【新】小学奥数知识点分类【完整】

合集下载

小学奥数有哪些知识点

小学奥数有哪些知识点

小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。

2. 素因数分解:将一个合数分解为质数的乘积。

3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。

4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。

5. 整数的四则运算:掌握整数加减乘除的规则和技巧。

6. 同余定理:理解同余的概念及其在解决数论问题中的应用。

二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。

2. 分数的四则运算:分数的加、减、乘、除运算规则。

3. 分数的化简与比较:化简分数和比较分数大小的方法。

4. 小数的基本概念:小数的意义和性质。

5. 小数的四则运算:小数的加、减、乘、除运算规则。

6. 分数与小数的互化:分数与小数之间的转换方法。

三、几何知识1. 平面图形的认识:点、线、面的基本性质。

2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。

3. 面积和周长的计算:计算各种平面图形的面积和周长。

4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。

5. 空间想象能力:通过剖面图、视图等理解三维空间。

四、代数基础1. 变量与常数:理解变量和常数的概念。

2. 简易方程:一元一次方程的建立和解法。

3. 代数表达式的简化:合并同类项、分配律等代数运算。

4. 不等式的概念:理解不等式的意义和基本性质。

5. 简单不等式的解法:解一元一次不等式。

五、逻辑推理1. 合情推理:通过已知信息推断未知信息。

2. 演绎推理:从一般到特殊的逻辑推理过程。

3. 归纳推理:从特殊到一般的推理方法。

4. 逻辑应用题:解决需要逻辑推理的实际问题。

六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。

2. 简单排列组合问题:解决基础的排列组合问题。

3. 二项式定理:理解二项式定理并能够进行简单应用。

4. 容斥原理:解决涉及集合容斥问题的方法。

七、数列与级数1. 等差数列:理解等差数列的定义和性质。

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学奥数七大模块知识体系梳理

小学奥数七大模块知识体系梳理

小学奥数七大模块知识体系梳理小学奥数七大模块知识体系梳理起1 计算1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程2 数论1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题3 几何(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题4 行程1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题5 应用题1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数7 杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。

下面为大家汇总小学阶段常见的奥数知识点。

一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。

小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。

3、分数四则运算同分母分数加减法:分母不变,分子相加减。

异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。

分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。

分数除法:除以一个数等于乘这个数的倒数。

二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。

偶数:能被 2 整除的整数。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。

合数:除了 1 和它本身还有别的因数的自然数。

1 既不是质数也不是合数。

3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。

倍数:c 就是 a 和 b 的倍数。

4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理【小学数学奥数知识点全面梳理】在小学数学学科中,奥数是一项非常重要的内容之一,它旨在培养学生的逻辑思维能力和解决问题的能力。

本文将全面梳理小学数学奥数的知识点,帮助学生加深对这一领域的理解。

一、计数与排列组合计数是奥数的基础,它包含了统计、概率等概念。

在小学数学中,我们需要掌握基本的计数原理,如“乘法原理”和“加法原理”。

此外,排列与组合也是重要的奥数知识点,它涉及到确定不同排列和组合的方法和公式。

二、数论与整数数论是数学的一个重要分支,它主要研究整数的性质与规律。

小学奥数中的数论知识主要包括整数的性质、质数与合数、倍数与约数等等。

通过学习这些知识点,可以帮助学生提高解决整数问题的能力。

三、图形与几何图形与几何是小学奥数中的另一个重要内容。

学生需要掌握基本的图形,如三角形、正方形、长方形等,并深入了解它们的性质和关系。

此外,对平面图形的变换操作,如翻折、旋转和平移等,也是奥数的重点内容之一。

四、函数与方程在小学奥数中,学生不仅需要学习基本的算式运算,还需要理解函数和方程的概念。

学生需要了解一次方程、二次方程等,以及解方程的常见方法和技巧。

通过学习这些内容,可以提高学生的代数思维能力和问题解决能力。

五、数列与等差数列数列是小学奥数中常见的内容之一,它是由一系列有规律的数按一定顺序排列而成的。

数列的概念和性质对于学生来说非常重要,而等差数列则是数列中的一种特殊形式。

学生需要理解等差数列的定义、性质和求和公式,并能够熟练应用于解决相关问题。

六、概率与统计概率与统计也是小学奥数中的一部分内容,它主要涉及到对数据的处理和分析。

在学习概率时,学生需要掌握事件的基本概念、概率的计算方法和概率的性质。

在统计方面,学生需要了解数据的收集和整理方法,并能够运用图表等形式展示数据。

综上所述,小学数学奥数的知识点涵盖了计数与排列组合、数论与整数、图形与几何、函数与方程、数列与等差数列以及概率与统计等多个领域。

小学奥数知识点

小学奥数知识点

小学奥数知识点小学奥数知识点大全导语:小升初的过程中,竞赛成绩能起到相当大的作用,谈到竞赛就离不开奥数。

下面小编为您收集整理了小学奥数的知识点,希望对您有帮助!1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数知识点汇总

小学奥数知识点汇总

小学奥数知识点汇总小学奥数是一项能够培养学生逻辑思维、数学能力和创造力的活动。

它通过探索数学问题、解决实际难题和培养数学思维等方式,提高学生数学解决问题的能力。

下面是一些小学奥数的常见知识点的汇总:1. 数的认识在小学奥数中,对数的认识是基础部分。

学生需要掌握自然数、整数、分数、小数、百分数和正数等的基本概念和性质。

2. 四则运算四则运算包括加法、减法、乘法和除法。

小学奥数要求学生掌握这些运算的规则和技巧,并能够在问题中应用。

3. 线段和图形学生需要了解线段和图形的基本概念,如点、线、面、角等。

同时,还需要学习计算线段长度、图形的周长和面积等。

4. 面积和体积面积和体积是小学奥数中的重要部分。

学生需要熟练计算各种图形的面积和体积,如矩形、正方形、圆形、立方体和长方体等。

5. 概率小学奥数中的概率指的是某一事件发生的可能性。

学生需要学习如何计算概率,并能够应用到实际问题中。

6. 几何几何是小学奥数的另一个重要内容。

学生需要了解几何中的基本概念,如平行线、垂直线、直角、等腰三角形和全等三角形等。

7. 数论数论是对数学中的整数性质和整除关系的研究。

小学奥数中的数论考察学生对整数的认识和应用,如最大公约数、最小公倍数等。

8. 统计统计是研究数据收集、整理、分析和解释的科学。

小学奥数中的统计考察学生对数据的收集和分析能力,如制作统计图表、计算平均数等。

9. 逻辑推理逻辑推理是小学奥数中的一项重要内容。

学生需要通过逻辑推理解决问题,如数字密码、猜数字等。

总结:小学奥数知识点的汇总包括数的认识、四则运算、线段和图形、面积和体积、概率、几何、数论、统计和逻辑推理等。

学生通过学习这些知识点,能够培养数学思维、解决问题的能力和创造力,提高数学成绩和学习兴趣。

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点在小学阶段,奥数作为一门拓展性的学科,能够帮助孩子们培养逻辑思维和解决问题的能力。

下面为大家汇总一些基础的小学奥数知识点。

一、数的认识1、整数整数包括正整数、零和负整数。

需要掌握整数的读法、写法、大小比较以及四则运算。

2、自然数自然数是用以计量事物的件数或表示事物次序的数,即用数码 0,1,2,3,4……所表示的数。

3、奇数和偶数奇数指不能被 2 整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。

偶数是能够被 2 所整除的整数。

若某数是 2 的倍数,它就是偶数,可表示为 2k。

4、质数与合数质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

二、数的运算1、四则运算加法、减法、乘法和除法统称四则运算。

在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算原则。

2、运算定律加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c三、图形的认识1、平面图形(1)三角形三角形具有稳定性。

三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形;按边分,可以分为等边三角形、等腰三角形和不等边三角形。

(2)四边形四边形包括平行四边形、长方形、正方形、梯形等。

平行四边形两组对边分别平行且相等。

长方形对边平行且相等,四个角都是直角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点分类小学奥数大约80 个知识点,可分成5 大类,数论和行程是重点也是难点。

基础知识和差倍、年龄、植树、周期、鸡兔、方阵、逻辑、容斥、排列组合等计算能力速算与巧算、分数百分数、循环小数、分数拆分、四则混合运算等等行程问题相遇、追及、行程、流水、过桥、时钟、圆周、发车间隔等等数论问题平方数、奇数、偶数、约数、倍数、质数、合数、整除、余数、进制图形问题平面图形、立体图形、几何计数、周长面积、表面积体积、阴影面积第一部分基础知识基础知识点列表1 归一归总9 鸡兔问题17 加法乘法原理2 和差问题10 方阵问题18 排列与组合3 和倍问题11 抽屉问题19 商品利润4 差倍问题12 容斥问题20 存款利息5 植树问题13 逻辑问题21 浓度问题6 年龄问题14 数字谜22 工程问题7 盈亏问题15 等差数列23 正反比例8 周期问题16 一笔画24 牛吃草问题第二部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视!第三部分数论知识数论由于比较抽象,是小学数学的重点也是难点,而且小学数论与中学的代数学有着密切的联系,因此我们必须高度重视。

数论知识点列表1 定义新运算 6 整数进制2 约数倍数7 数的整除3 奇数偶数8 余数与同余4 质数合数9 高斯取整5 平均数10 不定方程第四部分图形知识图形属于小学奥数三大专题之一,主要考察学生们对平面图形和立体图形的认识、建构、以及对周长、面积、表面积、体积的计算等方面的知识,图形问题的重点在于等积变换的直线型面积数论知识点列表1 几何计数 4 体积与表面积2 周长与面积 5 阴影面积3 长方体与正方体 6 直线型面积第五部分行程问题行程问题是研究物体运动的速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)过桥问题:关键是确定物体所运动的路程,参照以上公式。

流水问题:顺水速度=船速+水速逆水速度=船速-水速平均问题:平均速度=总路程÷总时间基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

数论知识点列表1 相遇问题 4 流水行船2 追及问题 5 钟表问题3 火车过桥 6 发车间隔第二部分基础知识➢ 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例题】买5支铅笔要0.6元钱,买同样的铅笔16 支,需要多少钱?11. 3 台拖拉机3天耕地90 公顷,5台拖拉机6 天耕地多少公顷?12. 5 辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?➢ 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1 份数量×份数=总量总量÷1 份数量=份数总量÷另一份数=另一每份数量【解题思路】先求出总数量,再根据题意得出所求的数量。

【例题】服装厂原来做一套衣服用布3.2 米,改进裁剪方法后,每套衣服用布2.8 米。

原来做791 套衣服的布,现在可以做多少套?13. 小华每天读24 页书,12 天读完了《红岩》一书。

小明每天读36 页书,几天可以读完《红岩》?14. 食堂运来一批蔬菜,原计划每天吃50 千克,30 天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10 千克,这批蔬菜可以吃多少天?➢ 和差问题【含义】已知两个数量的和与差,求两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2 小数=(和-差)÷2【解题思路】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

【例题】甲乙两班共学生98 人,甲班比乙班多6 人,求两班各有多少人?15. 长方形的长和宽之和为18 厘米,长比宽多2 厘米,求长方形的面积?16. 有甲乙丙三袋化肥,甲乙两袋共重32 千克,乙丙两袋共重30 千克,甲丙两袋共重22 千克,求三袋化肥各重多少千克。

17. 甲乙两车原来共装苹果97 筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?➢ 和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。

【例题】果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?18. 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?19. 甲站原有车52 辆,乙站原有车32 辆,若每天从甲站开往乙站28 辆,从乙站开往甲站24 辆,几天后乙站车辆数是甲站的2倍?20. 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?➢ 差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。

【例题】果园里桃树的棵数是杏树的3 倍,而且桃树比杏树多124 棵。

求杏树、桃树各多少棵?21. 爸爸比儿子大27 岁,今年,爸爸的年龄是儿子年龄的4 倍,求父子二人今年各是多少岁?22. 商场改革经营管理办法后,本月盈利比上月盈利的2 倍还多12 万元,又知本月盈利比上月盈利多30 万元,这两个月盈利各是多少万元?23. 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是10吨,多少天后,玉米是小麦的12 倍?➢ 植树问题1.植树问题是研究路长、每段长、段数、棵数等数量关系的应用题。

在日常生活和生产中常见的爬楼梯、锯木头、剪绳子、装路灯、竖电线杆、时钟敲响等内容的问题也有与植树问题相同的数量关系。

植树问题分清情况:(1)在不封闭线上植树。

数量关系有:路长=段数×段长(棵距)段数=路长÷棵距(2)在不封闭线上三种情况:a两端都栽:棵数=段数+1b两端不栽:棵数=段数-1c一端栽一端不栽:棵数=段数(3)在封闭路线上植树。

如在长方形、圆形的周边上植树。

数量关系是:棵数=段数(4)在平面图形的面积上植树。

常有每行栽的棵数×行数等。

2.以爬楼梯、锯木头、剪绳子、装路灯、竖电线杆、时钟敲响等内容的植树问题、也有“加1”或“减1”的规律。

如锯的次数=锯的段数―1;爬楼梯的层数=楼层―1;时钟敲响的次数=间隔的次数+1;路灯数=段数+1等等。

关键问题:确定所属类型,从而确定棵数与段数的关系。

【例题】一条河堤136 米,每隔2 米栽一棵垂柳,头尾都栽,共栽多少棵垂柳?24. 一个圆形池塘周长为400 米,在岸边每隔4 米栽一棵白杨树,一共能栽多少棵白杨树?25. 甲乙丙三人锯同样粗细的钢条,分别领取1.6米,2米,1.2米长的钢条,要求都按0.4米规格锯开,劳动结束后,甲乙丙分别锯了24段,25 段,27 段,谁锯钢条的速度最快?26. 某一淡水湖的周长1350 米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?27. 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50 米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?➢ 年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路】可以利用“差倍问题”的解题思路和方法。

【例题】爸爸今年35 岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?28. 母亲今年37 岁,女儿7岁,几年后母亲年龄是女儿的4倍?29. 3 年前父子的年龄和是49 岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?➢ 相遇问题相遇问题指的是两人(物)在行进过程中相对而行,然后迎面相遇的问题。

相遇问题考虑的是相同时间内两人(物)所行的路程和。

相遇问题中路程、速度和时间三者之间的关系为总路程=速度和×相遇时间其中“总路程”指两人(物)从出发(同时)到相遇时共行的路程,“速度和”指两人(物)在单位时间内共行的路程,“相遇时间”指两人(物)从出发(同时)到相遇时所经历的时间。

【例1】甲、乙二人分别从相距30 千米的两地同时出发相向而行,甲每小时走6 千米,乙每小时走4 千米,问:二人几小时后相遇?例2 A、B两地相距380千米。

甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙汽车每小时行40千米,但开车时,甲车改变了速度,也以每小时40千米速度行驶。

这样相遇时乙车比原计划少走了多少千米?例4 小斌骑自行车每小时行15千米,小明步行每小时行5千米。

两人同时在某地沿同一条线路到30千米外的学校去上学。

小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。

问相遇时小明共行了多少千米?例5 一辆客车从甲城开往乙城,8小时到达;一辆货车从乙城开往甲城,10小时到达。

两车同时由两城相向开出,6小时后它们相距112千米。

甲、乙两城间的公路长多少千米?例6 甲、乙两城相距290千米,一辆客车从甲城出发向乙城驶去,每小时行45千米;一辆货车从乙城出发向甲城,每小时行42千米。

两车同时出发相向而行,他们各自到达终点后休息1小时,然后立即返回。

从出发时开始到返回后再次相遇一共花了多少小时?例7 佳佳从甲地向乙地走,彬彬同时从乙地向甲地走,当他两人各自到达终点时,又迅速返回。

两人行走的过程中,各自速度不变。

两人第一次相遇在距甲地50米处,第二次相遇在距乙地19米处。

相关文档
最新文档