差,则称这个系统为有稳态误差的系统, 简称有差系统。为了消除稳态误差,在控制器中 必须引入积分项。积分项对偏差取决于时间的积
• 在PID调节中,必须有两种控制信号: • (1)给定值(又称为设定值)。它是与被控物理
量的控制目标对应的信号。 • 在PID方式中,它指的是对测量值全范围中确定
一个符合现场控制要求的一个数值,并以该数值 为目标值,使系统最终稳定在此值的水平上或范 围内,并且越接近越好。
• 一方面,给定值是和所选传感器的量程有 关的。给定信号的大小由传感器量程的百 分数表示。例如,当目标压力为0.7MPa时, 如所选压力传感器的量程为0-1.0MPa(420mA电流输出),则对应于0.7MPa的给 定量为70%; 如所选压力传感器的量程为 0-5.0MPa(4-20mA电流输出),则对应 于0.6MPa的给定量为14%。
PID讲解理论ppt课件

个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,
I=0.1-1,D=0,这些要在现场调试时进行修正的。
6
图1 过程过渡质量指示图
上图是过程过渡质量指示图,也是干扰作用影响下的过渡过程, 用过渡过程衡量系统质量时,常用的指标有:
衰减比:前后两个峰值的比,如图1中的B:B’
余差: 就是过渡过程终了时的残余偏差,如图1中的C
微分(D)调节作用:微分作用反映系统偏差信号的 变化率,具有预见性,能预见偏差变化的趋势,因此能产 生超前的控制作用,在偏差还没有形成之前,已被微分调 节作用消除。因此,可以改善系统的动态性能。在微分时 间选择合适情况下,可以减少超调,减少调节时间。此外, 微分反应的是变化率,而当输入没有变化时,微分作用输 出为零。微分作用不能单独使用。
I是解决动作响应的速度快慢的,可消除系统稳态误差,I变大时 响应速度变慢,反之则快;
D是消除静态误差的,提高系统动态特性,(减少超调量和反应
时பைடு நூலகம்),一般D设置都比较小,而且对系统影响比较小。
3
PID控制器参数的工程整定,各种调节系统中P.I.D参数经 验数据以下可参照:
温度TIC:P=20~60%,I=180~600s,D=3-180s; 压力PIC: P=30~70%,I=24~180s; 液位LIC: P=20~80%,I=60~300s; 流量FIC: P=40~100%,I=6~60s。
经验法简单可靠,但需要有一定现场运行经验,整 定时易带有主观片面性。当采用PID调节器时,有多个整 定参数,反复试凑的次数增多,不易得到最佳整定参数。
5
下面以PID调节器为例,具体说明经验法的整定步骤:
A. 让调节器参数积分系数I=0,实际微分系数D=0,控制系统投入