排序算法C语言版:直接插入排序
数组排序c语言数组排序方法

数组排序c语言数组排序方法在C语言中,可以使用多种排序算法对数组进行排序。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。
下面将详细介绍这些排序算法的原理、实现以及时间复杂度。
1. 冒泡排序(Bubble Sort):冒泡排序是一种简单的排序算法,其基本思想是重复地在相邻的元素之间进行比较和交换,将最大的元素逐渐“浮”到数组的尾部。
具体实现过程如下:cvoid bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-1-i; j++) {if (arr[j] > arr[j+1]) {交换相邻元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}冒泡排序的时间复杂度为O(n^2),其中n为数组长度。
2. 选择排序(Selection Sort):选择排序也是一种简单的排序算法,其基本思想是每次从未排序的部分中选取最小(或最大)的元素,放到已排序部分的末尾。
具体实现过程如下:cvoid selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int minIndex = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}将最小元素交换到已排序部分的末尾int temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}选择排序的时间复杂度为O(n^2)。
3. 插入排序(Insertion Sort):插入排序的基本思想是将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素,插入到已排序部分的正确位置。
c#实现的几种排序方法

c#实现的⼏种排序⽅法1.经典排序算法 – 插⼊排序Insertion sort插⼊排序就是每⼀步都将⼀个待排数据按其⼤⼩插⼊到已经排序的数据中的适当位置,直到全部插⼊完毕。
插⼊排序⽅法分直接插⼊排序和折半插⼊排序两种,这⾥只介绍直接插⼊排序,折半插⼊排序留到“查找”内容中进⾏。
图1演⽰了对4个元素进⾏直接插⼊排序的过程,共需要(a),(b),(c)三次插⼊。
public void Sort(int[] arr){for (int i = 1; i < arr.Length; i++){int t = arr[i];int j = i;while ((j > 0) && (arr[j - 1] > t)){arr[j] = arr[j - 1];//交换顺序--j;}arr[j] = t;}}折半排序算法是对直接插⼊算法的⼀种优化,优化的核⼼是:通过折半查看有序数组中间位置的数值(a)与待插⼊的数值(temp)的⼤⼩,如果a>=temp,则转向折半的左区间继续折半查找;如果a<temp,则转向折半后的右区间继续折半查找。
直到左右下标相同时,此时折半的下标也指向相同的位置,再做最后⼀次循环,最终的结果是:左右下标相差1,并且原来左侧的下标指向⼤于temp的位置,原来右侧的下标指向了⼩于temp的位置,即:array[biggerIndex] < temp < array[smallerIndex]。
//折半排序算法(传递待排数组名,即:数组的地址。
故形参数组的各种操作反应到实参数组上)private static void BinaryInsertionSortFunction(int[] array){try{int smallerIndex = 0; //记录有序数组的起始位置int biggerIndex = 0; //记录有序数组的终⽌位置int midIndex = 0; //记录获取有序数组的中间位置(折半法的关键:折半的位置)int temp; //记录带排的数值for (int i = 1; i < array.Length; i++) //循环向有序数组中插⼊数值(i从1开始,因为操作的是同⼀个数组){temp = array[i]; //记录待插⼊有序数组的数值biggerIndex = i - 1;//当smallerIndex==biggerIndex时,进⼊最后⼀次循环:smallerIndex指向⼤于temp的数组位置,biggerIndex指向⼩于temp的数组位置while (smallerIndex <= biggerIndex){midIndex = (smallerIndex + biggerIndex) / 2; //确定折半的位置if(array[midIndex] >= temp) //折半位置的数值 >= temp{biggerIndex = midIndex - 1; //biggerIndex以midIndex为基础向前移动⼀位}else{smallerIndex = midIndex + 1; //smallerIndex以midIndex为基础向后移动⼀位}}for (int j = i - 1; j >biggerIndex; j--) //将有序数组中⼤于temp的数值分别向后移动⼀位{array[j + 1] = array[j]; //}array[biggerIndex + 1] = temp; //将temp插⼊biggerIndex + 1,因为此时array[biggerIndex]<temp<array[smallerIndex]}}catch (Exception ex){ }}2. //选择排序public static void SelectionSort(int[] num){int min, temp;for (int i = 0; i < num.Length-1; i++){min = i;for (int j =i+1; j < num.Length; j++){if (num[j] < num[min]){min = j;}}temp = num[i];num[i] = num[min];num[min] = temp;}}3. //冒泡排序(Bubble Sort)的基本思想是:将相邻的记录的关键码进⾏⽐较,若前⾯记录的关键码⼤于后⾯记录的关键码,则将它们交换,否则不交换。
C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
c语言链表排序算法

c语言链表排序算法在C语言中,链表的排序可以使用多种算法,如插入排序、归并排序、快速排序等。
以下是一个简单的插入排序算法的示例,用于对链表进行排序:C:#include<stdio.h>#include<stdlib.h>struct Node {int data;struct Node* next;};void insert(struct Node** head, int data) {struct Node* newNode= (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = NULL;if (*head == NULL) {*head = newNode;return;}struct Node* current = *head;while (current->next != NULL) {current = current->next;}current->next = newNode;}void sortList(struct Node** head) { struct Node* current = *head;while (current != NULL) {struct Node* next = current->next; while (next != NULL) {if (current->data > next->data) { int temp = current->data;current->data = next->data;next->data = temp;}next = next->next;}current = current->next;}}void printList(struct Node* head) { while (head != NULL) {printf("%d ", head->data);head = head->next;}}int main() {struct Node* head = NULL;insert(&head, 5);insert(&head, 2);insert(&head, 4);insert(&head, 1);insert(&head, 3);printf("Before sorting: ");printList(head);sortList(&head);printf("\nAfter sorting: ");printList(head);return0;}这个程序定义了一个链表节点结构体Node,其中包含一个整型数据data 和一个指向下一个节点的指针next。
C语言程序设计的常用算法

C语言程序设计的常用算法1.排序算法-冒泡排序:通过多次比较和交换来将最大(小)的数移到最后(前),时间复杂度为O(n^2)。
适用于数据较少、数据基本有序的情况。
- 快速排序:通过一趟排序将待排序序列分隔成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小。
然后递归地对两部分进行排序,时间复杂度为O(nlogn)。
适用于大规模数据的排序。
-插入排序:将待排序序列分为已排序和未排序两部分,每次从未排序部分取一个元素插入到已排序部分的适当位置,时间复杂度为O(n^2)。
适用于数据量较小的排序场景。
- 归并排序:将待排序序列分为若干个子序列,分别进行排序,然后再将排好序的子序列合并成整体有序的序列,时间复杂度为O(nlogn)。
适用于需要稳定排序且对内存空间要求不高的情况。
2.查找算法-顺序查找:从头到尾依次对每个元素进行比较,直到找到目标元素或者遍历完整个序列。
时间复杂度为O(n)。
- 二分查找:对于有序序列,将序列的中间元素与目标元素进行比较,根据比较结果缩小查找范围,直到找到目标元素或者查找范围为空。
时间复杂度为O(logn)。
3.图算法-广度优先(BFS):从给定的起始顶点开始,按照“先访问当前顶点的所有邻接顶点,再依次访问这些邻接顶点的所有未访问过的邻接顶点”的顺序逐层访问图中的所有顶点。
适用于寻找最短路径、连通性等问题。
-深度优先(DFS):从给定的起始顶点开始,按照“先递归访问当前顶点的一个邻接顶点,再递归访问这个邻接顶点的一个邻接顶点,直到无法再继续递归”的方式遍历图中的所有顶点。
适用于寻找路径、判断连通性等问题。
4.动态规划算法-背包问题:给定一个背包容量和一组物品的重量和价值,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,且总价值最大。
利用动态规划的思想可以通过构建二维数组来解决该问题。
-最长公共子序列(LCS):给定两个序列,找出一个最长的子序列,且该子序列在两个原序列中的顺序保持一致。
C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。
c语言排序方法

c语言排序方法C语言是一种高效的编程语言,其基础算法和数据结构内容是必备的知识。
排序算法是其中一种重要的基础算法,是C语言程序开发中常用的一种技能,可以帮助我们对数据进行有序处理,更好地解决问题。
在C语言中,排序算法分为内部排序和外部排序。
内部排序是指将需要排序的数据都放在内存中进行排序,主要适用于数据量较小的情况。
而外部排序则是指需要对大数据集进行排序,需要借助外部存储器进行排序。
在此我们主要讨论内部排序算法。
内部排序可以分为以下几类:1. 插入排序插入排序包括直接插入排序、希尔排序等。
直接插入排序是将一个记录插入到有序表中形成一个新的有序表;而希尔排序是通过缩小元素间的间隔,并对每个子序列分别进行插入排序来完成整个排序过程。
插入排序方法简单,适用于小数组或部分有序的数组,是稳定排序方法。
2. 选择排序选择排序包括简单选择排序、堆排序等。
简单选择排序是通过不断的在剩余元素中找到最小元素,并将其放在已排好序的数组末尾进行排序,是不稳定排序方法;而堆排序则是通过将待排序数组看作一个完全二叉树,不断将根节点放到其正确位置上进行排序,是不稳定排序方法。
3. 交换排序交换排序包括冒泡排序、快速排序等。
冒泡排序是通过不断比较相邻的两个数,将较小(或较大)数向前(或向后)交换,在每一次外循环中确定一个元素的位置的排序方法,是稳定排序方法;而快速排序则是通过不断地将待排序数组分成两部分,分别进行递归排序,再将两部分合并成一个有序的数组,是不稳定排序方法。
4. 合并排序合并排序是将待排序数组分成若干个子数组,将每个子数组排好序,再将排好序的子数组合并成最终有序的数组。
合并排序是稳定排序方法,主要优化点在于合并有序数组的过程中需要有额外的空间存放有序的数据。
在实际开发中,我们需要选择适合当前情况的排序方法,优化算法的实现,提高算法的效率。
另外,在使用排序算法的过程中,我们还需要注意以下几点:1. 数据量的大小决定了排序算法的选择。
插入排序法C语言代码

插入排序法C语言代码插入排序法是一种简单且常用的排序算法,它的原理是将未排序的元素逐个插入到已排序的序列中。
下面,我们来介绍一下插入排序法的C语言代码实现。
1. 基本思路插入排序法先将第一个元素视为已排序的序列,然后从第二个元素开始,逐个将未排序的元素插入到已排序的序列中。
具体地,我们用一个循环来遍历所有待排序的元素,将当前元素与已排序的元素进行比较,直到找到合适的位置插入。
2. C语言代码实现下面是插入排序法的C语言代码实现:void insertionSort(int arr[], int n){int i, j, key;for (i = 1; i < n; i++) {key = arr[i];j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}}在这个代码中,我们使用了两个循环。
外层循环遍历所有待排序的元素,内层循环将当前元素和已排序的元素进行比较,找到合适的位置插入。
具体地,我们使用key变量保存当前元素的值,并从当前元素的前一个元素开始,逐个和已排序的元素进行比较,直到找到比当前元素小的元素或者已经到达已排序序列的起始位置。
然后,我们将已排序序列中所有比当前元素大的元素往后移动一个位置,为当前元素腾出空间。
最后,我们将当前元素插入合适的位置,这一步操作使得序列中的元素数量加一。
3. 性能分析插入排序法时间复杂度为O(n^2),其中n是待排序的序列长度。
具体地,我们可以发现,外层循环需要执行n次,内层循环最坏情况下需要执行n次,因此总的时间复杂度为O(n^2)。
此外,插入排序法还需要进行数据移动,因此其空间复杂度为O(1),即仅需一个辅助变量。
综上所述,插入排序法是一种简单且高效的排序算法。
它可以用于大多数情况,并且易于实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接插入排序
算法思想简单描述:
在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。
如此反复循环,直到全部排好顺序。
直接插入排序是稳定的。
算法时间复杂度O(n^2)
算法实现:
/*
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void insert_sort(int *x, int n)
{
int i, j, t;
for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。
注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为它是排好顺序的。
*/
t=*(x+ I );
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。
*/
{
*(x+j+1) = *(x+ j ); /*如果满足条件就往后挪。
最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
}
*(x+j+1) = t; /*找到下标为i的数的放置位置*/
}
}
#include "stdio.h"
#include "conio.h"
main()
{
int a[11]={1,4,6,9,13,16,19,28,40,100}; int temp1,temp2,number,end,i,j;
printf("original array is:\n");
for(i=0;i<10;i++)
printf("%5d",a[i]);
printf("\n");
printf("insert a new number:");
scanf("%d",&number);
end=a[9];
if(number>end)
a[10]=number;
else
{
for(i=0;i<10;i++)
{
if(a[i]>number)
{
temp1=a[i];
a[i]=number;
for(j=i+1;j<11;j++)
{
temp2=a[j];
a[j]=temp1;
temp1=temp2;
}
break;
}
}
}
for(i=0;i<11;i++)
printf("%6d",a[i]);
getch();
}
#include"stdio.h"
#define MAXSIZE 20//一个用作示例的小顺序表的最大长度int Insertsort(int r[],int n)
{//作直接插入排序
int i,j;
for(i=2;i<=n;i++)
{ r[0]=r[i]; //r[0]用作哨兵单元
j=i-1;
while(r[0]<r[j])
{ r[j+1]=r[j]; //记录后移
j--;
}//while
r[j+1]=r[0]; //插入到正确位置
for(j=1;j<=n;j++) //输出每趟排序的结果
{
printf("%d ",r[j]);
}//for
printf("\n");
}//for
}//Insertsort
int main()
{
int n,i; //待排序的关键字个数
int r[MAXSIZE];
scanf("%d",&n);
for(i=1;i<=n;i++)//输入待排序的关键字
scanf("%d",&r[i]);
Insertsort(r,n);
}
8638 直接插入排序
描述
用函数实现直接插入排序,并输出每趟排序的结果.
输入格式
第一行:键盘输入待排序关键的个数n
第二行:输入n个待排序关键字,用空格分隔数据
输出格式
每行输出一趟排序结果,数据之间用一个空格分隔
输入样例
10
5 4 8 0 9 3 2
6
7 1
输出样例
4 5 8 0 9 3 2 6 7 1
4 5 8 0 9 3 2 6 7 1
0 4 5 8 9 3 2 6 7 1
0 4 5 8 9 3 2 6 7 1
0 3 4 5 8 9 2 6 7 1
0 2 3 4 5 8 9 6 7 1
0 2 3 4 5 6 8 9 7 1
0 2 3 4 5 6 7 8 9 1
0 1 2 3 4 5 6 7 8 9
2011-12-7 23:24
最佳答案
已经测试过可行。
#include"stdio.h"
#define MAXSIZE 20//一个用作示例的小顺序表的最大长度int Insertsort(int r[],int n)
{//作直接插入排序
int i,j;
for(i=2;i<=n;i++)
{ r[0]=r[i]; //r[0]用作哨兵单元
j=i-1;
while(r[0]<r[j])
{ r[j+1]=r[j]; //记录后移
j--;
}//while
r[j+1]=r[0]; //插入到正确位置
for(j=1;j<=n;j++) //输出每趟排序的结果
{
printf("%d ",r[j]);
}//for
printf("\n");
}//for
}//Insertsort
int main()
{
int n,i; //待排序的关键字个数int r[MAXSIZE];
scanf("%d",&n);
for(i=1;i<=n;i++)//输入待排序的关键字
scanf("%d",&r[i]);
Insertsort(r,n);。