关于红外对管的原理及应用
红外对管_精品文档

红外对管一、简介红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。
红外线在光谱中波长自0。
76至400微米的一段称为红外线,红外线是不可见光线。
所有高于绝对零度(-273、15℃)的物质都可以产生红外线。
现代物理学称之为热射线。
医用红外线可分为两类:近红外线与远红外线。
红外线发射管红外线发射管在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。
根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。
EG:红外线遥控器、光电开关、光电计数设备等。
二、功能说明光敏接收管光敏接收管它是一个具有光敏特征的PN结,属于光敏二极管,具有单向导电性,因此工作时需加上反向电压。
无光照时,有很小的饱和反向漏电流(暗电流)。
此时光敏管不导通。
当光照时,饱和反向漏电流马上增加,形成光电流,在一定的范围内它随入射光强度的变化而增大。
红外线接收管红外线接收管功能与光敏接收管相似只是不受可见光的干扰,感光面积大,灵敏度高,属于光敏二极管,一般只对红外线有反应。
红外线接收头红外线接收头就是在红外线接收管的基础上增加了对微弱信号进行放大的处理的电路,类似与三极管的放大效果。
三、实际应用红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数)1、AD采样实现避障功能针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。
可以考虑采用上面的电路。
100-100k欧姆,是红外接收管在不同光线条件下(室内-阳光直射)的阻值的大小。
在正常的光线下通过IOA0口A、D采集到一个电压值作为一个参考电压。
当随着光线变化时,IOA0口读进来的电压值也就发生变化。
这个使用通过IOA4、IOA5、IOA6、IOA7依次选通,选择最接近参考值的电压作为判断电压。
红外对管使用说明

红外对管使用说明1. 红外对管的概述红外对管(Infrared Detector,简称IR)是一种能够感测红外线辐射并输出电信号的器件。
它在人们日常生活中被广泛应用于红外传感、红外遥控以及红外通信等方面。
本文将对红外对管的原理、使用方法以及注意事项进行详细介绍。
2. 红外对管的工作原理红外对管的工作原理是基于光电效应。
当红外辐射照射到管子的光敏区域时,管子内部产生电压信号。
红外对管内部通常由光敏电阻、电压比较器和输出电路组成。
3. 红外对管的使用方法3.1 连接电路首先,将红外对管的接收端和发送端分别与电路板上的相应引脚连接。
注意在连接时要遵循正确的极性,一般红线为正极,黑线为负极。
3.2 供电红外对管通常需要外部供电,可以通过直流电源或电池进行供电。
确保供电电压与红外对管的额定电压一致,以免损坏设备。
3.3 设置工作模式红外对管一般具有多种工作模式可供选择,例如连续工作模式和脉冲工作模式。
根据需求设置合适的工作模式,并通过电路板上的开关或控制接口进行设置。
3.4 防护措施在使用红外对管时,需要避免与其他光源产生干扰,以免影响正常工作。
同时,要注意保护红外对管的光敏区域不受外界杂光照射,避免误判。
4. 红外对管的应用领域红外对管由于其高灵敏度和快速响应的特点,在很多领域得到广泛应用。
4.1 红外传感红外对管可以用于温度检测、人体感应、烟雾传感等领域。
例如,在智能家居系统中,红外对管可以通过感知人体的红外辐射来实现自动照明和安防监控功能。
4.2 红外遥控红外对管常用于电器遥控器中,通过发送和接收红外信号来实现对电器设备的遥控操作。
用户只需按下遥控器上的按钮,红外对管就能够感应到红外信号并将其转换成电信号,然后通过电路实现相应的功能。
4.3 红外通信红外对管在无线通信领域也有着广泛的应用。
通过发送和接收红外信号,可以实现手机之间的数据传输、电脑与电视之间的文件传输等。
5. 红外对管的注意事项5.1 温度环境红外对管对温度环境比较敏感,应确保在合适的工作温度范围内使用。
红外对管的简单运用

关于红外对管应用于车灯自动校正项目总结目的:车灯就好比人的眼睛,对于车辆来说非常重要。
正常的开启或关闭关乎到车主能否安全驾驶车辆到达目的地。
为驾驶员提供照明,在天气不好或是夜间时候提供良好的视野。
本项目在于运用水平仪器与红外对管相结合,针对车身相对对平面变动时进行自动校正车灯光强分布。
红外对管原理:红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。
红外线发射管也称红外线发射二极管,属于二极管类。
它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。
红外线接收管是将红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接收入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。
红外线接收二极管是在反向电压作用之下工作的。
没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。
当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。
它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。
这种特性称为“光电导”。
红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。
如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。
红外线接收管有两种,一种是光电二极管,另一种是光电三极管。
光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。
因此,光电三极管也分为两种,分别别是NPN型和PNP型。
红外发射管一般有以下几类:按照峰值波长主要为:850nm,870nm,880nm,940nm,980nm就功率而言:850nm>880nm>940nm就价格而言:850nm>880nm>940nm现在市场上使用较多的是850nm和940nm850nm发射功率大,照射的距离较远,主要用于红外监控器材上;而940nm 主要用于家电类的红外遥控器上。
红外对管的原理及应用文库

红外对管的原理及应用文库1. 红外对管的原理红外对管是一种用于检测和接收红外线信号的电子元件。
它基于红外辐射的特性来工作,能够接收并转换红外线信号为电信号。
红外对管通常由发射管和接收管组成。
1.1 发射管原理红外对管的发射管一般是由红外发射二极管构成,它能够将来自电源的电流转换为红外辐射。
红外发射二极管在正向电流流过时会发出红外线,而当没有电流通过时则停止发射红外线。
1.2 接收管原理红外对管的接收管一般是由光敏二极管构成,也称为红外接收二极管。
光敏二极管能够将接收到的红外线转换为电流,当红外线照射到光敏二极管时,它的阻值会发生改变,从而产生电流输出。
2. 红外对管的应用红外对管由于其灵敏度高、反应速度快等特点,在许多领域得到了广泛的应用。
以下是一些常见的红外对管应用:2.1 遥控器红外对管在遥控器中的应用可以说是最为常见的。
遥控器通过发射红外线信号来控制电视、空调、音响等家电产品的开关、音量和频道等功能。
2.2 红外安防系统红外对管也广泛应用于红外安防系统中。
通过将红外对管安装在安防设备中,可以实现对入侵者的感知和监测。
当有人或物体进入监控区域时,红外对管会感受到红外线的变化并触发警报。
2.3 红外测温红外对管在工业领域中的一个重要应用是红外测温。
通过测量物体表面散发出的红外线的强度,可以非接触地测量物体的温度。
这在高温环境下或需要远距离测温的场合十分有用。
2.4 自动门系统红外对管也常被用于自动门系统中。
红外对管可以监测人体或车辆的接近,并触发门的开启或关闭。
这带来了便利性和安全性,避免了人工操作或不必要的接触。
2.5 机器人导航在机器人导航中,红外对管被用于实现避障和位置感知。
机器人通过发射红外线并接收反射回来的信号,从而得知周围环境的信息,并做出相应的动作。
3. 总结红外对管作为一种能够接收和转换红外线信号的电子元件,具有广泛的应用前景。
它在遥控器、红外安防系统、红外测温、自动门系统和机器人导航等领域都有重要的作用。
红外对管的工作原理

红外对管的工作原理
红外对管是一种应用于人体感应和非接触温度测量等领域的红外传感器。
其工作原理如下:
1. 红外辐射检测:红外对管利用其敏感的半导体材料,将被测物体发出的红外辐射转化为电信号。
当被测物体(如人体)的温度不同于周围环境时,会产生不同的红外辐射能量。
2. 热电效应:红外对管内部的红外辐射会导致半导体材料表面温度的变化。
半导体材料具有热电效应,即在温度变化下会产生电势差。
这样,红外辐射所引起的温度变化将转化为电信号。
3. 电信号转换与放大:红外对管的电信号需要经过转换和放大才能被接收器或其他设备处理。
一般来说,红外对管内部会有相应的电路进行信号转换和放大,以使输出信号能够被准确地检测和分析。
4. 接收和处理:放大后的电信号将通过导线传输到接收器或其他设备,以进行后续的处理。
接收器可以根据电信号的强弱、频率等特征,判断被测物体的存在、移动方向、温度等信息。
总的来说,红外对管根据被测物体的红外辐射能量产生相应的电信号,然后通过转换和放大的过程,将这些信号转化为可供分析和处理的形式,以实现人体感应和温度测量等功能。
红外灯管加热原理(一)

红外灯管加热原理(一)红外灯管加热原理•红外灯管是什么?•红外辐射与加热原理•红外灯管加热的优缺点•红外灯管应用领域红外灯管是什么?红外灯管是一种产生红外线的器件,它主要由灯丝、气体和外管组成。
其中,灯丝加热后会发射电子,经过气体后产生电离,从而产生红外辐射。
红外灯管一般具有较高的热效率。
红外辐射与加热原理红外辐射是一种电磁波辐射,具有比可见光更长的波长。
由于其能够穿透空气和透明物质,因此可以将其用于加热、干燥、烤烟等行业。
红外辐射主要通过吸收和反射来进行加热。
物体吸收红外辐射后,其分子将产生振动,由此产生温度升高。
红外灯管加热的优缺点红外灯管加热具有以下优点:1.加热速度快2.加热均匀3.节能环保4.无需预热但同时也存在以下缺点:1.灯管易受损2.加热范围较小3.加热功率不可调节红外灯管应用领域由于红外灯管的加热速度快、加热均匀、节能环保等优势,因此广泛应用于以下行业:1.食品加工行业2.印刷行业3.冶金行业4.纺织行业5.塑料加工行业总之,红外灯管在现代工业生产中起到了不可替代的作用,未来还有广阔的应用前景。
如何选择合适的红外灯管?在选择红外灯管时,需要考虑以下几点:1.加热功率:根据加热需求选择适当的加热功率。
2.加热范围:根据加热物体的大小选择适当的灯管长度。
3.寿命:选择寿命长、质量可靠的品牌产品。
4.安全性:注意选择防水、防爆、防腐蚀等功能较好的产品。
综上所述,红外灯管作为一种高效、节能、环保、安全的加热方式,被广泛应用于各个行业中。
但是,在使用过程中也需要注意安全问题。
红外发射接收对管的资料

红外发射接收对管的资料红外线传感器原理:红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。
任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。
红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。
红外线传感器包括光学系统、检测元件和转换电路。
光学系统按结构不同可分为透射式和反射式两类。
检测元件按工作原理可分为热敏检测元件和光电检测元件。
热敏元件应用最多的是热敏电阻。
热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。
光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。
红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。
例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。
红外线特点:人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
红外线传感器依动作可分为:(1) 将红外线一部份变换为热,藉热取出电阻值变化及电动势等输出信号之热型。
(2) 利用半导体迁徙现象吸收能量差之光电效果及利用因PN 接合之光电动势效果的量子型。
热型的现象俗称为焦热效应,其中最具代表性者有测辐射热器 (Thermal Bolometer),热电堆(Thermopile)及热电(Pyroelectric)元件。
红外对管的工作原理及应用

红外对管的工作原理及应用一、工作原理红外对管是一种常见的红外传感器,其工作原理基于半导体材料的光电效应。
具体而言,红外对管由发射器和接收器组成。
1. 发射器发射器通常使用红外发光二极管(LED),其外部电流通过二极管,将电流转化为红外光。
红外光具有较高的频率和短波长,适用于传感器应用。
2. 接收器接收器是由光敏电阻构成的。
当红外光照射到光敏电阻上时,光敏电阻的电阻值会发生变化。
接收器将这个变化转化为电信号,供后续电路处理。
3. 工作方式红外对管的工作原理是利用发射器发射红外光,接收器接收红外光,并将接收到的光信号转化为电信号。
通过测量接收到的红外光的强度变化,可以检测到外部的物体或者障碍物。
二、应用领域红外对管由于其便捷和灵敏的特点,被广泛应用于各个领域。
以下是一些典型的应用领域:1. 运动检测与安防红外对管可以用于运动检测和安防系统。
当有物体靠近或者经过红外对管时,接收器接收到的红外光信号强度会发生变化,从而触发警报或者相应的反应。
2. 手势识别红外对管也可以用于手势识别。
通过分析接收器接收到的红外光信号强度的变化,可以识别手势的动作,实现例如控制电视、音响等家电的功能。
3. 自动照明红外对管还可以用于自动照明系统。
通过检测到人体的存在,红外对管可以根据实际需求来自动开启或关闭照明设备,实现节能的效果。
4. 自动门窗在一些公共场所,如商场、机场等,红外对管也常常被用于自动门窗的控制。
当有人靠近时,红外对管感应到信号的变化,从而触发门窗的打开或关闭。
5. 温度测量通过调整红外对管的特定指标,还可以将其用于温度测量。
当红外对管接收到物体所发射的红外光时,可以通过测量其信号的强度,来估计物体的温度。
三、总结红外对管是一种常见的红外传感器,其工作原理基于半导体材料的光电效应。
通过发射器发射红外光、接收器接收红外光,并将接收到的光信号转化为电信号,可以实现对物体或障碍物的检测。
由于其广泛应用于运动检测、手势识别、自动照明、自动门窗等领域,红外对管在现代科技中具有重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简介与说明:红外线接收管就是在LED行业中命名的,就是专门用来接收与感应红外线发射管发出的红外线光线的。
一般情况下都就是与红外线发射管成套运用在产品设备当中。
详细可参阅:广州市光汇电子有限公司的产品说明。
特征与原理: 红外线接收管就是将红外线光信号变成电信号的半导体器件,它的核心部件就是一个特殊材料的PN结,与普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。
红外线接收二极管就是在反向电压作用之下工作的。
没有光照时,反向电流很小(一般小于0、1微安),称为暗电流。
当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。
它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。
这种特性称为“光电导”。
红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。
如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。
分类: 红外线接收管有两种,一种就是光电二极管,另一种就是光电三极管。
光电二极管就就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。
因此,光电三极管也分为两种,分别别就是NPN型与PNP型。
作用: 红外接收管的作用就是进行光电转换,在光控、红外线遥控、光探测、光纤通信、光电耦合等方面有广泛的应用。
如何选择红外线接收管:红外线最重要的参数就就是光电信号的放大倍率,一般的有1000-1300 1300-1800 1800-2500,这些对灵敏度有决定作用。
红外对管就是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。
红外线
在光谱中波长自0、76至400微米的一段称为红外线,红外线就是不可见光线。
所有高于绝对零度(-273、15℃)的物质都可以产生红外线。
现代物理学称之为热射线。
医用红外线可分为两类:近红外线与远红外线。
红外线发射管
红外线发射管在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。
根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备、875NM主要用于医疗设备、940NM波段的主要用于红外线控制设备。
EG:红外线遥控器、光电开关、光电记数设备等。
编辑本段功能说明
光敏接收管
光敏接收管
它就是一个具有光敏特征的PN结,属于光敏三极管,具有单向导电性,因此工作时需加上反向电压。
无光照时,有很小的饱与反向漏电流(暗电流)。
此时光敏管不导通。
当光照时,饱与反向漏电流马上增加,形成光电流,在一定的范围内它随入射光强度的变化而增大。
红外线接收管
红外线接收管
功能与光敏接收管相似只就是不受可见光的干扰,属于光敏二极管,只对红外线有反应。
红外线接收头
红外线接收头
就就是在红外线接收管的基础上进行放大的信号的作用,类似与三极管的放大效果。