原核生物基因表达调控分析
分子生物学第七章原核生物基因表达调控

原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。
第14章 原核生物基因表达调控

第14章原核生物基因的表达调控重点:操纵子的结构特点和功能;乳糖操纵子的正负调控;色氨酸操纵子的衰减作用。
难点:色氨酸操纵子的衰减作用。
第一节基因调控的基本定律一、基因调控水平二、基因和调控元件三、DNA结合蛋白一、基因调控水平基因表达的调控可以发生在DNA到蛋白质的任意节点上,如基因结构、转录、mRNA 加工、RNA的稳定性、翻译和翻译后修饰。
二、基因和调控元件基因:是指能转录成RNA的DNA序列。
结构基因:编码代谢、生物合成和细胞结构的蛋白质。
调节基因:产物是RNA或蛋白质,控制结构基因的表达。
其产物通常是DNA结合蛋白。
调控元件:不能转录但是能够调控基因表达的DNA序列。
三、DNA结合蛋白调控蛋白通常含有与DNA结合的结构域,一般由60-90个氨基酸组成。
在一个结构域中,只有少数氨基酸与DNA接触。
这些氨基酸(包括天冬氨酸、谷氨酸、甘氨酸、赖氨酸和精氨酸)常与碱基形成氢键,或者与磷酸核糖骨架结合。
根据DNA结合结构域内的模体,可以将DNA结合分成几种类型(图16.2)。
第二节大肠杆菌的乳糖操纵子一、操纵子结构二、正负调控三、乳糖操纵子四、lac突变五、正控制一、操纵子结构原核和真核生物基因调控的主要差异在于功能相关的基因的组成。
细菌的功能相关的基因常常排列在一起,并且由同一启动子控制。
一群一起转录的细菌的结构基因(包括其启动子和控制转录的额外序列)称为操纵子。
二、正负调控转录水平上的调控主要有两种类型:负调控:gene ON 阻遏蛋白 OFF正调控:gene OFF 激活蛋白 ON诱导:活性阻遏蛋白 失活诱导因子+非活性激活蛋白 活性阻遏:失活阻遏蛋白 活性共阻遏蛋白+活性激活蛋白 失活三、乳糖操纵子乳糖操纵子是诱导型操纵子,当诱导物不存在时,阻遏蛋白结合到操纵序列上并阻止转录;当诱导物存在时,阻遏蛋白与诱导物结合后失去活性,转录才得以进行。
四、lac突变为了鉴定乳糖操纵子各个成分的功能,Jacob和Monod做了细菌的接合实验,其中供体菌的F’因子上也带有乳糖操纵子。
原核生物基因表达调控

Repressor
cAMP
CAP
葡萄糖不存在,乳糖存在,阻遏蛋白失活,cAMP+CAP与CAP位点结合结合,促进基因转录
The Lac Operon: III. 葡萄糖和乳糖都存在
Repressor
RNA Pol.
CAP Bindin
g
Promoter
Operator X
LacZ
Repressor负调节与正调节协调合作
• 阻遏蛋白封闭转录时,CAP不发挥作用 • 如没有CAP加强转录,即使阻遏蛋白从操作基因上解聚仍无转录活性
3)正调控和负调控
正调控(positive control)
在没有调节蛋白质存在时基因是关闭的,加入某种调节蛋白后基因活性就被开启,这样的调控为正转录 调控。
调节基因
操纵基因
结构基因
调节蛋白
mRNA 酶蛋白
负调控(negative control)
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调 控负转录调控。
2)结构基因和调节基因
➢ 组成基因/管家基因(constitutive gene, housekeeping gene)是指不大受环境变动而持 续表达的一类基因。如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的基因 。 ➢调节基因(regulated gene)指环境的变化容易使其表达水平变动的一类基因。如:不同生 长发育时期表达的一些基因。
• 别乳糖是lac操纵子转录的活性诱导物 • 异丙基硫代半乳糖苷(isopropyl thiogalactoside:IPTG)结构上类似于别乳糖,是乳糖操纵
子非常有效的诱导物。可诱导lac操纵子表达,但不能被β-半乳糖苷酶水解。 • 这种能诱导酶合成,但不能被酶分解的分子称为安慰诱导物(gratuitous inducer)。安慰诱导
第九章:原核生物基因表达调控

抗σ因子与抗抗σ因子
9.1.1.3 双组分调节系统
双 组 分 调 节 系 统 的 组 成
感应激酶 应答调节子
周质结构 域、 胞质结构 域
PhoR和PhoB构成的双组分调节系统
天冬氨酸残基
9.1.2 转录终止阶段的调控
9.1.2.1 弱化子
研究表明色氨酸操纵子两种机制的调控。如果trp操纵子只受 trpR编码的阻遏物调控,那么在缺乏或存在色氨酸时,trpR 突变使trp操纵子表达的酶量应该是相同的。可是,在trpR缺
❖热激蛋白的表达调控主要发生在转录水平上。热激蛋白基 因的启动子被σ32而不是通常的σ70识别。σ32也不能识别σ70启 动子,因为这两种σ因子识别的启动子序列不一样
❖HSP的诱导合成是由于细胞内的σ32合成发 生在翻译水平。 ▪另一方面,在热激条件下σ32的稳定性也增加了。
严谨反应的分子机制
(p)ppGpp与RNA聚合酶β亚基结合,改变了RNA聚合酶对 一系列启动子的亲和力,导致细胞基因表达的整体变化,使细 胞适应新的环境。这些变化包括rRNA和tRNA的合成被抑制, 一系列参与氨基酸合成与运转的基因被激活。
人们在对大肠杆菌relA突变体进行研究时认识到是(p) ppGpp的积累引发了严紧反应。relA突变体即使在氨基酸饥饿
Fur能够感应细胞 内铁的水平。当 细胞内有充足的 铁时,Fur关闭反 义bfr基因,细胞 产生细菌铁蛋白。 在低铁条件下, 反义bfr基因被转 录,产生反义 RNA,阻止细菌 铁蛋白的合成。
生物学原核生物基因表达的调控

第二节
原核生物基因表达的 转录水平调控
Regulation of Prokaryotic Gene Expression at Transcription Level
目录
一、转录调控是以特定的DNA序列和蛋 白质结构为基础
(一)特定的DNA序列是转录起始调控的结构基础
在基因内和基因外都有一些特定的DNA序列,与结 构基因表达调控相关、能够被基因调控蛋白特异性识别 和结合,这些特定的DNA序列称为顺式作用元件(cisacting elements),亦称为顺式调控元件。在原核生物 中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合 位点、增强子等。
transcription
RNA 5'-AGGUCCACG········-3'
启动子及其与转录的关系 ···
目录
(二)阻遏蛋白结合操纵元件对转录起 始进行负调控
阻遏蛋白是一类在转录水平对基因表达产生负 调控作用的蛋白质。阻遏蛋白主要通过抑制开放启 动子复合物的形成而抑制基因的转录。阻遏蛋白与 DNA结合后,RNA聚合酶仍有可能与启动子结合, 但不能形成开放起始复合物,不能启动转录;这种 作用称为阻遏(repression),特定的信号分子与阻 遏蛋白结合,使阻遏蛋白失活,从DNA 上脱落下来, 称为去阻遏,或脱阻遏(derepression)。
usually binds to CAAT box
目录
二、特定蛋白质与DNA结合后控制 转录起始
(一)σ因子和启动子决定转录是否能够起始
-35
-10
+1
5'-TAGTGTATTGACATGATAGAAGCACTCTACTATATTCTCAATAGGTCCACG············-·3·'
原核生物基因表达调控概述

原核生物基因表达调控概述基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。
1.基因表达调控意义在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。
2.原核基因表达调控特点原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。
这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。
调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。
细菌的转录和翻译过程几乎在同一时间内相互偶联。
细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。
(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。
这种蛋白质合成及其基因表达的控制称为翻译水平的调控。
二.原核生物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够广泛适应变化的环境条件。
这些条件包括营养、水分、溶液浓度、温度,pH等。
而这些条件须通过细胞内的各种生化反应途径,为细胞生长的繁荣提供能量和构建细胞组分所需的小分子化合物。
(2)顺式作用元件和反式作用元件基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。
反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。
RNA聚合酶是典型的反式作用因子。
原核生物基因表达调控的特点

原核生物基因表达调控的特点原核生物指的是没有真核细胞核的生物,包括细菌和古细菌。
在原核生物中,基因表达调控是一种重要的生物学过程,通过调控基因的转录、翻译和后转录调控来控制蛋白质的合成和功能,从而适应环境的变化。
原核生物基因表达调控具有以下特点:1. 调控元件简单:原核生物的基因组相对较小,基因数目较少,调控元件相对简单。
通常,原核生物的基因调控主要依赖于启动子、操作子以及结合蛋白等几个关键的调控元件。
2. 调控网络简化:原核生物的基因调控网络相对简化,通常以正式的反式调控为主。
正式调控是指调控蛋白质与调控元件结合后,促进或抑制基因的转录。
3. 转录和翻译的耦合:在原核生物中,转录和翻译是同时进行的,没有真核生物中的核内转录和胞质翻译的空间分隔。
这种耦合使得原核生物能够更加高效地调控基因表达。
4. 调控速度快:原核生物的基因表达调控速度相对较快。
由于转录和翻译的耦合以及调控元件的简单性,原核生物可以在短时间内快速响应环境的变化,调整基因表达水平。
5. 基因调控的灵活性:原核生物的基因调控具有较高的灵活性。
原核生物通过对调控蛋白质的合成和降解进行调控,可以实现对基因表达的快速调整。
此外,原核生物还可以通过突变、重组和水平基因转移等方式来调整基因表达。
6. 调控机制多样:原核生物的基因表达调控机制多样。
除了上述的正式调控外,原核生物还可以通过DNA甲基化、RNA干扰、RNA 修饰等多种方式对基因进行调控。
在原核生物中,基因表达调控具有重要的生物学意义。
通过调控基因表达,原核生物能够适应不同的环境条件,维持稳定的内部环境,并实现生存和繁殖的目标。
同时,原核生物的基因表达调控机制也为生物学研究提供了重要的模型系统。
通过研究原核生物的基因表达调控,可以深入理解基因调控的基本原理,并为生物技术和医学研究提供理论基础和实验依据。
原核生物基因表达的机理及其调控

原核生物基因表达的机理及其调控原核生物是一类单细胞生物,其基因组包括细胞质内的DNA和可能存在于外部的质粒DNA。
基因是生命的基本单位,通过基因表达来实现细胞内各种生物活动的调节、协调和控制。
这里将重点介绍原核生物基因表达的机理及其调控。
基因表达的三个步骤基因表达分为三个主要步骤:转录、翻译和调节。
转录是指将DNA序列转换成RNA序列的过程;翻译是指RNA序列被翻译成氨基酸序列的过程,进而合成蛋白质;调节是指生物体在不同状态下对基因表达的调整和控制。
转录的机理和调控转录是从DNA合成RNA的过程。
在细胞内,RNA聚合酶是起主导作用的酶,可以将位于DNA模板链上的核苷酸与其形成互补配对的核苷酸连接起来,从而合成RNA,这个过程是由DNA模板指导的。
在原核生物中,转录过程相对简单。
细菌细胞中,只有一个RNA聚合酶可以完成所有RNA的合成,并且细菌细胞中的大多数基因都是成串排列的,构成的连续片段被称为“操纵子”。
细菌的一个操纵子通常包含3个区域,启动子、结构基因和终止子。
其中,启动子包含一段特别的DNA序列,被RNA聚合酶认识为转录起点,使得RNA聚合酶可以将核苷酸序列转录为RNA。
结构基因由串联的核苷酸序列组成,决定了合成的RNA分子序列构建。
终止子是一些DNA序列,确定RNA聚合酶在终止转录时的位置。
转录过程中的调控非常重要。
原核生物常常通过启动子区域的开放或关闭调控基因的转录。
这可以通过转录因子的作用来实现。
例如,细菌的“cap结构”和“UTR”可以帮助细胞发现起始位置。
激活蛋白可以缠绕到基因区域,启动转录酶的工作进程。
还有其他的转录因子,他们的作用是为转录酶提供指导信号。
翻译的机理和调控翻译是在RNA模板的指导下,由核糖体将合成的氨基酸序列合成成蛋白质的过程。
在原核生物中,翻译是通过紧密联系的核糖体和RNA复合物实现的。
核糖体由大大小小两个亚基组成,并特异地识别不同氨基酸。
它通过扫描RNA序列来寻找指定的起始区域(起始密码子),并始终按照特定的氨基酸序列连接合成蛋白质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Co-repressor
(共阻遏物)
原核生物基因表达调控方式:
负控诱导调节
负控转录调 控系统
调节基因的产物是 阻遏蛋白 (repressor), 阻止了结构基因的 转录。
阻遏蛋白与效应物(诱 导物)结合,使阻遏蛋 白失活,结构基因转录; 阻遏蛋白与效应物(辅阻 遏物)结合,使阻遏蛋白 产生活性,结构基因不转 录。
operon on operon off operon off operon on
Neg.
i- or 不加入I基因产物 I+ or 加入I基因产物
(激活蛋白)
Pos.
●
Repressor binding on O site 阻遏蛋白 阻止转录启动
Expressor binding front p site
安慰诱导物:
如果某种物质能够诱导细菌产生某种酶而本身又不
被分解,这种物质被称为安慰诱导物,如IPTG(异
丙基- β –D-硫代半乳糖苷)。 相反,随环境条件变化而基因表达水平降低的现象 称为阻遏(repression),相应的基因被称为可阻遏的基 因(repressible gene)。 如果某种物质能够阻止细菌产生合成这种物质的酶, 这种物质就是辅阻遏物。(合成代谢)
第一讲 原核生物基因表达 调控
主要内容
一、基因表达调控的基本概念: 二、 基因表达调控的理论与模式;
一、基因表达调控的基本概念:
1、基因表达调控的意义: 原核生物对环境的适应、对营养条件改变适应的 相关应答,都是基因表达的结果;
真核生物的细胞分化, 组织特化 , 个体发育以及 环境对个体表型的影响都是通过基因表达实现的。
组成型突变: lacOc
iC mut. (iC O+P+) constitutive mut. (组成型)
iC gene产物repressor丧失与O位点结合的能力 iS mut. (iS O+P+) super-repression mut. (超阻型) iS gene 产物repessor 不能与inducer结合
组成型突变: iC
不可诱导突变(超阻遏):
两个问题: 1、lac操纵子的本底水平表达 有两个矛盾是操纵子理论所不能解释的: ①诱导物需要穿过细胞膜才能与阻遏物结合,而转运 诱导物需要透过酶,后者的合成有需要诱导。 解释:一些诱导物可以在透过酶不存在时进入细胞? 一些透过酶可以在没有诱导物的情况下合成?
萄糖,乳糖就会诱导lac操纵子表达分解乳糖所需的
三种酶。
该现象称为葡萄糖效应
其原因是代谢物阻遏效应。
B、 Negative—repressible operon (合成酶类)
• tryptophan synthease operon
• 色氨酸是一系列酶促反应的终产物
• R gene inactive repressor
作用于 O 位点上的repressor 变构 脱离O位
作用于游离的repressor 变构 失去结合于O位的能力
调控机理
调控机理
w.t. (I+ O+ P+) 诱导型
add inducer operon on
no inducer operon off OC mut. (I+ OC P+) constitutive mut. (组成型) OC失去与repressor特异结合的能力
I
例 (分解酶类 lactose operon)
例如:在Lactose operon中
I gene active repressor
38 kd / monomer
tetramer 152 kd
binding on Operator
大肠杆菌乳糖操纵子的结构:
Lac. Operon structure
●
Signal molecular be needed for both types Add signal mol. Operon on (inducible operon)
Inducer (诱导物)
Add signal mol. Operon off (repressible operon)
Z编码β-半乳糖苷酶:将乳糖(β1,4糖苷键)水
解成葡萄糖和半乳糖
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷
(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入
细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的
乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。
O gene (operator) cis-action factor
Lac operon I p o Z Y A
• 特点:
● ● ●
各结构基因按一定比例协调翻译 ( Z : Y : A = 5 : 2 : 1 ) P & O基因(cis)紧密连锁 或 彼此重叠
I 基因(trans) 位点不固定,编码一种反式作用因子,可以 调控Z、Y、A结构基因的表达。含自己的启动子和终止子。
O & P overlap repressor & RNA polymerase bind mRNA startpoint
at sites that overlap around the start point of Lac operon unwinding
RNA polymerase binding Repressor binding
在细菌中,一个mRNA的合成和它的翻译基本上是 同时进行的。翻译通常在其起始和终止阶段进行调控。 3、为了区分调控过程中的调控成分和其调控的基因, 又使用结构基因(Structural gene)和调控基因 (Regulator gene) 的概念。 结构基因是编码蛋白质或RNA的任何基因。结构基因 编码大量结构和功能各异的蛋白质,包括结构蛋白、 具有催化活性的酶和调控蛋白。 调控基因:是编码调控蛋白的结构基因,该蛋白可 以调控其它基因的表达。
负控阻遏调节
正控诱导调节
正控转录 调控系统
调节基因的产物是 激活蛋白 (activator)。
效应物分子(诱导物) 的存在使失去活性的激 活蛋白处于活性状态;
正控阻遏调节
效应物分子(辅阻遏物) 的存在使有活性的激活 蛋白处于非活性状态。
Operon control model
A、 Negative—inducible operon
4、顺式作用(cis-acting)元件:指不转变为其它任 何形式,只在原位发挥调控作用,仅影响与其在物理 上相连的基因表达的一段DNA序列。 顺式作用元件通常和启动子并列或散布在其周围。 经常与启动子相邻的一个顺式作用位点称为操纵基 因(Operator),它是调控蛋白:阻遏蛋白或激活蛋白 的靶位点。 当阻遏蛋白(或激活蛋白)和操纵基因结合时,就 会阻止(或激活)RNA 聚合酶启动转录,操纵基因下 游的结构基因表达会因此被关闭(或开放)。
遗传信息的两大类别
I类;DNA seq. RNA seq. (codon) aa seq. protein phenotype(性状)
II类;特定DNA seq. + 特定蛋白质/ 核酸结合
基因表达的指令
gene on / off
7、调控的关键是调控基因编码蛋白质与与DNA 上的特 异位点(顺式反应位点)的结合来调控靶基因的转录。 调控基因在DNA上的位点一般位于所调控基因的上游。 这种相互作用可以通过两种方式进行: 正(Positive) 转录调控:如果在没有调节蛋白质存在 时基因是关闭的,加入这种调节蛋白质后基因被转录表 达,这样的调控是正转录调控。该调节蛋白称为激活蛋 白。
5、原核生物和真核生物的基因的组织形式差异很 大,细菌的功能相关的结构基因一般成簇(Cluster) 排列,而真核生物的基因则是独立存在。
原核成簇排列的结构基因能受单一启动子共同控 制:结果使整套基因或者表达或者都不表达。
6、 生物遗传信息的概念
10%; 结构基因的编码序列 triplet codon Genome DNA 90%; 重复,间隔,调节序列… 作用:基因选择性表达指令; 重要的遗传信息。
在个体生长全过程,某种基因产物在个体 按不同组织空间顺序出现,称之为基因表达的
空间特异性。
空间特异性实际上是由细胞在器官的分布 决定的,所以空间特异性又称细胞或组织特异 性(cell or tissue specificity)。
二、 基因表达调控的理论与模式
一)、 transcriptional level co tryptophan )
Luxury gene
1)、组成性表达:
指其表达几乎不受环境变动而变化的一类基因。该 类型基因通常被称为管家基因(housekeeping gene)。
2)、适应性表达:
指环境的变化容易使其表达水平变动的一类基因表达。 应环境条件变化,基因表达水平增高的现象称为诱导 (induction),这类基因被称为可诱导的基因(inducible gene)。 如果某种物质能够促使细菌产生某种酶来分解它,这种 物质就是诱导物。(分解代谢)
2、 基因表达的调控的方式:
transcriptional level(转录水平); post—transcriptional level(转录后水平); translational level(翻译水平); post—translational level (翻译后水平)。
转录水平的调控主要发生在起始时期。通常不在转 录延伸阶段进行调控,但可在终止阶段进行调控。
Prok. operon stringent response应急反应 attenuator 衰减子
1、Operon control
(1961 Jacob. & Monod.)