光电子技术安毓英习题答案完整版

合集下载

光电子技术安毓英第五章课后习题参考答案1

光电子技术安毓英第五章课后习题参考答案1

5.1以图中p型半导体器件为例,栅极加正电压超过MOS晶体管的开启电压时,在半导体金属界面会形成深度耗尽层,称为电子的势阱。

当有光照时,光生电子会聚集在势阱中,形成电荷存储。

以图中三相CCD结构为例,相邻三个栅极电压从高电平依次降低到低电平,为一个周期。

每个栅极电压降低过程与下一个栅极高电平重合。

这样三个栅极位置的电子势阱会依次减小,消失与出现。

存储电子会随着势阱位置的移动发生转移。

电荷输出:外加放大电路,利用电荷电势进行放大,输出信号CCD输出信号的特点:1.信号电压是在浮置电平基础上的负电压2.每个电荷包的输出占有一定的时间长度3.在输出信号总叠加有复位期间的高电平脉冲根据这些特点,对CCD的输出进行处理时,较多地采用了取样技术,以去除浮置电平,复位高脉冲及抑制噪声。

5.2光电成像系统利用的都是帧扫描方式,完成一帧扫描所需要的时间称为帧时T,单位时间完成的帧数称为帧速 F, 它们的关系是T=1/F5.3(1)F=0.3m(2) W=n*α=128*a/f=128x100um/0.3m=4.26x10-2 rad5.5从目标调制度(对比度)到人眼观察到,总的调制函数为各个调制函数的乘积,光学体统调制传递函数为MTF O, 人眼能感知的极限调制度为0.026,则0.5×MTF O×0.9×0.5×0.95×0.5≥0.026MTF O≥0.245.7(1)像增强器CCD (ICCD)可以探测微光图像,但是其内经过光子-电子的多次转换,图像质量会有损失,光锥中光纤光栅干涉波纹,折断和耦合损失都将使ICCD输出噪声增加,对比度下降,动态范围减小,影响成像质量。

(2)薄型背向CCD器件灵敏度高,噪声低,但当照度低于10-6 lx 时,只能依赖图像增强来提高增益,克服噪音(3)电子轰击型CCD简化了光子多次转换过程,信噪比大大提高,与ICCD相比,电子轰击型CCD具有体积小,重量轻,可靠性高,分辨率高及对比度好等优点。

最新光电子技术(安毓英)习题课后答案

最新光电子技术(安毓英)习题课后答案

第一章1. 设在半径为R c 的圆盘中心法线上,距盘圆中心为l 0处有一个辐射强度为I e 的点源S ,如图所示。

试计算该点源发射到盘圆的辐射功率。

解:因为,且()⎪⎪⎭⎫ ⎝⎛+-=-===Ω⎰22000212cos 12sin c R R l l d d rdS d c πθπϕθθ 所以⎪⎪⎭⎫ ⎝⎛+-=Ω=Φ220012c e e e R l lI d I π2. 如图所示,设小面源的面积为∆A s ,辐射亮度为L e ,面源法线与l 0的夹角为θs ;被照面的面积为∆A c ,到面源∆A s 的距离为l 0。

若θc 为辐射在被照面∆A c 的入射角,试计算小面源在∆A c 上产生的辐射照度。

解:亮度定义:强度定义:ΩΦ=d d I ee 可得辐射通量:Ω∆=Φd A L d s s e e θcos 在给定方向上立体角为:2cos l A d cc θ∆=Ω 则在小面源在∆A c 上辐射照度为:20cos cos l A L dA d E cs s e e e θθ∆=Φ=ΩΦd d ee I =r r ee A dI L θ∆cos =3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。

答:由θcos dA d d L e ΩΦ=得θcos dA d L d e Ω=Φ,且()22cos rl A d d +=Ωθ 则辐照度:()e e e L d rlrdrl L E πθπ=+=⎰⎰∞20022224. 霓虹灯发的光是热辐射吗?不是热辐射。

霓虹灯发的光是电致发光,在两端放置有电极的真空充入氖或氩等惰性气体,当两极间的电压增加到一定数值时,气体中的原子或离子受到被电场加速的电子的轰击,使原子中的电子受到激发。

当它由激发状态回复到正常状态会发光,这一过程称为电致发光过程。

光电子技术课后习题答案

光电子技术课后习题答案

第一章1. 设在半径为R c 的圆盘中心法线上,距盘圆中心为l 0处有一个辐射强度为I e 的点源S ,如图所示。

试计算该点源发射到盘圆的辐射功率。

解:因为ΩΦd d ee I =, 且 ()⎪⎪⎭⎫ ⎝⎛+-=-===Ω⎰22000212cos 12sin c R R l l d d rdSd c πθπϕθθ 所以⎪⎪⎭⎫ ⎝⎛+-=Ω=Φ220012c e e e R l l I d I π2. 如图所示,设小面源的面积为∆A s ,辐射亮度为L e ,面源法线与l 0的夹角为θs ;被照面的面积为∆A c ,到面源∆A s 的距离为l 0。

若θc 为辐射在被照面∆A c 的入射角,试计算小面源在∆A c 上产生的辐射照度。

解:亮度定义:r r ee A dI L θ∆cos =强度定义:ΩΦ=d d I ee可得辐射通量:Ω∆=Φd A L d s s e e θcos在给定方向上立体角为:20cos l A d c c θ∆=Ω则在小面源在∆A c 上辐射照度为:20cos cos l A L dA d E cs s e e e θθ∆=Φ=3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。

答:由θcos dA d d L e ΩΦ=得θcos dA d L d e Ω=Φ,且()22cos rl A d d +=Ωθ 则辐照度:()e e e L d rlrdrl L E πθπ=+=⎰⎰∞20022224. 霓虹灯发的光是热辐射吗?l 0SR c第1.1题图L e ∆A s ∆A cl 0 θsθc第1.2题图不是热辐射。

霓虹灯发的光是电致发光,在两端放置有电极的真空充入氖或氩等惰性气体,当两极间的电压增加到一定数值时,气体中的原子或离子受到被电场加速的电子的轰击,使原子中的电子受到激发。

光电子技术安毓英习题答案(完整版)

光电子技术安毓英习题答案(完整版)

第一章2. 如图所示,设小面源的面积为∆A s ,辐射亮度为L e ,面源法线与l 0的夹角为θs ;被照面的面积为∆A c ,到面源∆A s 的距离为l 0。

若θc 为辐射在被照面∆A c 的入射角,试计算小面源在∆A c 上产生的辐射照度。

解:亮度定义:r r ee A dI L θ∆cos =强度定义:ΩΦ=d d I e e可得辐射通量:Ω∆=Φd A L d s s e e θcos在给定方向上立体角为:2cos l A d cc θ∆=Ω 则在小面源在∆A c 上辐射照度为:2cos cos l A L dA d E cs s e e e θθ∆=Φ=3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。

答:由θcos dA d d L e ΩΦ=得θcos dA d L d e Ω=Φ,且()22cos r l A d d +=Ωθ则辐照度:()e e e L d rlrdrl L E πθπ=+=⎰⎰∞20022227.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度M 。

试有普朗克的辐射公式导出M 与温度T 的四次方成正比,即 M=常数4T ⨯。

这一关系式称斯特藩-波耳兹曼定律,其中常数为 5.6710-8W/m 2K 4解答:教材P9,对公式2151()1e C TC M T eλλλ=-进行积分即可证明。

第二章3.对于3m 晶体LiNbO3,试求外场分别加在x,y 和z 轴方向的感应主折射率及相应的相位延迟(这里只求外场加在x 方向上)解:铌酸锂晶体是负单轴晶体,即n x =n y =n 0、n z =n e 。

它所属的三方晶系3m 点群电光系数有四个,即γ22、γ13、γ33、γ51。

电光系数矩阵为:L e∆A s∆A cl 0θsθc第1.2题图⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=0000000002251513313221322γγγγγγγγγij 由此可得铌酸锂晶体在外加电场后的折射率椭球方程为:12)(2)1()1()1(2251233121322202152220=-++++++++-xy E xz E yz E z E n y E E n x E E n x x z z ez y z y γγγγγγγ (1)通常情况下,铌酸锂晶体采用450-z 切割,沿x 轴或y 轴加压,z 轴方向通光,即有E z =E y =0,且E x ≠0。

光电子技术书后答案

光电子技术书后答案

思路分析:由,知需求,又有,通过已知求出H则本题可解。解题
过程如下:
解:
代入
,,
得:
11. 概括光纤弱导条件的意义。 从理论上讲,光纤的弱导特性是光纤与微波圆波导之间的重要差别
之一。实际使用的光纤,特别是单模光纤,其掺杂浓度都很小,使纤芯 和包层只有很小的折射率差。所以弱导的基本含义是指很小的折射率差 就能构成良好的光纤波导结构,而且为制造提供了很大的方便。
习 题1
1. 设在半径为Rc的圆盘中心法线上,距盘圆中心为l0处有一个辐射强度 为Ie的点源S,如图所示。试计算该点源发射到盘圆的辐射功率。
l0 S Rc 第1题图
思路分析:要求由公式,都和有关,根据条件,都可求出。解题过 程如下: 法一
故: 又: 代入上式可得: 法二:
2. 如图所示,设小面源的面积为As,辐射亮度为Le,面源法线与l0的夹 角为s;被照面的面积为Ac,到面源As的距离为l0。若c为辐射在被照 面Ac的入射角,试计算小面源在Ac上产生的辐射照度。
激光通信的误码率增加。光束方向抖动则将使激光偏离接收孔径,降低 信号强度;而光束空间相干性退化则将使激光外差探测的效率降低。
3对于3m晶体,试求外场分别加在x、y和z轴方向的感应主折射 率及相应的相位延迟。
当晶体未加外电场时,主轴坐标系中折射率椭球由下方程 描述
当晶体施加电场后,其折射率椭球就发生变形,椭球方程 变为
由于外加电场的作用,折射率椭球各系数随之发生线形变 化,其变化量定义为 式中称为线性电光系数。
其新主轴的半长度分别为 设光波沿轴方向传播,当沿方向加电场时为纵向应用,两 偏振分量的相位延迟分别为,
如果沿轴方向加电场,光束传播方向垂直于轴并与y或x轴 成,则其电光效应相位延迟为

第二版《光电子技术》课后习题答案

第二版《光电子技术》课后习题答案

1・1可见光的波长.频率和光子的能量范围分别是多少?波长:380~780nm 400-760nm频率:385T~790THz 400T-750THz能量:l ・6~3・2cV1.2辐射度量与光度量的根本区别是什么?为什么量子流速率的计算公式中不能出现光度 戢?为了泄量分析光与物质相互作用所产生的光电效应,分析光电敏感器件的光电特 性,以及用光电敏感器件进行光谱、光度的左量计算,常需要对光辐射给出相应的计量参 数和量纲。

辐射度量与光度量是光辐射的两种不同的度量方法。

根本区別在于:前者是物 理(或客观)的讣量方法,称为辐射度量学计量方法或辐射度参数,它适用于整个电磁辐 射谱区,对辐射量进行物理的计量:后者是生理(或主观)的计量方法,是以人眼所能看 见的光对大脑的刺激程度来对光进行计算,称为光度参数。

因为光度参数只适用于 O.38~O.78um 的可见光谱区域,是对光强度的主观评价,超过这个谱区,光度参数没有任何 意义。

而量子流是在整个电磁辐射,所以量子流速率的il •算公式中不能出现光度量.光源在 给定波长入处,将入〜X+dX 范囤内发射的辐射通M d<Pe,除以该波长入的光子能量h V,就得到光源在入处每秒发射的光子数,称为光谱量子流速率。

1.3 -只白炽灯,假设齐向发光均匀,悬挂在离地而l ・5m 的髙处,用照度计测得正下方地 而的照度为301X,求出该灯的光通量。

0>=L*4 n R A 2=30*4*3.14* 1.5A 2=848.2引x1・4 一支氨■就激光器(波长为632.8nm )发出激光的功率为2mW.该激光束的平而发散角 为lmrad,激光器的放电毛细管为1mm 。

求出该激光束的光通呈:、发光强度、光亮度、光出射度。

若激光束投射在10m 远的白色漫反射屏上,该漫反射屏的发射比为0.85,求该屏 上的光亮度。

= 683x0.265x2x107 = 0.3 62/,77 "令・(>1) _ 0.362 7lS _ XO.OOO52 Z = 10/zz » r = O.OOO5ZZ7 (P6), d /• 2 A7 = O.85^v = 0.85——:——— = 0.85 ・疋厶 — v v as cose v /2c 如0.85 £厶,升 r —= =1 55cd / m dGdS cos 3 dG 2兀 1.6从黑体辐射曲线图可以看书,不同温度下的黑体辐射曲线的极大值处的波长随温度T 的升2兀Rh s Q =-—— = 2兀(1 — cos △e、(几) 2兀(1 — cos &) 0.362 2兀(1 — cos 0.00 1) "40)= △e 。

光电子技术安毓英习题答案全

光电子技术安毓英习题答案全

第一章IRI,如图1.设在半径为的点源的圆盘中心法线上,距盘圆中心为为ec o所示。

试计算该点源发射到盘圆的辐射功率。

____ e d 解:因为,s dS i R c0上为辐射在被照面,到面源的距离为。

若的入射角,试计算小面源在面积为cccsc o产生的辐射照度。

dI e | __________ e cOsA:解:亮度定义I :强度定c---------------------2I0 cosd cOsL A一 cssee E A上辐射照度为:则在小面源在__________________________________________ e2dA|0,其各处的假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景) 3.的探测器表面上产生的辐照度。

L均相同,试计算该扩展源在面积为A辐亮度de cosA d d L cosdAd Ld d答:由,且得_____________________________ ee 22cOsddA「1旳「2 2 LEdLI 则辐照度:------------------ e ee20022- I 霓虹灯发的光是热辐射吗? 4.在两端放置有电极的真空充入氖或氩等惰性气体,霓虹灯发的光是电致发光,cosld d d 2sin R 2 c r o 且i.i题图第I o 1 222R I co | 0I1 Id 2 所以eee22R|cOLIA ;被照面的,面源法线与, 辐射亮度为的夹角为 2.如图所示,设小面源的面积为sse o A AAAIS处有一个辐射强度d e Ie L d I e 0 A s cOsAdd L c可得辐射通量:sees cos A cc d 在给定方向上立体角为:图1.2第 _______________不是热辐射。

使原子中气体中的原子或离子受到被电场加速的电子的轰击,当两极间的电压增加到一定数值时,的电子受到激发。

当它由激发状态回复到正常状态会发光,这一过程称为电致发光过程。

光电子技术安毓英习题答案(全)

光电子技术安毓英习题答案(全)

第一章1.设在半径为 R 的圆盘中心法线上,距盘圆中心为 所示。

试计算该点源发射到盘圆的辐射功率。

解:因为 l e 所以 dS~~2rl e d sin d d l o2 l e 1l o2 1 cosjo R C2.如图所示,设小面源的面积为 面积为 A,到面源 产生的辐射照度。

L e ,面源法线与10的夹角为 A,辐射亮度为 A 的距离为I 。

若c 为辐射在被照面 A 的入射角,试计算小面源在 0o ;被照面的 A上 L e 解:亮度定义: dl eA r cos r 强度定义:I e 可得辐射通量: d e dd e L e A s Cos sd在给定方向上立体角为: d A c cos cI 。

2d e dA3.假如有一个按朗伯余弦定律发射辐射的大扩展源 则在小面源在 A上辐射照度为:EL e A s cos s cos c I 2(如红外装置面对的天空背景) ,其各处的辐亮度L e 均相同,试计算该扩展源在面积为 d A d 的探测器表面上产生的辐照度。

答:由L e 得d d dAcos dAcos ,且 d A d cos I 2r 2则辐照度: E L I ? —rdre e tI 2r 22L e l 0处有一个辐射强度为l e 的点源S ,如图证明:M e (T)T=3K3m0.966 10 m9.答: 到色温度这个量,单位为 K 。

色温度是指在规定两波长具有与热辐射光源的辐射比率相同的黑体的 温度。

11如果激光器和微波器分别在入=10卩m 入=500nn 和v =3000MH 输出一瓦的连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数分别是多少?由能量守恒可得:解答:NhvN hC当 =10u m 时,10 10叫 3 1013M e (T)5C 1 6C 2e T 1G C245(e C2T1)2Me(T)=o ,解得:mT 2.898 10 3m?K 。

得证7.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度导出M 与温度T 的四次方成正比,即M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章2. 如图所示,设小面源的面积为∆A s ,辐射亮度为L e ,面源法线与l 0的夹角为θs ;被照面的面积为∆A c ,到面源∆A s 的距离为l 0。

若θc 为辐射在被照面∆A c 的入射角,试计算小面源在∆A c 上产生的辐射照度。

解:亮度定义:r r ee A dI L θ∆cos =强度定义:ΩΦ=d d I e e可得辐射通量:Ω∆=Φd A L d s s e e θcos在给定方向上立体角为:2cos l A d cc θ∆=Ω 则在小面源在∆A c 上辐射照度为:2cos cos l A L dA d E cs s e e e θθ∆=Φ=3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。

答:由θcos dA d d L e ΩΦ=得θcos dA d L d e Ω=Φ,且()22cos r l A d d +=Ωθ则辐照度:()e e e L d rlrdrl L E πθπ=+=⎰⎰∞20022227.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度M 。

试有普朗克的辐射公式导出M 与温度T 的四次方成正比,即 M=常数4T ⨯。

这一关系式称斯特藩-波耳兹曼定律,其中常数为5.6710-8W/m 2K 4解答:教材P9,对公式2151()1e C TC M T eλλλ=-进行积分即可证明。

第二章3.对于3m 晶体LiNbO3,试求外场分别加在x,y 和z 轴方向的感应主折射率及相应的相位延迟(这里只求外场加在x 方向上)解:铌酸锂晶体是负单轴晶体,即n x =n y =n 0、n z =n e 。

它所属的三方晶系3m 点群电光系数有四个,即γ22、γ13、γ33、γ51。

电光系数矩阵为:L e∆A s∆A cl 0θsθc第1.2题图⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=0000000002251513313221322γγγγγγγγγij 由此可得铌酸锂晶体在外加电场后的折射率椭球方程为:12)(2)1()1()1(2251233121322202152220=-++++++++-xy E xz E yz E z E n y E E n x E E n x x z z ez y z y γγγγγγγ (1)通常情况下,铌酸锂晶体采用450-z 切割,沿x 轴或y 轴加压,z 轴方向通光,即有E z =E y =0,且E x ≠0。

晶体主轴x,y 要发生旋转,上式变为:1222251222222=-+++xy E xz E n z n y n x x x zy x γγ (2) 因151〈〈x E γ,且光传播方向平行于z 轴,故对应项可为零。

将坐标轴绕z轴旋转角度α得到新坐标轴,使椭圆方程不含交叉项,新坐标轴取为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡''cos sin sin cos y x y x αααα,z=z ’ (3) 将上式代入2式,取o 45=α消除交叉项,得新坐标轴下的椭球方程为:1''1'1222222022220=+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-e x x n z y E n x E n γγ (4)可求出三个感应主轴x ’、y ’、z ’(仍在z 方向上)上的主折射率变成:ez x y xx n n E n n n E n n n =-=+='22300'22300'2121γγ (5)可见,在x 方向电场作用下,铌酸锂晶体变为双轴晶体,其折射率椭球z 轴的方向和长度基本保持不变,而x,y 截面由半径为n 0变为椭圆,椭圆的长短轴方向x ’ y ’相对原来的x y 轴旋转了450,转角的大小与外加电场的大小无关,而椭圆的长度n x ,n y 的大小与外加电场E x 成线性关系。

当光沿晶体光轴z 方向传播时,经过长度为l 的晶体后,由于晶体的横向电光效应(x-z ),两个正交的偏振分量将产生位相差:l E n l n n x y x 22302)''(2γλπλπϕ=-=∆ (6)若d 为晶体在x 方向的横向尺寸,d E V x x =为加在晶体x 方向两端面间的电压。

通过晶体使光波两分量产生相位差π(光程差λ/2)所需的电压x V ,称为“半波电压”,以πV 表示。

由上式可得出铌酸锂晶体在以(x-z )方式运用时的半波电压表示式:l dn V 22302γλπ=(7) 由(7)式可以看出,铌酸锂晶体横向电光效应产生的位相差不仅与外加电压称正比,还与晶体长度比l /d 有关系。

因此,实际运用中,为了减小外加电压,通常使l /d 有较大值,即晶体通常被加工成细长的扁长方体。

6.在电光晶体的纵向应用中,如果光波偏离z 轴一个远小于1的角度传播,证明由于自然双折射引起的相位延迟为2220012θωϕ⎪⎪⎭⎫ ⎝⎛-=∆e n n n c L,式中L 为晶体长度。

解:()22222sin cos 1e o e n n n θθθ+=,得()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=222001211θθe e n n n n 自然双折射引起的相位延迟:()[]222000122θωλπϕθ⎪⎪⎭⎫ ⎝⎛-=-=∆e e n n n c LL n n 7. 若取v s =616m/s ,n =2.35, f s =10MHz ,λ0=0.6328μm ,试估算发生拉曼-纳斯衍射所允许的最大晶体长度L max =?解:由公式0204λλsn L L ≈<计算。

9 考虑熔岩石英中的声光布喇格衍射,若取00.6238m λμ=,n=1.46,35.9710/s v m s =⨯,100s f MHz =,计算布喇格角B θ。

解: ss sv f λ= 代入公式得: sin 22B s s sf n nv λλθλ==代入数据得: sin 0.00363B θ=由于B θ很小,故可近似为: 0.00363B θ=10. 一束线偏振光经过长L =25cm ,直径D =1cm 的实心玻璃,玻璃外绕N =250匝导线,通有电流I =5A 。

取韦尔德常数为V =0.25⨯10-5(')/cm •T ,’ 3.为了降低电光调制器的半波电压,用4块z 切割的KD*P 晶体连接(光路串联,电路并联)成纵向串联式结构,为了使4块晶体的光电效应逐块叠加,各晶体的x 轴和y 轴应如何取向?并计算其半波电压。

应使4块晶体成纵向排列,且相邻晶体的光轴应互成90°排列,即一块晶体的'y 和z 轴分别与另一块晶体的z 和'y 轴平行,这样排列后第一块和第三块晶体的光轴平行,第二块和第四块晶体的光轴平行。

经过第一块晶体后,亮光束的相位差31'006321()2x z e z n n n E L πϕϕϕγλ∆=-=-+ 经过第二块后,其相位差32'006321()2z x e z n n n E L πϕϕϕγλ∆=-=-+ 于是,通过两块晶体之后的相位差为3120632Ln Vdπϕϕϕγλ∆=∆+∆=由于第一块和第三块晶体的光轴平行,第二块和第四块晶体的光轴平行,故总的相位差为3120634'22()Ln Vdπϕϕϕϕγλ∆=∆=∆+∆=3063()4dV n Lπλλ= 4 如果一个纵向电光调制器没有起偏器,入射的自然光能否得到光强度调制?为什么?解答:不能得到强度调制。

因为自然光偏振方向是任意的。

自然光通过电光调制器后,不能形成固定相位差。

5 一个PbMoO 4声光调制器,对He-Ne 激光进行调制。

已知声功率P s =1W ,声光相互作用长度L=1.8mm ,换能器宽度H=0.8mm ,M 2=36.310-15s 3/kg ,试求PbMoO 4声光调制器的布喇格衍射效率? 解答:⎥⎦⎤⎢⎣⎡==s s P M H LLI I 222sin 1λπη 计算可得71.1%6 一个驻波超声场会对布喇格衍射光场产生什么影响?给出造成的频移和衍射方向。

解答: 新的光子沿着光的散射方向传播。

根据动量守恒和能量守恒定律:()d i s k k k ηη=+ ,即 ()d i s k k k =+ (动量守恒)i s d ωωω+= (能量守恒)(能量守恒)——衍射级相对于入射光发生频率移动,根据光波矢量的定义,可以用矢量图来表示上述关系,如图所示图中ss k λπ2=为声波矢量,'22ck ii πυλπ==为入射光波矢量。

()'22c f dk s d +==υπλπ为衍射光波矢量。

因为s f >>υ,f s 在1010Hz 以下,υ在1013Hz 以上,所以衍射光的频率偏移可以忽略不计。

则 i i s d ωωωω≈+=在上面的等腰三角形中 B i s k k θsin 2= 布拉格条件: siB λλθ2sin =和书中推导的布拉格条件相同。

入射光的布拉格角只由光波长,声波长决定。

7. 用PbMoO 4晶体做成一个声光扫描器,取n =2.48,M 2=37.75⨯10-15s 3/kg ,换能器宽度H =0.5mm 。

声波沿光轴方向传播,声频f s =150MHz ,声速v s =3.99⨯105cm/s ,光束宽度d =0.85cm ,光波长λ=0.5μm 。

⑴ 证明此扫描器只能产生正常布喇格衍射; ⑵ 为获得100%的衍射效率,声功P s 率应为多大? ⑶ 若布喇格带宽∆f =125MHz ,衍射效率降低多少? ⑷ 求可分辨点数N 。

解:⑴ 由公式0204λλsn L L ≈<证明不是拉曼-纳斯衍射。

⑵ 22222cos L M I B s θλ=,⎪⎭⎫⎝⎛==L H M HLI P B s s 2222cos θλ,答案功率为0.195W 。

⑶ 若布喇格带宽∆f =125MHz ,衍射效率降低多少?ssB f nv ∆=∆2λθ,⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=H P v P n f f s B s s θλπρ∆ηcos 2232270 ⑷ 用公式)(λωφφθR N =∆∆∆=和R f v N s s ∆=∆∆=ωφθ计算。

答案:148。

第四章5 如果Si 光电二极管灵敏度为10uA/uW ,结电容为10pF ,光照功率为5uW 时,拐点电压为10V ,偏压40V ,光照信号功率()()W t t P μωcos 25+=,试求: (1)线性最大输出功率条件下的负载电阻;(2)线性最大输出功率; (3)响应截止频率。

相关文档
最新文档