光电子技术第三版安毓英刘继芳等著习题答案完整版

合集下载

光电子技术安毓英第五章课后习题参考答案1

光电子技术安毓英第五章课后习题参考答案1

5.1以图中p型半导体器件为例,栅极加正电压超过MOS晶体管的开启电压时,在半导体金属界面会形成深度耗尽层,称为电子的势阱。

当有光照时,光生电子会聚集在势阱中,形成电荷存储。

以图中三相CCD结构为例,相邻三个栅极电压从高电平依次降低到低电平,为一个周期。

每个栅极电压降低过程与下一个栅极高电平重合。

这样三个栅极位置的电子势阱会依次减小,消失与出现。

存储电子会随着势阱位置的移动发生转移。

电荷输出:外加放大电路,利用电荷电势进行放大,输出信号CCD输出信号的特点:1.信号电压是在浮置电平基础上的负电压2.每个电荷包的输出占有一定的时间长度3.在输出信号总叠加有复位期间的高电平脉冲根据这些特点,对CCD的输出进行处理时,较多地采用了取样技术,以去除浮置电平,复位高脉冲及抑制噪声。

5.2光电成像系统利用的都是帧扫描方式,完成一帧扫描所需要的时间称为帧时T,单位时间完成的帧数称为帧速 F, 它们的关系是T=1/F5.3(1)F=0.3m(2) W=n*α=128*a/f=128x100um/0.3m=4.26x10-2 rad5.5从目标调制度(对比度)到人眼观察到,总的调制函数为各个调制函数的乘积,光学体统调制传递函数为MTF O, 人眼能感知的极限调制度为0.026,则0.5×MTF O×0.9×0.5×0.95×0.5≥0.026MTF O≥0.245.7(1)像增强器CCD (ICCD)可以探测微光图像,但是其内经过光子-电子的多次转换,图像质量会有损失,光锥中光纤光栅干涉波纹,折断和耦合损失都将使ICCD输出噪声增加,对比度下降,动态范围减小,影响成像质量。

(2)薄型背向CCD器件灵敏度高,噪声低,但当照度低于10-6 lx 时,只能依赖图像增强来提高增益,克服噪音(3)电子轰击型CCD简化了光子多次转换过程,信噪比大大提高,与ICCD相比,电子轰击型CCD具有体积小,重量轻,可靠性高,分辨率高及对比度好等优点。

最新光电子技术(安毓英)习题课后答案

最新光电子技术(安毓英)习题课后答案

第一章1. 设在半径为R c 的圆盘中心法线上,距盘圆中心为l 0处有一个辐射强度为I e 的点源S ,如图所示。

试计算该点源发射到盘圆的辐射功率。

解:因为,且()⎪⎪⎭⎫ ⎝⎛+-=-===Ω⎰22000212cos 12sin c R R l l d d rdS d c πθπϕθθ 所以⎪⎪⎭⎫ ⎝⎛+-=Ω=Φ220012c e e e R l lI d I π2. 如图所示,设小面源的面积为∆A s ,辐射亮度为L e ,面源法线与l 0的夹角为θs ;被照面的面积为∆A c ,到面源∆A s 的距离为l 0。

若θc 为辐射在被照面∆A c 的入射角,试计算小面源在∆A c 上产生的辐射照度。

解:亮度定义:强度定义:ΩΦ=d d I ee 可得辐射通量:Ω∆=Φd A L d s s e e θcos 在给定方向上立体角为:2cos l A d cc θ∆=Ω 则在小面源在∆A c 上辐射照度为:20cos cos l A L dA d E cs s e e e θθ∆=Φ=ΩΦd d ee I =r r ee A dI L θ∆cos =3.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度L e 均相同,试计算该扩展源在面积为A d 的探测器表面上产生的辐照度。

答:由θcos dA d d L e ΩΦ=得θcos dA d L d e Ω=Φ,且()22cos rl A d d +=Ωθ 则辐照度:()e e e L d rlrdrl L E πθπ=+=⎰⎰∞20022224. 霓虹灯发的光是热辐射吗?不是热辐射。

霓虹灯发的光是电致发光,在两端放置有电极的真空充入氖或氩等惰性气体,当两极间的电压增加到一定数值时,气体中的原子或离子受到被电场加速的电子的轰击,使原子中的电子受到激发。

当它由激发状态回复到正常状态会发光,这一过程称为电致发光过程。

光电子技术第三版安毓英刘继芳等著习题答案完整版

光电子技术第三版安毓英刘继芳等著习题答案完整版

学习资料收集于网络,仅供学习和参考 ,如有侵权,请联系网站删除第一章1. 设在半径为 R c 的圆盘中心法线上,距盘圆中心为 l 0 处有一个辐射强度为 I e 的点源 S ,如图所示。

试计算该点源发射到盘圆的辐射功率。

解:因为 Ie d ed,SdSR c d d21 cosl 0d2sin R cr且l 0第 1.1 题图2 1l 02R c 2所以 eI e d2 I e 1l 0R c 2l 022. 如图所示,设小面源的面积为 A s ,辐射亮度为 L e ,面源法线与 l 0 的夹角为 s ;被照面的面积为 A c ,到面源 A s 的距离为 l 0。

若 c 为辐射在被照面 A c 的入射角,试计算小面源在 A c 上产生的辐射照度。

dI e L e A r cos rsA c解:亮度定义 :L el 0强度定义 : I ed e A scd第 1.2 题图可得辐射通量: d e L e A s cos s d在给定方向上立体角为: A c cos cdl 02则在小面源在 A 上辐射照度为:d eL e A s cos s cos ccdAl 023.假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐亮度 L e 均相同,试计算该扩展源在面 积为 A d 的探测器表面上产生的辐照度。

答:由 L ed得 dA d cosdA cosL e d dA cos ,且 d2 r 2d l2rdrl 则辐照度: E eL ed L e2l 2 r 22 04. 霓虹灯发的光是热辐射吗?学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除不是热辐射。

霓虹灯发的光是电致发光,在两端放置有电极的真空充入氖或氩等惰性气体,当两极间的电压增加到一定数值时,气体中的原子或离子受到被电场加速的电子的轰击,使原子中的电子受到激发。

当它由激发状态回复到正常状态会发光,这一过程称为电致发光过程。

光电子技术安毓英习题答案全

光电子技术安毓英习题答案全

第一章IRI,如图1.设在半径为的点源的圆盘中心法线上,距盘圆中心为为ec o所示。

试计算该点源发射到盘圆的辐射功率。

____ e d 解:因为,s dS i R c0上为辐射在被照面,到面源的距离为。

若的入射角,试计算小面源在面积为cccsc o产生的辐射照度。

dI e | __________ e cOsA:解:亮度定义I :强度定c---------------------2I0 cosd cOsL A一 cssee E A上辐射照度为:则在小面源在__________________________________________ e2dA|0,其各处的假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景) 3.的探测器表面上产生的辐照度。

L均相同,试计算该扩展源在面积为A辐亮度de cosA d d L cosdAd Ld d答:由,且得_____________________________ ee 22cOsddA「1旳「2 2 LEdLI 则辐照度:------------------ e ee20022- I 霓虹灯发的光是热辐射吗? 4.在两端放置有电极的真空充入氖或氩等惰性气体,霓虹灯发的光是电致发光,cosld d d 2sin R 2 c r o 且i.i题图第I o 1 222R I co | 0I1 Id 2 所以eee22R|cOLIA ;被照面的,面源法线与, 辐射亮度为的夹角为 2.如图所示,设小面源的面积为sse o A AAAIS处有一个辐射强度d e Ie L d I e 0 A s cOsAdd L c可得辐射通量:sees cos A cc d 在给定方向上立体角为:图1.2第 _______________不是热辐射。

使原子中气体中的原子或离子受到被电场加速的电子的轰击,当两极间的电压增加到一定数值时,的电子受到激发。

当它由激发状态回复到正常状态会发光,这一过程称为电致发光过程。

光电子技术安毓英习题答案(全)

光电子技术安毓英习题答案(全)

第一章1.设在半径为 R 的圆盘中心法线上,距盘圆中心为 所示。

试计算该点源发射到盘圆的辐射功率。

解:因为 l e 所以 dS~~2rl e d sin d d l o2 l e 1l o2 1 cosjo R C2.如图所示,设小面源的面积为 面积为 A,到面源 产生的辐射照度。

L e ,面源法线与10的夹角为 A,辐射亮度为 A 的距离为I 。

若c 为辐射在被照面 A 的入射角,试计算小面源在 0o ;被照面的 A上 L e 解:亮度定义: dl eA r cos r 强度定义:I e 可得辐射通量: d e dd e L e A s Cos sd在给定方向上立体角为: d A c cos cI 。

2d e dA3.假如有一个按朗伯余弦定律发射辐射的大扩展源 则在小面源在 A上辐射照度为:EL e A s cos s cos c I 2(如红外装置面对的天空背景) ,其各处的辐亮度L e 均相同,试计算该扩展源在面积为 d A d 的探测器表面上产生的辐照度。

答:由L e 得d d dAcos dAcos ,且 d A d cos I 2r 2则辐照度: E L I ? —rdre e tI 2r 22L e l 0处有一个辐射强度为l e 的点源S ,如图证明:M e (T)T=3K3m0.966 10 m9.答: 到色温度这个量,单位为 K 。

色温度是指在规定两波长具有与热辐射光源的辐射比率相同的黑体的 温度。

11如果激光器和微波器分别在入=10卩m 入=500nn 和v =3000MH 输出一瓦的连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数分别是多少?由能量守恒可得:解答:NhvN hC当 =10u m 时,10 10叫 3 1013M e (T)5C 1 6C 2e T 1G C245(e C2T1)2Me(T)=o ,解得:mT 2.898 10 3m?K 。

得证7.黑体辐射曲线下的面积等于等于在相应温度下黑体的辐射出射度导出M 与温度T 的四次方成正比,即M 。

光电子技术(安毓英)习题答案

光电子技术(安毓英)习题答案

课后题答案1.1设半径为 艮的圆盘中心发现上, 距圆盘中心为l 0处有一辐射强度为I e 的点源S ,如F图所示。

试计算该点光源发射到圆盘的辐射功率。

pl思路分析:要求 e 由公式E e 丄,l edA-都和e 有关,根据条件,都可求出。

解题过程如下:d e dARfE e dA试计算小面源在 A c 上产生的辐射照度。

题过程如下:解:E e又:E el ei o 2代入上式可得:l o法二:l el e dl e R 2lo1.2如下图所示,设小面源的面积为辐射亮度为L e ,面源法线与l 0的夹角为s ;被照面的面积为A ,到面源 A s 的距离为|0。

若c 为辐射在被照面A c 的入射角,E e故:思路分析:若求辐射照度 E e ,则应考虑公式E e卡。

又题目可知缺少",则该考虑如何求I e 。

通过课本上的知识可以想到公式L edl e ,通过积分则可出I e 。

解dScos亠. dj由L e e可得dScosAI e s L e cos dSe0 e=L e cos A,故:E土L e COS A se—\0—1.3假如有一个按朗伯余弦定律发射辐射的大扩展源(如红外装置面对的天空背景),其各处的辐射亮度L.均相同。

试计算该扩展源在面积为A的探测器表面上产生的辐射照度。

思路分析:题目中明确给出扩展源是按朗伯余弦定律发射辐射的,且要求辐射照度dEe,由公式E e 亠可知,要解此题需求出d e,而朗伯体的辐射通量为dAd e L e dS cos d L e dS,此题可解。

解题过程如下:解:E d ee dAd e L e dS cos d L e dSE e L e dS L ee dA e1.4霓虹灯发的光是热辐射吗?答:霓虹灯发光是以原子辐射产生的光辐射,属于气体放电,放电原理后面章节会涉及到。

而热辐射是指由于物体中的分子、原子受到热激发而发射电磁波的现象。

因此霓虹灯放电不属于热辐射。

光电子技术(第三版)课后习题答案《电子工业出版社》.pdf

光电子技术(第三版)课后习题答案《电子工业出版社》.pdf
的大小及波前曲率半径 R。
思路分析:由公式 (z) 0
1 ( z )2 可知,若求 需找出 f,解出 f,代入公式 f
R1
z0
f2 z0
0.3 0.42 0.3
0.83 即可求出结果。解题过程如下:
解:
f L 0.4m 2
(0.3) 0
1 ( 0.3) 2 1.2 10 3 f
1 ( 0.3) 2 1.5 mm 0.4
V000 。 由于f和 w0 是一一对应的,因而也可以用作为表征共焦腔高斯
光束的参数,试以 w0 表示f、 wz , Rz,V000 。
解答:
w0
f
w wz w0
1
z f
2
V000
1 2
Lw02s
L2 , 2
f
L 2
Rz
z
f2 z
f
z f
f z
1.15 今有一球面腔,R1=1.5m,R2=-1m,L=0.8m。试证明该腔为稳定腔。
1.7 黑体辐射曲线下的面积等于在相应温度下黑体的辐射出射度 M。试普朗克热辐射公
式导出 M 与温度的四次方成正比,即
M=常数 T 4
这一关系称为斯忒藩——波尔兹曼定律,其中常数为 5.67 108W / (m2 K 4)
思路分析:对公式 M e (T )
C1 5
1 eC2 T
进行积分即可证明。
1
1.8 宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于 3K 黑体辐射,此辐射的单体辐
射出射度在什么波长下有极大值?
思路分析:通过 1.6 题不难看出,对于黑体辐射,当辐射出射度取最大值时,波长和温
度 T 有关系,且乘积为常数,此题便可利用这个关系直接求解。解题过程如下:

光电子技术安毓英第四章课后习题参考答案

光电子技术安毓英第四章课后习题参考答案

4.1 比较光子探测器和光热探测器在作用机理、性能及应用特点等方面的差异。

答:光子效应是指单个光子的性质对产生的光电子起直接作用的一类光电效应。

探测器吸收光子后,直接引起原子或分子的内部电子状态的改变。

光子能量的大小,直接影响内部电子状态改变的大小。

因为,光子能量是hν,h是普朗克常数, ν是光波频率,所以,光子效应就对光波频率表现出选择性,在光子直接与电子相互作用的情况下,其响应速度一般比较快。

光热效应和光子效应完全不同。

探测元件吸收光辐射能量后,并不直接引起内部电子状态的改变,而是把吸收的光能变为晶格的热运动能量,引起探测元件温度上升,温度上升的结果又使探测元件的电学性质或其他物理性质发生变化。

所以,光热效应与单光子能量h的大小没有直接关系。

原则上,光热效应对光波频率没有选择性。

只是在红外波段上,材料吸收率高,光热效应也就更强烈,所以广泛用于对红外线辐射的探测。

因为温度升高是热积累的作用,所以光热效应的响应速度一般比较慢,而且容易受环境温度变化的影响。

值得注意的是,以后将要介绍一种所谓热释电效应是响应于材料的温度变化率,比其他光热效应的响应速度要快得多,并已获得日益广泛的应用。

4.3 用光敏电阻设计路灯自动点亮器本题为开放式。

可能有不同答案。

有设计图都算,无明显错误,都算对4.4 已知Si 光电池光敏面积为5×10mm2, 在1000W/m2光照下,开路电压u∞=0.55V,光电流iφ=12mA。

试求:(1)在(200 ~ 700)W/m2光照下,保证线性电压输出的负载电阻和电压变化值;(2)如果希望输出电压变化量为0.5V,怎么办?解:(1)不同的光照强度下,光电池的开路电压有变化,由(4 -115)式得到开路电压变化值:2222222'200/,' 2.610ln('/)' 2.610ln(200/1000)0.55 2.610ln(0.2)0.51'700/' 2.610ln(700/1000)0.55 2.610ln(0.7)0.54oc oc oc oc oc oc p W m u u P P u u Vp W m u u V−−−−−==+⨯=+⨯=+⨯===+⨯=+⨯=电压输出工作在光电池的光电流区域,在该区域光电流与光照功率成正比,所以短路电流为:22'''''200'200/,'12 2.41000'700'700/,'128.41000i P P i i i P PP p W m i i mA mA P P p W m i i mA mA P ϕϕϕϕϕϕϕϕ=∴==⇒==⨯==⇒==⨯=, 根据P140页关于“保证光电池线性工作的负载电阻R L 的选取原则”的分析和讨论,为保证线性电压输出,负载电阻应该用(4 -123)式确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图中为声波矢量, 为入射光波矢量。

s s k λπ2=
'22c k i i πυλπ==为衍射光波矢量。

()'22c f d
k s d +==υπλπ因为,f s 在1010Hz 以下,υ在1013Hz 以上,所以衍射光的频率s f >>υ
势阱时,如果有信号电子(电荷)来到势阱及其邻近,它们便可以聚集在表面。

随着电子来到势阱中,表面势将降低,耗尽层将减薄,我们把这个过程描述为电子逐渐填充势阱。

势阱中能够容纳多少个电子,取决于势阱的“深浅”,即表面势的大小,而表面势又随栅电压变化,栅电压越大,势阱越深。

如果没有外来的信号电荷。

耗尽层及其邻近区域在一定温度下产生的电子将逐渐填满势阱,这种热产生的少数载流子电流叫作暗电流,以有别于光照下产生的载流子。

因此,电荷耦合器件必须工作在瞬态和深度耗尽状态,才能存储电荷。

以典型的三相CCD 为例说明CCD 电荷转移的基本原理。

三相CCD 是由每三个栅为一组的间隔紧密的MOS 结构组成的阵列。

每相隔两个栅的栅电极连接到同一驱动信号上,亦称时钟脉冲。

三相时钟脉冲的波形如下图所示。

在t 1时刻,φ1高电位,φ2、φ3低电位。

此时φ1电极下的表面势最大,势阱最深。

假设此时已有信号电荷(电子)注入,则电荷就被存储在φ1电极下的势阱中。

t 2时刻,φ1、φ2为高电位,φ3为低电位,则φ1、φ2下的两个势阱的空阱深度相同,但因φ1下面存储有电荷,则φ1势阱的实际深度比φ2电极下面的势阱浅,φ1下面的电荷将向φ2下转移,直到两个势阱中具有同样多的电荷。

t 3时刻,φ2仍为高电位,φ3仍为低电位,而φ1由高到低转变。

此时φ1下的势阱逐渐变浅,使φ1下的剩余电荷继续向φ2下的势阱中转移。

t 4时刻,φ2为高电位,φ1、φ3为低电位,φ2下面的势阱最深,信号电荷都被转移到φ2下面的势阱中,这与t 1时刻的情况相似,但电荷包向右移动了一个电极的位置。

当经过一个时钟周期T 后,电荷包将向右转移三个电极位置,即一个栅周期(也称一位)。

因此,时钟的周期变化,就可使CCD 中的电荷包在电极下被转移到输出端,其工作过程从效果上看类似于数字电路中的移位寄存器。

φ3φ1φ2t 1
t 2
t 3
t 4
φ3φ1φ2
t 1t 2t 3t 4 电荷输出结构有多种形式,如“电流输出”结构、“浮置扩散输出”结构及“浮置栅输出”结构。

其中“浮置扩散输出”结构应用最广泛,。

输出结构包括输出栅OG 、浮置扩散区FD 、复位栅R 、复位漏RD 以及输出场效应管T 等。

所谓“浮置扩散”是指在P 型硅衬底表面用V 族杂质扩散形成小块的n +区域,当扩散区不被偏置,即处于浮置状态工作时,称作“浮置扩散区”。

t 1
φ3φR t 2
t 3
t 5t 4
φ3φR t 1t 2t 3t 4t 5输出信号的特点是:信号电压是在浮置电平基础上的负电压
5 试说明注入电致发光和高场电致发光的基本原理。

答:注入电致发光是在半导体PN结加正偏压时产生少数载流子注入,与多数载流子复合发光。

高场电致发光是将发光材料粉末与介质的混合体或单晶薄膜夹持于透明电极板之间,外施电压,由电场直接激励电子与空穴复合而发光。

相关文档
最新文档