聚氯乙稀共混改性综述
共混改性提高PVC耐热性的研究进展

共混改性提高PVC耐热性的研究进展发布时间:2022-03-31T08:22:16.213Z 来源:《科学与技术》2021年25期作者:杨小川[导读] 聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。
杨小川广东达华生态科技有限公司广东揭阳522000摘要:聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。
提升聚氯乙烯耐热性能共混改性组分有很多,其中包括以N-取代马来酰亚胺类为代表的高分耐热改性剂,以氯化PVC为主的具备高耐热性的改良PVC,除此之外,还包括无机填料。
由于PVC 复合材料中混入不同类型耐热改性剂所呈现效果存在较大差异,本文将结合相关研究文献对共混改性提高PVC耐热性复合材料研究进行相关文献综述,为材料开发工作提供信息参考。
关键词:共混改性;PVC耐热性;复合材料为顺应社会市场需求,我国不断加大科学技术投资力度,各科研领域均取得了优异成绩。
我国现阶段塑料改良行业发展重心依旧以塑料工程化为主,研究高性能工程塑料,典型热塑性材料为聚氯乙烯,具有开发成本低、经济丰富等特性,在化工和建筑领域应用广泛。
从使用性角度看,PVC存在热稳定性差的缺陷,连续使用温度仅在65℃左右,这就导致产品需要着重关注使用温度和受力情况。
为解决此问题,常使用共混改性方式提升耐热温度。
所谓共混改性是指将玻璃化转变温度较高的树脂与PVC粉料充分结合,这种制作工艺简单、具有较高可操作性。
一、利用共混高分子耐热改性剂改善PVC耐热性利用该方法改变PVC树脂耐热性,需要保证高分子耐热改性剂与PVC之间具有较好的相容性,改性剂需要具备较高的玻璃化转变温度和较低的熔融温度以及熔体粘度,增强材料可塑性。
PVC共混改性 宋明明

七、PVC/TPU共混改性
PVC可与热塑性聚氨酯共混,用于医疗材料方面。 聚氨酯具有优异的物理化学性能和极好的生物相容性。 选用与PVC共混的TPU时,应首先考虑两者的相容性。 另外软段与硬段比例适当调整,对调节共混物力学性 能,以及改善加工性能都是有作用的。 PVC/TPU共混体系用于医疗材料时,为避免增塑 剂的迁移,可以用TPU完全取代液体增塑剂
材化学院高分子系
2、悬浮法PVC与PVC糊树脂共混 机械共混中使用的PVC树脂,一般为悬浮法 PVC。在某些产品中可采用PVC糊树脂与悬 浮法PVC共混,以改善加工性能。PVC糊树 脂的颗粒远较悬浮法PVC树脂小,易于塑化
材化学院高分子系
谢谢观看
材化学院高分子系
制品中添加CPE起增韧改性的作用。 PVC/CPE共混体系中,体系的 组成、共混温度、共混方式都会 影响增韧效果。 右图看出,随着CPE用量增加 缺口冲击强度上升,且图形呈S 型。Fra bibliotek材化学院高分子系
1、CPE是聚乙烯经氯化后的产物,在PVC硬
2、在软质品中的应用
在PVC软制品中添加CPE可使PVC不迁移,不 挥发永久性增塑剂,提高PVC软制品耐久性。 在CPE与PVC共混配置的软质PVC中,CPE 用量通常不低于20质量份,同时要添加适量液体 增塑剂,随CPE用量的增大会导致拉伸强度略下 降,而耐老化性能明显提高。
材化学院高分子系
四、PVC/ACR共混体系
作为硬质PVC树脂的改性剂,ACR可分 为加工助剂和抗冲击助剂两种。 加工助剂主要是减少硬质PVC物料的凝 胶塑化时间。便于热成型等二次加工。 抗冲击性型ACR形成“核-壳”结构。 其壳与PVC具有良好的相容性;其核在共 混体系中起到了卓越的增韧效果。 ACR是继MBS之后最成功的透明性改性 剂。
聚氯乙烯改性

聚氯乙烯耐热改性技术进展摘要: 综述聚氯乙烯耐热改性方法的技术进展,比较了不同方法对其性能的影响,并介绍了几种耐热改性剂。
关键词:聚氯乙烯 耐热改性剂 技术进展 性能The progress in the modif ication of PVC heat resistanceAbstract The progress in the modification of PVC heat resistance isreviewed. Theeffect s of different methods on it s properties are compared. Several heat resistant modi 2fier are int roduced.Key words polyvinyl chloride , heat resistant modifier , progress , property前言】】【【41聚氯乙烯(PVC )是通用塑料的主要品种之一,具有价格便宜、透明性好、难燃、电绝缘性好和耐腐蚀等优点, 可通过添加各种添加剂和运用多种成型方法制得性能各异、用途广泛的软质或硬质制品。
但是,通用PVC 树脂的热稳定性差,加工过程中易受热发生由活性部位(如烯丙基氯、叔氯、叔氢、带双键或过氧化物残基的端基等) 引发的自催化脱氯化氢反应,形成共扼多烯链,并进而发生断链、交联等反应而变色、降解,致使塑料制品质量变差,性能下降,进而影响其加工和使用性能。
因此,为了拓宽PVC 的使用范围,人们致力于对通用PVC 树脂进行耐热改性,进而开发新型耐热PVC 树脂。
目前,PVC 耐热改性的方法主要有添加热稳定剂、共混、交联、共聚以及氯化等,通过这些方法,可以改善聚氯乙烯的耐热性能,拓宽使用范围。
1. 改善PVC 热稳定性的方法1.1 热稳定剂】【2聚合物共混是生产改性材料的有效技术和方法,对现有聚合物进行改性可以开拓更多的新材料。
PVC共混改性基础

PVC共混改性基础增塑剂(Plasticizer)第一节概述一:概念一些常用的热塑性聚合物具有高于室温的玻璃化转变温度(Tg),在此温度以下﹐聚合物表现为类似玻璃的脆化状态﹐在此温度以上﹐则呈现较大的回弹性﹑柔韧性和冲击强度。
要使聚合物具有实用价值﹐就必须使其玻璃转变温度降到使用温度以上。
增塑剂就是为了解决这个问题而引入聚合物的一类助剂。
增塑剂为挥发性较小之物质﹐将之添加于塑料时﹐能使塑料之弹性率﹑玻璃化转变温度(Tg)下降﹐而于常温时赋予适当之柔软性﹐于高温时减低其熔融黏度使其易于加工。
广义地讲﹐凡能与树脂均匀混合﹐不与树脂发生化学反应﹐在成型加工期间保持不变﹐或者与树脂发生化学反应﹐但能长期保留在聚合物制品中﹐并能够改变聚合物某些物理性质的物质﹐都可以称为增塑剂。
聚合物与增塑剂间的作用﹐可简单地看做以下两种方式﹕(1)树脂分子间偶极--偶极相互作用的抵消而减弱了树脂间的引力﹔(2)通过简单的稀释作用﹐缩小树脂分子间的距离(自由体积)而形成一定的空间。
结果增加了塑料片材的柔软性﹐增强了模塑制品的韧性的冲击强度。
因此可以说﹐增塑剂的主要作用是削弱聚合物分子间的次价键﹐即范德华力﹐从而增加聚合物分子链的移动性﹐亦即增加聚合物塑性。
表现为聚合物的硬度﹑模量﹑伸长率﹑曲挠性和柔韧性的提高。
软质配合物的硬度与可塑剂量(参考)DOP配合量(Phr)20 30 40 50 60 70 80 90 100 Shore 硬度(Duro, 25o C) 96C 86C 95A 88A 81A 75A 69A 63A 57A1.聚合物的分子间力增塑剂加入到聚合物中时﹐增塑剂分子之间﹑增塑剂与聚合物分子之间的相互作用力对增塑作用影响很大。
这种相互作用主要是范德华力和氢键力﹐范德华力又包括色散力﹑诱导力和取向力3种。
(1)范德华力色散力存在于所有极性或者非极性的分子之间﹐系同微小的瞬间偶极的相互作用﹐使靠近的偶极处于异极相邻状态而产生的吸力﹐但只有在非极性的体系中﹐其色散力才占主要地位。
PVC/PA共混改性研究进展

K e r : PVC ; p y m i y wo ds ol a de;bl n ng m o c to e di di a i n; r s a c o r s i f e e r h pr g e s Ab t a t Pr g e s si e e r h n t e i g m o fc to C ih di f r n i s of s r c : o r se n r s a c o he blnd n di a i n ofPV i w t f e e t k nd p l a i ( A )we es o y m de P r um m a i e rz d. Fo n to tm s:N a i a y tc ol y R & D r r m ( 0 63 01 u da i n ie ton lke e hn og p og a 58 0 )
P o rs n r sa c n t eb e dn d fc t n o VC/ A r g e si ee r h o h ln i gmo iia i fP o P
LIFe i~,yU i 。 J e ,T己 we , i~,LU S e g 乱 ’ hn J
的 熔 融 温 度 降 至 1 7 o , 低 于 P 6的 2 5 ℃ , 8 远 C A 1 证
和 P 的耐磨 性 、 A 自润滑 性 、 化 学腐 蚀 性 、 耐 耐油 性 ,
同 时 可 提 高 P C 的 柔 顺 性 。 在 聚 合 物 共 混 材 料 的 V 研 究 与开 发快 速 发 展 的今 天 , V P 制 品依 然 甚 P C/ A 少 , 类 文 献 报 道 也 十 分 少 见 。 这 主 要 源 于 P C/ 各 V
第3 9卷 第 1期
浅谈聚氯乙烯的改性研究与应用

浅谈聚氯乙烯的改性研究与应用发布时间:2021-05-25T06:04:24.392Z 来源:《中国科技人才》2021年第7期作者:张强[导读] 氯原子在大分子链上的分布状况与氯化的工艺及反应条件有关,归纳起来有2种典型结构:一种为氯原子在大分子链上呈无规均匀分布;另一种为不均匀嵌段式分布。
新疆圣雄氯碱有限公司新疆吐鲁番市 838000摘要:氯化聚乙烯(CPE)的氯含量及其分布决定着该聚合物的性能。
随着氯含量的增加,其玻璃化转变温度升高.具有工业价值的CPE所含氯的质量分数为20%~70%,氯含量对CPE的性能影响很大。
一般说来,氯质量分数在23%以下的CPE具有弹性体性质;氯质量分数在46%~58%的CPE是一种类似皮革的聚合物;氯质量分数在59%~63%的CPE是一种硬质聚合物:氯质量分数在64%以上的CPE是一种耐燃脆性树脂。
CPE的性能除与氯含量有关外,还与CPE大分子链上氯的分布状态有关。
关键词:聚氯乙烯改性应用前言:氯原子在大分子链上的分布状况与氯化的工艺及反应条件有关,归纳起来有2种典型结构:一种为氯原子在大分子链上呈无规均匀分布;另一种为不均匀嵌段式分布。
前者为非晶态弹性体,后者为硬质塑料。
一、特点聚氯乙烯,一般情况下,浓度在20% 以下的烧碱无法造成对聚氯乙烯的破坏。
然而,聚氯乙烯也存在的一定的缺陷,主要表现为热稳定性、耐光性差。
当温度达到了114℃以上时,聚氯乙烯就会发生一定程度的溶解,并在这一过程之中产生氯化氢气体,此时聚氯乙烯的颜色也会发生相应的改变。
聚氯乙烯在各行各业的广泛应用主要得益于它的四个优势:①聚氯乙烯的耐腐蚀性较强,一般的铁管与锌管在一定的条件之下极易发生化学反应,进而造成材料本身的破坏,但聚氯乙烯具有很强的化学稳定性,因此,聚氯乙烯产品往往具有较长的使用寿命,受到人们的青睐;②聚氯乙烯流体受到的阻力相对较小,聚氯乙烯产品的管道内壁较为光滑,一般情况下其粗糙系数仅仅只有0.009,因此受到的阻力与压力很小;③聚氯乙烯具有较高的机械性,当前生产的聚氯乙烯产品往往具有较强的耐水性、耐冲击性以及耐拉伸性,因此产品使用的效率较高;④聚氯乙烯材料熔点不固定,在正常情况下80℃时达到临界点,低于80℃聚氯乙烯材料能够保持良好的稳定性与强度,但温度高于80℃时,聚氯乙烯材料会发生一定程度的软化,这一特性使得聚氯乙烯材料的生产更加便捷二、聚氯乙烯的改性研究与应用1.CPE具有与原料PE相同的主链结构,只是主链碳原子上有部分氢为氯原子所取代,因此它是一种线型饱和结构的大分子.可视为乙烯、氯乙烯及1,2一二氯乙烯的三元共聚物。
PVC的共混增韧改性

第20卷第6期高分子材料科学与工程Vo l.20,N o.6 2004年11月POLYM ER M AT ERIALS SCIENCE AND ENGINEERING No v.2004PVC的共混增韧改性何 洋,梁国正,於秋霞,任鹏刚,宫兆合(西北工业大学化学工程系陕西西安710072)摘要:介绍了目前国内外PV C共混增韧的各种方法,并对增韧机理进行了探讨和研究。
关键词:聚氯乙烯;共混;增韧改性中图分类号:T Q325.3 文献标识码:A 文章编号:1000-7555(2004)06-0006-05 聚氯乙烯(PVC)是一种综合性能优良的通用塑料,也是目前仅次于聚乙烯(PE)的第二大树脂品种。
但因其韧性差、缺口冲击强度低、耐热性差、加工流变行为不佳、增塑作用不稳定等缺点制约了其在性能要求较高领域的发展,为了扩大PVC的应用领域,使PVC树脂高性能化,各种增强增韧、共混改性的研究十分活跃[1,2]。
尤其是对PVC的增韧改性国内外进行了大量的研究。
PVC的增韧改性可以分为化学改性和物理改性两大类[3]。
化学改性主要是通过分子设计在PV C的分子链上接枝或共聚引入柔性链段,从而达到增韧目的。
物理改性主要是共混。
聚合物必须具有一定的相容性是共混改性的前提。
按共混物的不同可以将共混增韧改性分为两大类:弹性体增韧改性和非弹性体增韧改性。
此外,目前正处于起步阶段的纳米增韧,自增强增韧也是研究的热点。
1 弹性体增韧改性1.1 弹性体增韧改性机理弹性体增韧改性PVC的理论较多,主要有网络增韧机理和“海-岛”增韧机理两种[4,5]。
1.1.1 网络增韧机理:一种是由于弹性体形成连续网络结构将PVC初级粒子包围在中央,受冲击时,弹性体网络可以起到传递、分散、缓冲和吸收能量的作用,避免局部应力集中产生裂缝。
而且弹性体很高的断裂延伸率可引发银纹和剪切带吸收能量使材料不会轻易被冲击破坏而达到增韧目的。
另一种是弹性体和PVC为双连续相,在材料中共同构成线形互穿网络(IPN),在外力作用下,网络发生大形变,吸收外界能量,起到增韧作用。
PVC_PA共混改性研究进展

[ 关键词] 聚氯乙烯; 聚酰胺; 共混改性; 研究进展 [ 摘 要] 综述了不同种类聚酰胺( PA) 与聚氯乙烯( PV C) 共混 改性的研究进展。 [ 中图分类号] TQ325. 3 [ 文献标志码] B [ 文章编号] 1009- 7937( 2011) 01- 0001- 04
Progress in research on the blending modification of PVC/ PA
聚氯乙烯( PVC) 作为第二 大通用塑料具 有阻 燃、绝缘、廉价等优点和缺口冲击强度低、加工性能
差、耐热性能差等缺陷, 聚酰胺( PA) 作为第一大工 程塑料具有优异的力学性能和较好的机械加工性, PVC/PA 的共混改性结合了 PVC 的耐燃性、绝缘性 和 PA 的耐磨性、自润滑性、耐化学腐蚀性、耐油性, 同时可提高 PVC 的柔顺性。在聚合物共混材料的 研究与开发快速发展的今天, PVC/PA 制品依然甚 少, 各类文献报道也十分少见。这主要源于 PVC/ PA 共混的两大障碍: PVC 与 PA 相容性差; 两 者加工温度相差很大, 在绝大多数 PA 熔融的条件 下进行加工极易造成 PVC 的热降解[ 1] 。如何解决 PVC 与 PA 相容性差、加工温度相差很大的问题, 使 之更好地工业化, 是研究的难点和热点。
1 PVC/ PA6 共混
PA6 为半透明或不 透明的乳白色 结晶形聚 合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氯乙稀共混改性综述2008-11-30 01:22:41| 分类:高分子化学| 标签:聚氯乙烯共混改性丁腈橡胶|字号大中小订阅衡阳师范学院湖南衡阳(421008)摘要:本文就近年来国内外聚氯乙烯(PVC)共混改性的研究状况进行综述和总结,并简要阐述了高聚物共混改性的原理,并且介绍了PVC的一些共混高聚物以及其性能特点。
关键词: 聚氯乙烯共混改性丁腈橡胶前言聚氯乙烯(PVC) 树脂是一种常用的高分子合成材料。
自1936 年工业化以后,其年产量日益增加, 目前,全世界PVC产量仅次于聚乙烯(PE),位居世界第二。
据预测,其需求量以及生产规模还将继续扩大[1,2]。
聚氯乙烯(PVC)是一种性能优良、用途广泛而价格又较为低廉的通用塑料,有良好的耐化学性、绝缘性、透光性、耐腐蚀、耐磨损、价格低廉、材料来源广泛等优点而得以广泛应用[3]。
加入增塑剂可制得柔软耐曲折聚氯乙烯制品。
广泛用于制作各种管材、异型材、板材和薄膜。
PVC的最大缺陷是热稳定性差,在100℃即开始分解并放出氯化氢,当温度超过150℃后分解更加迅速。
PVC的Tg为87℃左右,熔融温度约为210℃,加工成型一般要求在熔融状态下进行,聚氯乙烯因受热分解,给加工造成困难。
聚氯乙烯分解后放出氯化氢,使主链产生双键。
双键属于不稳定结构,可进一步分解或交联,使聚氯乙烯力学性能下降。
同时还伴有颜色变化,严重影响产品质量。
聚氯乙烯韧性差,受冲击后脆裂,缺口冲击强度只有2.2kJ/m2,影响使用性能。
聚氯乙烯耐低温性差,硬质聚氯乙烯使用温度一般不得低于-15℃,软质聚氯乙烯也只有-30℃。
超过使用极限温度,聚氯乙烯制品迅速变硬变脆,以致无法使用。
因其耐热性、热稳定性、缺口冲击性、加工性较差且易断裂,[4,5]因此,近年来.有关学者开展了大量的改性方面的研究工作,PVC的改性方法主要有化学接枝、共聚法和物理共混法等。
物理改性法即通过机械方法将溶液或乳液等进行混合改性。
由于其方法简单,且效果较好的优点,因此人们对其进行了大量的研究。
本文对目前PVC共混改性的研究进展作综述。
1、PVC/NBR共混体系NBR是丙烯腈(AN)与丁二烯的无规共聚物,通常作为耐油橡胶使用。
NBR是一种极性聚合物,与PVC极性相似,其极性随NBR中AN 的增多而加强,与PVC的相容性也相应提高。
采用动态硫化技术制备的NBR/PVC热塑性弹性体(TPE)具有硬度低、弹性高、永久变形小、高温下耐油、耐老化、耐臭氧、耐化学药品等优点。
彭建岗[6]等采用动态硫化法制备了具有阻燃、抗静电性能的TPE,发现橡塑共混比、导电炭黑、阻燃剂、硫化剂用量都对弹性体的性能有较大影响,返炼对弹性体性能影响不大。
他们发现最佳配方组成为:NBR60份,PVC40份,炭黑30份,氢氧化铝40份,硫磺1.3份。
王炼石等[7]用交联包覆法制备出粉末NBR(PNBR),并研究了其性质及用量对PVC/PNBR体系冲击强度的影响,发现当PNBR用量小于7.5份(质量)时,体系冲击强度随PNBR用量的增加缓慢上升;PNBR用量在7.5~10份之间时,体系冲击强度跃升,发生“脆一韧”转变;在10份时达最大(71kJ/m2);PNBR用量大于10份时,体系的冲击强度又呈现缓慢下降的趋势。
NBR与PVC的共混材料被广泛用于制造耐油、耐臭氧老化产品,国外已有多种工业商品牌号,但是由于其在长期热老化条件下易产生硬脆化现象,使其在同时要求耐热制品中的应用受到一定限制,为此郑精益等[8]用部分老化软化型氯醇橡胶改善其老化后硬度增加的现象。
他们发现NBR/PVC(70/30)共混胶内加入20份氯醇胶便可明显改善胶料老化硬化现象,同时具有良好的加工工艺性能,并保持NBR的耐油性。
为了改善NBR与PVC的相容性,往往加入CPE(C1含量85%)或乙烯一醋酸乙烯共聚物(EVA)作增容剂。
NBR中丙烯腈(AN)含量不同可导致NBR与PVC相容性发生变化,当AN含量在8%以下时,NBR在PVC中以孤立状态存在;15%~30%时以网状形式分散,40%时则呈完全相容状态。
当AN含量在10%~26%之间时,PVC/NBR体系冲击强度最大。
[9]PVC人造革有很广泛的应用,但其手感、弹性和天然皮革相差甚远,尤其在冬季,PVC硬度对温度较敏感,冬天硬度较大,手感、弹性较差,并且由于人造革中低分子增塑剂用量较多,使得其易于迁移至表面,影响使用效果。
采用PVC与NBR并用,可以大大改善PVC制品的弹性、耐低温性能、增塑剂耐迁移性等。
陈学武等[10]选择液体丁腈橡胶(LNBR)同PVC糊树脂共混,制备LNBR改性的PVC泡沫塑料。
研究发现在PVC泡沫塑料中加入4~6份LNBR就可以明显改善PVC 泡沫塑料低温手感和弹性,并使材料的拉伸强度和伸长率增加,但是随LNBR用量增大,发泡倍率减小,当LNBR用量超过4份时,减小幅度较大。
2、PVC/ABS体系ABS中含有与PVC相容性好的聚丁二烯,因而与PVC相容性好,是很好的PVC改性剂。
适宜的ABS用量可以有效地提高PVC的韧性。
周丽玲[11]等人研究发现:PVC/ABS共混物属半相容体系,其冲击强度随ABS用量的增加呈“S”曲线变化。
根据断面形态分析,可将“S”形曲线分为I区“脆性断裂区”、II区“脆一韧转变区”和III区“超高韧性区”,其中ABS以“颗粒”状分散在PVC连续相中,引发银纹,因而对增韧有重要作用。
周丽玲等人还研究了ABS类弹性体的结构以及其对PVC的改性机理,认为是ABS粒子在拉伸过程中产生的松弛变形引发了大量银纹,这些银纹对增韧起了很重要的作用,同时银纹在发展过程中可能会因共混材料的不均一性而发生动力学支化,或因遇到分散相粒子而终止,使之无法发展成破坏性裂缝。
ABS中各组份含量对PVC/ABS体系力学性能也有影响。
在一定范围内,PVC/ABS体系的冲击强度随ABS中丙烯腈含量及丁二烯含量的增加而提高,当丁二烯含量达50%时,取得的增韧效果较优。
苯乙烯含量的增加有利于体系热稳定性的提高。
在PVC/ABS共混体系中加入第三组份(如CPE、ACR、PMMA、CPVC聚酯等),可相对减少ABS的用量,同时有效提高共混体系的冲击强度等性能。
陶国良等[12]采用高聚合度聚氯乙烯(HDP-PVC)与ABS 进行共混制作合金材料。
HDP-PVC由于其聚合度高,分子间结晶相的比例增加,且分子链间形成的物理缠结点增多,从而提高了材料的弹性和韧性。
因此HDP-PVC与ABS共混,不仅提高合金材料的力学性能,而且在不添加橡胶相的情况下,能大大提高合金材料的缺口冲击强度和断裂伸长率,HDP-PVC/ABS的配比以100/25左右为最佳,体系能形成较完善的海岛结构。
HDP-PVC/ABS/MBS体系中,MBS能改善多元体系的界面性能,提高合金材料的综合性能;HDP—PVC/ABS /CPE体系中,CPE能使材料形成网状结构和海岛结构共存的合金体系,提高合金材料的冲击性能。
3、PVC/MBS体系与ABS类似,MBS与PVC相容性较好,同时有一个橡胶核存在,所以是一种较好的PVC增韧剂。
甲基丙烯酸甲酯、苯乙烯在MBS 中的加入量会影响PVC/MBS体系的力学性能,可通过调节甲基丙烯酸甲酯与苯乙烯的比例得到不同类型的MBS,从而得到性能不同的PVC/MBS共混物。
PVC/MBS合金的综合性能取决于两相聚合物的相容性。
因此,确定合适的聚合方法和单体配比合成不同类型的MBS,对改性PVC有实际意义。
丁春黎[13]在这方面做了研究。
MBS的用量会影响到改性PVC的冲击性能。
共混物的冲击强度随着MBS用量的增加而增加,并在达到最大值后减少。
MBS含量在10%~20%时,共混物体系具有较高的拉伸强度、冲击强度和模量。
PVC/MBS体系具有好的击性能和加工性能,而且透明性好,所以多用于透明、耐冲击制品,不足之处是MBS耐候性不佳,光、热氧稳定性较差,产量小,价格高,不利于共混物的广泛应用。
4、PVC/CPE体系为了弥补PVC/ABS、PVC/MBS等体系耐候性较差的缺点,人们开始了对PVC/CPE体系的关注。
PVC/CPE体系的性能主要与CPE中氯含量、CPE用量和CPE制备条件有很大关系。
当CPE用量在7~15份时,增韧效果突出。
CPE的制备方法较多,但用于PVC改性的CPE必须在室温下处于高弹态且氯含量在25%~40%之间。
氯含量为36%的CPE是综合性能最好的PVC改性剂。
[9]徐春晖[14]利用含氯量为36%的CPE增韧改性PVC树脂,在该体系中当CPE 含量在10~15phr时,体系的缺口冲击强度由PVC树脂的4kJ/ m2迅速增加到15kJ/m2以上,体系的断裂延伸率也有一定程度的提高。
由于柔性分子链的引入,体系的耐寒性也有所改善。
CPE在提高PVC 韧性的同时,降低了材料本身的模量、强度、耐热性及加工性能。
杨文君等[15]根据非弹性体增韧塑料的理念研究了刚性聚合物( PMMA、SAN等)对PVC/ CPE共混体系力学性能的影响。
在研究中发现,PMMA 刚性粒子能显著提高PVC/CPE共混体系的韧性,加入PMMA刚性粒子的共混体系的两相间的相容性和分散性得到改善,促进了CPE网络结构的形成和细微均匀化。
当体系受到冲击时,PMMA刚性分散粒子周围产生很大的静压应力场,使PMMA 粒子发生脆韧转变而吸收大量的塑性变形能,提高了共混体系的冲击性能。
同时由于PMMA 本身具有较高的强度,与基体有较好的粘接性,对PVC/ CPE 共混体系有一定的增强作用。
在PVC/ CPE(wt/ wt) = 100/ 15 的共混体系中,当PMMA用量为115~415 份时,冲击强度由20kJ/ m2提高到98kJ/m2,拉伸强度、断裂延伸率也有所提高。
5、PVC/ACR体系丙烯酸酯(ACR)类改性剂具有较高的冲击强度、拉伸强度、模量、热变形温度及耐候性。
ACR抗冲击改性剂属于核壳结构共聚物。
这是一类特殊的丙烯酸酯类弹性体。
这类聚合物由两部分组合,构成通常所称的“核-壳”结构。
利用ACR增韧PVC可获得具有良好冲击性能的共混体系。
制备ACR弹性粒子是利用丙烯酸丁酯单体在引发剂及交联剂的作用下首先获得具有轻度交联的PBA胶核,然后再与甲基丙烯酸甲酯单体进行接枝聚合,在胶核表面得到一层PMMA接枝物,形成具有核壳结构的弹性粒子。
利用动态力学方法对该粒子进行分析可以发现,其损耗角正切值tanσ谱图上有2个损耗峰,分别对应与核、与壳组分的玻璃化转变温度,这说明了该粒子具有两相结构。
利用机械共混法可制备出具有良好相容性的PVC/ACR 共混体系。
在该体系中,ACR弹性粒子壳层的PMMA接枝物与聚氯乙烯具有较强的分子间作用,形成较强的界面作用。