迈克尔逊干涉仪

合集下载

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。

2、观察等倾干涉和等厚干涉条纹,加深对干涉现象的理解。

3、学会使用迈克尔逊干涉仪测量光波的波长。

二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示:此处可插入迈克尔逊干涉仪光路图光源 S 发出的光经过分光板 G1 分成两束光,一束光反射后到达反射镜 M1,另一束光透射后到达反射镜 M2。

两束光分别被 M1 和 M2反射后,再次回到分光板 G1,并在观察屏 E 处相遇发生干涉。

当 M1 和 M2 严格垂直时,观察到的是等倾干涉条纹。

此时,两束光的光程差为:$\Delta = 2d\cos\theta$其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 或 M2 法线的夹角。

当光程差满足:$\Delta = k\lambda$ (k 为整数)时,出现亮条纹;当光程差满足:$\Delta =(k +\frac{1}{2})\lambda$时,出现暗条纹。

当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。

此时,两束光的光程差主要取决于 M1 和 M2 之间的距离变化。

三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。

四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪处于水平状态。

调节 M1 和 M2 背后的三个微调螺丝,使 M1 和 M2 大致垂直。

打开 HeNe 激光器,使激光束经过扩束镜后均匀地照射在分光板G1 上,并在毛玻璃屏上看到清晰的光斑。

调节 M1 或 M2 的位置,使屏上出现圆形的等倾干涉条纹。

2、观察等倾干涉条纹仔细调节 M1 或 M2 的位置,使干涉条纹清晰、对比度高。

观察条纹的形状、疏密和级次分布,记录条纹的变化情况。

3、测量光波波长沿某一方向缓慢移动 M1,观察条纹的“冒出”或“缩进”现象,并记录条纹变化的条数 N 和 M1 移动的距离Δd。

迈克尔逊干涉仪实验原理

迈克尔逊干涉仪实验原理

迈克尔逊干涉仪实验原理迈克尔逊干涉仪是一种利用干涉现象测量光波长、折射率、透明薄膜厚度和其他光学参数的仪器。

它由美国物理学家迈克尔逊于1881年发明,被广泛应用于精密测量和科学研究领域。

迈克尔逊干涉仪的实验原理基于干涉现象,通过光的干涉来实现精确的测量,下面我们来详细了解一下迈克尔逊干涉仪的实验原理。

首先,迈克尔逊干涉仪由光源、分束镜、反射镜、反射镜、透明样品和接收屏幕组成。

当光源发出的平行光束通过分束镜后,会被分成两束光线,一束直接射向反射镜,另一束射向透明样品。

透明样品可以是待测的物体,也可以是用来测量光波长的标准样品。

两束光线分别被反射镜反射后再次汇聚在接收屏幕上,形成干涉条纹。

其次,根据迈克尔逊干涉仪的实验原理,干涉条纹的位置与光程差有关。

光程差是指两束光线在传播过程中所经历的光程差异。

当两束光线相遇时,如果它们的光程差是波长的整数倍,就会产生明显的干涉条纹。

通过测量干涉条纹的位置,可以推导出光波长、透明样品的折射率和厚度等参数。

再次,迈克尔逊干涉仪的实验原理还可以用来测量光源的稳定性和光学元件的质量。

通过观察干涉条纹的变化,可以判断光源的频率稳定性和光学元件的表面平整度。

这对于精密测量和光学研究具有重要意义。

最后,迈克尔逊干涉仪的实验原理在科学研究和工程应用中发挥着重要作用。

它不仅可以用来测量光学参数,还可以用来研究光的波动性质和光学材料的特性。

在现代科学技术领域,迈克尔逊干涉仪被广泛应用于光学仪器的校准、精密测量和光学元件的质量检测。

总之,迈克尔逊干涉仪的实验原理基于光的干涉现象,通过测量干涉条纹的位置来实现精确的光学参数测量。

它在科学研究和工程应用中具有重要作用,为光学领域的发展做出了重要贡献。

希望本文对迈克尔逊干涉仪的实验原理有所帮助,谢谢阅读!。

《迈克尔逊干涉仪》课件

《迈克尔逊干涉仪》课件

提高测量精度的措施
使用高精度仪器
选择加工精度高、装配精度高的迈克 尔逊干涉仪,能够减少仪器本身带来 的误差。
细致调整
在实验前对迈克尔逊干涉仪进行细致 的调整,确保干涉条纹完全对齐,以 减小调整误差的影响。
控制环境因素
尽可能在恒温、无气流和振动的环境 中进行实验,以减小环境因素对实验 结果的影响。
重复测量
等方面将更加智能化和自动化。
03
多功能化与拓展应用
未来迈克尔逊干涉仪将进一步拓展应用领域,不仅局限于光学和物理学
,还将应用于化学、生物学等领域,实现更多功能和应用。
THANKS
感谢观看
折射率测量
迈克尔逊干涉仪可以用于测量介质的 折射率,这对于光学玻璃、晶体等材 料的检测和表征具有重要意义。通过 干涉仪测量折射率,可以获得高精度 的结果。
光学玻璃的检测
光学玻璃的折射率
迈克尔逊干涉仪可以用于检测光学玻璃的折射率,这对于光学仪器的制造和校准具有关键作用。通过干涉仪测量 折射率,可以确保光学元件的性能和精度。
光学玻璃的均匀性
迈克尔逊干涉仪还可以用于检测光学玻璃的均匀性,即检查玻璃内部是否存在杂质或气泡。通过观察干涉条纹的 变化,可以判断玻璃的质量和加工工艺。
物理实验中的重要工具
基础物理实验
迈克尔逊干涉仪是许多基础物理实验的重要工具,如光速的测量、光的波动性研究等。通过使用迈克 尔逊干涉仪,学生可以深入理解光的干涉原理和波动性质。
暗物质与暗能量研究
迈克尔逊干涉仪可以用于寻找暗物质和暗能量的线索,帮助解决宇宙 学中的重大问题。
迈克尔逊干涉仪在技术领域的应用前景
1 2 3
量子信息技术
迈克尔逊干涉仪是量子通信和量子计算中的关键 组件,对于量子密钥分发和量子纠缠态的制备具 有重要意义。

迈克尔逊干涉仪

迈克尔逊干涉仪
动手轮只能向一个方向转动,中途不能反向。
➢ 数条纹变化数目过程中,若因震动出现条纹抖动 难以辨认时,应暂停数条纹数,待稳定后再继续 数。
问题讨论
1、本实验是用什么方法处理数据的?此法 有何优点?
答:是用逐差法处理数据的。优点为:可 以充分利用数据,体现出多次测量的优点, 减小了测量误差。
问题讨论
i0
级次K越大。
圆心处,i 0
2d
K 2d
光程差的改变
两相干光束在空间完全分开,可用移动反射镜的方法改变两 光束的光程差.
M'2 M1
d
d
移动反射镜
d K
2
M1

干涉
G1
G2
M2
动 距

条纹 移动 数目
等倾干涉圆环的特点
2、随距离d增大,条纹变密
K级明纹: 2d cosik K K+1级明纹: 2d cosik1 (K 1)
当光源是扩展光源时,不论是 等倾干涉还是等厚干涉,所产 生的干涉条纹都有一定位置,
这些干涉称为定域干涉。
当光源是点光源时,凡是两束光相 遇处都可看到干涉条纹,这些干涉
称为非定域干涉。
点光源产生的非定 S1 域干涉计算示意图
i
S2
d
M1
M2'
S
G1
G2
RA O
E
光程差为:
2d S A S A
1
问题讨论
4、调节非定域干涉条纹时,若观察到的条 纹又细又密是何原因?如何调节使条纹 变得又粗又稀?
5、简述本实验所用干涉仪的读数方法。 6、怎样利用干涉条纹的“涌出”和“陷入”
来测定光波的波长?
干涉条纹

迈克尔逊干涉仪.

迈克尔逊干涉仪.
24 取前两项 , 可将式(1)改写成

L2

R2
1Leabharlann 2Ld d 2 L2 R2

1 16L2d 2 8 L2 R2


2Ld L2 R2
1
dR2
L( L2

R
2
)

由上图的三角关系,上式可改写为


2d (cos ) 1
d L
sin
1)

2
,
干涉减弱
获得相干光光源的两种常见方法
1.分波阵面法:从同一波阵面上获取对等的两 部分作为子光源成为相干光源;如杨氏实验等。
2.分振幅法:当一束光投射到两种介质的分界 面时,它的所有的反射光线或所有的透射光线会 聚在一起时即可发生相干;如薄膜干涉等。
三 实验原理
1. 仪器结构
反射镜 M1
二 预备知识
相干条件:两束光满足频率相同,振动方向相 同,相位差恒定时即可成为相干光源。
这时的光强应表达为:
I I1 I2 2 I1I2 cos(20 10 )

20 10
2k
干涉加强
20 10 (2k 1) 干涉减弱
光程:光波实际传播的路径与折射率的乘积。
强度足够大的
点光源。
S
θ
S2
d
M1
M2'
G1
G2
M2
L
RA O
E
由S1S2到屏上任一点A,两光线的光程差为
s2 A s1A
(L 2d )2 R2 L2 R2


L2 R2

4Ld 4d 2

迈克尔逊干涉仪

迈克尔逊干涉仪

实验原理
4.点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和 M 1 M 2 间空气薄膜所产生的干涉图样是同样的。 如图,点光源经M1、M2反射后,相当于 两个虚光源,它们发出的球面波在相遇空 间处处相干,等光程面是一组旋转双曲面, 干涉条纹就是旋转双曲面与观察屏相交而 得的曲线,因在光场中任何位置都可看到 条纹,故叫做非定域干涉。
M'2 M1
移动反射镜
d
d
d k
M 移 1
动 距 离
2Βιβλιοθήκη G1G2M2
干涉条 纹移动 数目
干涉条纹的移动
当 M1与 M 2之间距离变大时 , 圆形干涉条纹从中心一个个长出, 并 向外扩张, 干涉条纹变密; 距离变小 时,圆形干涉条纹一个个向中心缩进, 干涉条纹变稀 .
M'2 M1
光程差

实验原理
3. 扩展光源产生的定域干涉条纹
当M1、M2‘平行时将产生等倾干涉。 光束(1)和光束(2)的光程差为 2d cos i i为光线的入射角,d为空气层的厚度。 当 2d cos i k 时可以看到亮条纹。空气薄层厚度d一定时,入射角越小, 及越靠近中心,圆环条纹的级数k越高。并且移动M1(即d 发 生变化)时,中心处条纹级数随之变化,可观察到条纹由中 心“冒出”或“缩入”,而每当中心处“冒出”或“缩入” 一个条纹,d就增加或减少λ/2,即M1就移动了λ/2。 Δd=Nλ,由此可根据M1移动的距离Δd及条纹级数改变的次 数N,来测出入射光的波长。
实验现象
M1
M1
M2
'
M2 '
M 2 与 M1
重合
'
M2 '

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告引言迈克尔逊干涉仪是一种利用光的干涉现象测量间距的仪器。

它是由美国物理学家亚伯拉罕·迈克尔逊于1881年发明的。

迈克尔逊干涉仪广泛应用于光学、激光技术、光纤通信等领域。

本实验旨在通过搭建迈克尔逊干涉仪并进行实验,了解其原理和应用。

实验设备•He-Ne氦氖激光器•1/10波片•片玻璃•半反射膜•波长计•读数显微镜•测距器实验原理迈克尔逊干涉仪利用光的波动性和波的干涉原理进行测量。

它由一个分束器、一面半反射镜、两面平行平板镜和一个光源组成。

光源发出的光经过分束器分为两束,一束经过半反射镜反射,另一束直接透射,然后它们分别在两面平行平板镜上反射,并最后再次汇聚在一起。

当两束光相遇时,会产生干涉现象。

通过调节其中一个平板镜的位置,可以使反射光程差发生变化,从而观察到干涉现象的变化。

实验步骤1.搭建迈克尔逊干涉仪。

安装好分束器、半反射镜和两面平行平板镜,并精确调整位置和方向。

2.打开He-Ne氦氖激光器,并调整光源位置和方向,使得光能够正常通过分束器。

3.将1/10波片放置在半反射镜旁边的光路上,调整它的角度,使得一部分光能够通过。

4.在反射光路上插入片玻璃,观察干涉条纹。

5.通过调整其中一个平板镜的位置,改变反射光程差,观察干涉条纹的变化。

6.使用读数显微镜和测距器,测量不同光程差下的干涉条纹的移动和位置。

实验结果与分析在实验中,我们观察到了干涉条纹的变化。

随着平板镜位置的调整,干涉条纹的位置发生了移动。

通过测量不同光程差下的干涉条纹的移动,我们得到了一组数据。

根据这组数据,我们可以计算出光的波长。

结论通过利用迈克尔逊干涉仪进行实验,我们成功观察到了干涉条纹的变化,并进行了测量。

实验结果证实了迈克尔逊干涉仪的原理,并且得到了光的波长的计算值。

迈克尔逊干涉仪在光学和激光技术中有着广泛的应用,了解和掌握它的原理和使用方法对于进一步研究和应用光学技术具有重要意义。

参考文献1.Smith, Robert W. (1998).。

迈克尔逊干涉仪

迈克尔逊干涉仪
参数及性能指标
动镜移动精度(微调):0.0004mm动镜移动精度(粗调):0.01mm
动镜移动距离(微调):1mm动镜移动距离(粗调):12mm
分束板和补偿板平面度:≤1/20λ激光输出功率:0.8-1mW
仪器成套性
迈克尔逊干涉仪主机、He-Ne激光器、一维可调升降底座等
可选附件
低压钠灯、白光源、法布里珀罗标准具、气室部件(气室、压力表、压气球)
大调距反光镜
迈克尔逊干涉仪的使用注意:
干涉仪是精密光学仪器,使用中不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。测量时还要认真做到:
1.在调整反射镜背后粗调螺钉时,不可旋得太紧,用来防止镜面的变形,先要把微调螺钉调在中间位置,以便能在两个方向上作微调,一定要轻、慢,决不允许强扳硬扭。
大调距反光镜
包括:法布里-珀罗多光束系统
(3)产品型号:WSM-200
产品特点:动镜定镜二维调节,演示和观察干涉现象,
动镜范围200mm
测定单色光波长,最小读数0.0001mm
大调距反光镜
(4)产品型号:WSM-100
产品特点:动镜定镜二维调节,演示和观察干涉现象,
动镜范围100mm
测定单色光波长,最小读数0.0001mm
经M2反射的光三次穿过分光板,而经M1反射的光通过分光板只一次。补偿板的设置是为了消除这种不对称。在使用单色光源时,可以利用空气光程来补偿,不一定要补偿板;但在复色光源时,由于玻璃和空气的色散不同,补偿板则是不可或缺的。
应用:
主要用于长度和折射率的测量,在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 3-16-1 光路图迈克尔逊干涉仪姓名:祝文 学院:第一临床医学院 班级:麻醉131班 学号:6301613030一.实验目的(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法;(2)学习一种测定光波波长的方法,加深对等倾、等厚干涉的理解。

二. 实验仪器迈克尔逊干涉仪、He-Ne 激光器。

三.实验原理迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson )和莫雷(E.W.Morley )合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。

用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。

后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。

1.干涉仪的光学结构迈克尔逊干涉仪的光路和结构如图3-16-1与3-16-2所示。

M 1、M 2是一对精密磨光的平面反射镜,M 1的位置是固定的,M 2可沿导轨前后移动。

G 1、G 2是厚度和折射率都完全相同的一对平行玻璃板,与M 1、M 2均成45°角。

G 1的一个表面镀有半反射、半透射膜A ,使射到其上的光线分为光强度差不多相等的反射光和透射光;G 1称为分光板。

当光照到G 1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M 1,经M 1反射后,透过G 2,在G 1的半透膜上反射后射向E ;反射光(2)射到M 2,经M 2反射后,透过G 1射向E 。

由于光线(2)前后共通过G 1三次,而光线(1)只通过G 1一次,有了G 2,它们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G 2称为补偿板。

当观察者从E 处向G 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。

于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1´~M 2间“形成”的空气薄膜的干涉等效。

反射镜M 2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。

M 2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。

通过读数窗口,在刻度盘(3)上可读到0.01mm ;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm 。

可估读到10-5mm 。

M 1、M 2背面各有3个螺钉可以用来粗调M 1和M 2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。

2. 单色点光源的非定域干涉本实验用He-Ne 激光器作为光源(见图3-16-3),激光通过短焦距透镜L 汇聚成一个强度很高的点光源S ,射向迈克尔逊干涉仪,点光源经平面镜M 2、M 2反射后,相当于由 两个点光源S 1ˊ和S 2ˊ发出的相干光束。

S ˊ是S 的等效光源,是经半反射面A 所成的虚像。

S 1′是S ′经M 1′所成的虚像。

S 2′是S ′经M 2所成的虚像。

由图3-16-3可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象,故这种干涉称为非定域干涉。

如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图3-16-4可以看出P 0处的光程差Δ=2d ,屏上其它任意点P ′或P ″的光程差近似为ϕcos 2d =∆ (3-16-1)式中ϕ为S 2′射到P ″点的光线与M 2法线之间的夹角。

当λϕk d =⋅cos 2时,为明纹;当2/)12(cos 2λϕ+=⋅k d 时,为暗纹。

由图3-16-4可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。

由(3-16-4)式可知ϕ=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。

当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。

1— 微调手轮;2— 粗调手轮;3— 刻度盘;4— 丝杆啮合螺母;5— 毫米刻度尺;6— 丝杆;7— 导轨;8— 丝杆顶进螺帽;9— 调平螺丝;10—锁紧螺丝;11—可动镜M 2;12—观察屏;13—倾度粗调;14—固定镜M 1;15—倾度微调;16—倾度微调;17—G 1、G 2图 3-16-2 迈克尔逊干涉仪结构图由明纹条件可知,当干涉环中心为明纹时,Δ=2d=k λ。

此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。

若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有2λN d =∆N l l N d )(2221-=∆=λ (3-16-2)式中21l l 、分别为M 2移动前后的位置读数。

实验中只要读出21l l 、和N ,即可由(3-16-2)式求出波长。

由明纹条件推知,相邻两条纹的角间距为 ϕλϕλϕd d 2sin 2-≈-=∆当d 增大时ϕ∆变小,条纹变细变密;当d 减小时ϕ∆增大,条纹变粗变疏。

所以离环心近处条纹粗而疏,离环心远处条纹细而密。

图 3-16-4 电光源产生的等倾干涉条纹图 3-16-3 点光源干涉光路图四.应用及前景1. 微小位移量和微振动的测量:采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。

He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度。

2.角度测量:依照正弦原理改型设计迈克尔逊干涉仪,可以完成小角度测量。

仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。

被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。

在王贵甫等人设计的角度测量仪中,两个反射镜都是平面镜,但动镜被固定到一个转台上,通过转台将转动角位移转换成迈克尔逊测长仪能够测量的线位移。

从而把角度旋转转变为位移移动,从而用干涉仪测出角度的变化。

3.薄透明体的厚度及折射率的同时测量:目前各大学使用迈克尔逊干涉仪只测量已知厚度的薄膜的折射率或已知薄膜的折射率再测量它的厚度,赵斌经研究得出:可同时测量薄透明体厚度及折射率。

其方法是:在不放薄膜时调出白光干涉条纹,而后插入透明薄膜,在薄膜与光线垂直时调出白光干涉条纹后,记录此时动镜移动的距离,再将薄膜偏转α角(45°比较方便),再调出白光干涉条纹,再记录动镜移动的距离。

通过动镜这两次移动的距离和薄膜的偏转角,就可以同时计算出待测薄膜的厚度和折射率。

4.气体浓度的测量:在迈克尔逊干涉仪的参考光路中,放入一个透明气体室,利用白炽灯做光源,在光程差为零的附近观察到对称的几条彩色条纹,中间的黑色条纹是等光程(Δ=0)精确位置。

利用通入气体前后等光程位置的改变量,计算出气体的折射率,再利用气体的折射率与气体浓度的关系,计算出气体浓度。

5.引力波探测(超大型迈克尔逊干涉仪):引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。

目前还没有直接证据来证明引力波的存在。

目前,许多科学家正致力于利用激光干涉引力波探测仪来探测引力波。

该仪器的主体是一台激光迈克尔逊干涉仪。

在无引力波存在时,调整臂长使从互相垂直的两臂返回的两束相干光在分光镜处相干减弱,输出端的光电二极管接收的是暗纹,无输出信号。

引力波的到来会使一个臂伸长另一臂缩短,使两束相干光有了光程差,破坏了相干减弱的初始条件,光电二极管有信号输出,该信号的大小与引力波的强度成正比。

20世纪90年代中期,华盛顿州的Hanford和路易斯安娜州的Livingston开始建造引力波探测站,并于21世纪初相继建成臂长4000米、2000米的激光干涉仪引力波探测仪。

据估计,引力波探测极有可能在今后10-20年内取得重大突破。

6.光纤迈克尔逊干涉仪的应用:(1)混凝土内部应变的测量:(2)地震波加速度的测量;(3)温度的测量,透明液体、固体折射率或与折射率相关的浓度的测量。

7.作为其它仪器的核心部分,如傅里叶红外吸收光谱仪、干涉成象光谱技术、光学相干层析成像系统、微型集成迈克尔逊干涉仪等。

8.迈克尔逊干涉仪在其它方面的应用:利用等厚干涉条纹测量微光的调制传递函数MTF:利用迈克尔逊干涉仪产生一系列空间频率的等厚干涉条纹来模拟分辨率板的作用,在计算机的控制下,自动测量出连续的MTF曲线。

给出的实验光路和实验结果表明,利用干涉条纹测量微光的MTF是一种可行的简便方法,在计算机的控制下,可快速完成夜视仪的传递函数测量。

利用迈克尔逊干涉仪测量光学球面的曲率半径:利用迈克尔逊干涉仪的白光干涉零级暗条纹测出平面与被测球面相交的圆直径及相应的高值后,便可求得球面曲率半径.测量过程中无测量力的影响,也不会损坏被测件表面,而且测量时对被测件安装定位无特殊要求,误差环节少,具有实用意义。

超短脉冲激光测量的标定方法利用迈克尔逊干涉光路的相对光程差,产生已知时间间隔,作为时间基准对皮秒、飞秒激光脉冲的测量进行了标定。

相关文档
最新文档