植物叶色突变体
江苏省南通市2024-2025学年高二上学期10月调研测试 生物含答案

2024-2025(上)高二十月份调研测试生物学试卷(答案在最后)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共8页,包含单项选择题(第1题~第15题,共30分)、多项选择题(第16题~第19题,共12分)、非选择题(第20题~第24题,共58分)三部分。
本次考试满分为100分,考试时间为75分钟。
考试结束后,请将答题卡交回。
2.答题前,请您务必将自己的姓名、考试号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上。
3.请认真核对答题卡表头规定填写或填涂的项目是否准确。
4.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案。
5.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚。
一、单项选择题:本部分包括15题,每题2分,共计30分。
每题只有一个选项最符合题意。
1.研究人员在研究水稻叶片颜色时,发现了叶片黄色突变体。
相关叙述正确的是()A.常用层析液提取水稻叶片叶绿体中的色素了解其种类和含量B.突变体水稻黄色叶片中的色素只能吸收红光和蓝紫光C.突变体水稻的根细胞主动吸收Mg2+用于合成的叶黄素增多D.黄色突变体光能转变为活跃化学能效率下降从而影响光合作用2.下列有关光合作用过程及研究历程的相关叙述,错误的是()A.离体叶绿体在适当条件下发生水的光解、产生氧气的化学反应称作希尔反应B.鲁宾和卡门用18O分别标记H2O和CO2有力地证明了CO2是光合作用的原料C.用H218O培养小球藻,一段时间后可在其产生的糖类和氧气中检测到18OD.菠菜叶肉细胞中光反应产生的ATP和NADPH从类囊体运到叶绿体基质被利用3.下列对四种微生物能量代谢相关的叙述,正确的是()A.硝化细菌是自养型微生物,利用CO2合成有机物的能源来自光能B.蓝细菌是自养型微生物,产生ATP的场所主要有线粒体和叶绿体C.酵母菌是异养型微生物,所需的能源主要来自葡萄糖的氧化分解D.乳酸菌是异养型微生物,所需的能源主要来自乳酸的氧化分解4.下表为细胞呼吸底物、生成物及能量之间的对应关系。
玉树白化叶片返绿过程中Rubisco 活性变化

玉树白化叶片返绿过程中Rubisco 活性变化作者:李小玉,吴哲,田晓东,等来源:《山西农业科学》 2015年第1期树白化叶片返绿过程中Rubisco活性变化李小玉,吴哲,田晓东,张璐,张琼姝,王斌,张小民(山西大学生命科学学院,山西太原 030006)摘要:用酶标仪分析了玉树(Crassula arborescens)全白叶片在复绿过程中Rubisco 活性和可溶性蛋白含量的变化。
结果表明,玉树全白期Rubisco活性和可溶性蛋白含量较全绿时期弱,但白化叶片仍可进行光合作用;在复绿过程中,玉树全白叶片Rubisco活性和可溶性蛋白含量逐步升高。
说明玉树全白叶片具有光合作用能力,可以存活,具有观赏价值。
随着叶片色素含量的增加,叶绿体光合作用逐渐增强,叶片内光合产物逐步积累,进而促进植株体内生命能量物质和可溶性蛋白的增加。
通过Rubisco活性的变化来判断玉树白化叶的固碳能力、存活能力和实用价值,可为叶片白化机理的研究提供理论依据。
关键词:玉树;白化;Rubisco活性;可溶性蛋白中图分类号:S687文献标识码:A文章编号:1002-2481(2015)01-0017-04白化(albino)是植物叶色突变体的常见类型之一,其最典型的特征是叶绿体不能正常发育。
大部分白化苗缺乏叶绿素,不能正常进行光合作用,幼苗依靠种子中的胚乳营养而生长,当胚乳耗尽时植株就会死亡,导致植株苗期表现出致死效应,在实际生产中没有什么实用价值[1]。
然而,近年来育种学家也发现一些白化突变体能够存活,它是众多白化突变体中较为特殊的一类,如白化转绿突变体(Green revertible albino mutant,GRA),这类突变体在一定条件下白化失绿,待条件改变后可以恢复绿色,继续生长发育完成整个生育进程[2]。
在实际生产中,如果将其应用于园艺作物的培育,由于叶片颜色的多样性,可以给培育者带来一定的经济价值。
基于此原因,许多学者对其进行了引种[3]。
BSA_联合转录组分析发掘西瓜叶片黄化候选基因

江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2024ꎬ40(1):165 ̄173http://jsnyxb.jaas.ac.cn张朝阳ꎬ程㊀瑞ꎬ徐兵划ꎬ等.BSA联合转录组分析发掘西瓜叶片黄化候选基因[J].江苏农业学报ꎬ2024ꎬ40(1):165 ̄173.doi:10.3969/j.issn.1000 ̄4440.2024.01.018BSA联合转录组分析发掘西瓜叶片黄化候选基因张朝阳ꎬ㊀程㊀瑞ꎬ㊀徐兵划ꎬ㊀顾㊀妍ꎬ㊀黄大跃ꎬ㊀孙玉东(江苏徐淮地区淮阴农业科学研究所/淮安市设施蔬菜重点实验室ꎬ江苏淮安223001)收稿日期:2022 ̄11 ̄28基金项目:淮安市农业科学研究院发展基金项目(HAN201714)ꎻ淮安市自然科学研究技术专项(HAB202079)ꎻ国家西甜瓜产业技术体系淮安综合试验站项目(CARS ̄25)作者简介:张朝阳(1982-)ꎬ男ꎬ江苏连云港人ꎬ硕士ꎬ副研究员ꎬ从事西甜瓜遗传育种研究ꎮ(E ̄mail)287362703@qq.comꎮ程瑞为共同第一作者ꎮ通讯作者:孙玉东ꎬ(E ̄mail)sunyudong@jaas.ac.cn㊀㊀摘要:㊀叶片是植物重要的功能器官之一ꎬ不仅是植株进行光合作用的主要场所ꎬ也可作为重要的形态标记ꎬ应用于育种中ꎮ叶片颜色作为形态标记ꎬ不仅可用于苗期杂种的清除ꎬ亦可用于种子纯度的测定ꎮ以西瓜全生育期叶片黄化突变体纯合自交系ly104为母本(P1)㊁绿叶自交系w3为父本(P2)ꎬ通过杂交创制F1代㊁F2代㊁BC1代群体ꎮ遗传分析结果表明ꎬ该突变体的叶片黄化由单隐性基因控制ꎮ采用混合分组分析(BSA)进行初定位ꎬ通过简化基因组测序(RAD)开发全基因组单核苷酸多态性(SNP)标记构建西瓜高密度遗传图谱ꎬ将西瓜叶片黄化基因定位于2号染色体13950306~15517591bp(大小约为1 57Mb)ꎮ以西瓜97103v2为参考基因组ꎬ该区间包含24个注释基因ꎮ对P1(P1Y)㊁P2(P2G)和F2代群体中黄叶(F2Y)㊁绿叶(F2G)株系进行转录组水平分析ꎬ结果表明ꎬ目标区间内基因Cla97C02G035950㊁Cla97C02G036010㊁Cla97C02G036020㊁Cla97C02G036060在黄化叶片与正常绿叶材料中的表达量差异显著ꎬ可能是西瓜叶片的黄化候选基因ꎮ研究结果可为进一步解析西瓜叶片黄化基因功能和生物学特性奠定重要基础ꎮ关键词:㊀西瓜ꎻ黄化ꎻBSAꎻ遗传图谱ꎻ基因定位中图分类号:㊀S651.01㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2024)01 ̄0165 ̄09IdentificationofcandidategenesforwatermelonleafyellowingbasedonBSAandtranscriptomeanalysisZHANGChao ̄yangꎬ㊀CHENGRuiꎬ㊀XUBing ̄huaꎬ㊀GUYanꎬ㊀HUANGDa ̄yueꎬ㊀SUNYu ̄dong(HuaiyinInstituteofAgriculturalSciencesoftheXuhuaiDistrictofJiangsuProvince/HuaianKeyLaboratoryforFacilityVegetablesꎬHuaian223001ꎬChina)㊀㊀Abstract:㊀Theleafisoneoftheimportantfunctionalorgansofplants.Itisnotonlythemainplaceforphotosynthesisofplantsꎬbutalsocanbeusedasanimportantmorphologicalmarkerinbreeding.Asamorphologicalmarkerꎬleafcolorcanbeusednotonlyforremovinghybridsattheseedlingstageꎬbutalsofordeterminingseedpurity.InthisstudyꎬF1ꎬF2ꎬandBC1populationswerecreatedbyhybridizationꎬandthemutanthomozygousinbredlinely104inthewholegrowthperiodofwatermelonwasusedasthefemaleparent(P1)ꎬandthegreenleafinbredlinew3wasusedasthemaleparent(P2).Geneticanalysisshowedthatleafyellowingwascontrolledbyasinglerecessivegene.Thebulkedsegregantanalysis(BSA)wasusedforprimarymappingꎬandgenome ̄widesinglenucleotidepolymorphism(SNP)markersweredevelopedbyrestriction ̄siteassociatedDNA ̄sequencing(RAD)toconstructahigh ̄densitygeneticmapofwatermelon.Thewatermelonleafyellowinggenewaslocalizedonchromosome2at13950306 ̄15517591bp(about1.57Mb).Watermelon97103v2wasusedasthereferencegenomeandthein ̄tervalcontained24annotatedgenes.ThetranscriptomelevelsofP1(P1Y)ꎬP2(P2G)andyellowleaf(F2Y)andgreenleaf(F2G)linesinF2populationwereanalyzed.TheresultsshowedthattheexpressionlevelsofCla97C02G035950ꎬCla97C02G036010ꎬCla97C02G036020andCla97C02G036060inthetargetintervalweresignificantlydifferentbetweenetio ̄latedleavesandnormalgreenleaves.Thesegenesmightbecandidategenesforetiolationofwatermelonleaves.There ̄561sultsofthisstudycanlayanimportantfoundationforfurtheranalysisofthefunctionandbiologicalcharacteristicsofwatermelonleafyellowinggenes.Keywords:㊀watermelonꎻetiolationꎻBSAꎻgeneticmapꎻgenelocation㊀㊀叶片是植物进行光合作用最主要的器官ꎬ对植物的生存具有重要意义ꎬ叶片颜色在很大程度上决定了植物的光合效率[1]ꎮ植物叶色突变不仅是研究叶绿素相关基因功能及植物发育的重要材料[2]ꎬ也是优良的形态标记性状ꎬ在实际生产中常被用来进行品种纯度鉴定[3]ꎮ关于水稻㊁大麦㊁小麦㊁玉米㊁棉花㊁大豆㊁蚕豆㊁番茄㊁拟南芥等多种植物叶色突变的研究已有报道[4]ꎬ叶色突变类型丰富多样ꎬ包括白化㊁黄化㊁黄绿化等[5 ̄6]ꎮ植株叶色的形成不仅受到叶绿体生物合成途径㊁叶绿素降解途径㊁血红素代谢途径㊁类胡萝卜素代谢途径等与光合色素代谢途径相关基因的影响ꎬ受到与叶绿体发育相关基因的调控ꎬ还与光㊁温度㊁植物激素㊁矿物元素和金属离子等外界环境因素息息相关[6 ̄9]ꎮ目前ꎬ关于水稻㊁玉米㊁拟南芥等模式植物中叶色的研究较为深入ꎬ水稻㊁玉米中已报道的叶色突变体均超200个[10 ̄13]ꎬ对拟南芥的研究发现ꎬ叶色突变以隐性遗传为主ꎬ目前已经发现27个编码15种叶绿素生物合成酶的核基因ꎬ它们的任何异常突变都会导致叶绿素缺乏ꎬ从而产生黄色突变[14]ꎮ近年来ꎬ随着高通量测序技术的应用ꎬ关于辣椒㊁甜瓜和黄瓜等一些重要经济作物的叶色突变研究也逐渐展开[15 ̄19]ꎮ西瓜是全球十大水果之一ꎬ中国西瓜栽培面积和消费量均居世界首位ꎮ随着杂交育种的发展ꎬ西瓜育种已基本实现杂种一代化ꎬ对制种纯度提出了更大挑战ꎬ叶形㊁叶色虽是重要的形态标记性状ꎬ但尚未应用于育种中ꎮ西瓜的遗传基础狭窄ꎬ自然突变率低ꎬ目前有关西瓜叶色突变的报道有斑驳突变类型[20]㊁白化突变类型[21 ̄22]㊁不完全显性黄叶突变类型[22]㊁后绿突变类型[23]㊁黄化突变类型[24 ̄25]等ꎬ但研究主要集中于遗传规律㊁生理特性[21 ̄25]ꎮ西瓜基因组的公布和测序技术的快速发展为西瓜重要性状定位㊁关键基因功能研究奠定了重要生物学基础[26 ̄29]ꎮKidanemariam[30]发现ꎬ西瓜后绿突变体Houlv中的ClCG03G010030基因存在1个单核苷酸多态性(SNP)变异ꎬ导致该基因编码的FtsH胞外蛋白酶序列中精氨酸突变为赖氨酸ꎬFtsH蛋白主要参与叶绿体早期发育ꎬ进而影响西瓜叶片颜色ꎮZhu等[25]对叶片黄化突变西瓜材料w ̄yl进行精细定位ꎬ认为基因Cla97C02G036040㊁Cla97C02G036050和Cla97C02G036060可能是导致西瓜叶片黄化的主要基因ꎮ探索叶片颜色变异机制可为遗传改良提供理论依据ꎬ满足人们在生产㊁选种和育种等方面的需求ꎻ开发叶色形态标记ꎬ能够有效缩短育种周期ꎬ提高育种效率与制种纯度ꎮ本研究拟以全生育期叶片黄化西瓜材料ly104和绿叶西瓜材料w3为试验材料ꎬ通过混合分组分析(BSA)测序初步定位叶片黄化基因在染色体中的位置ꎬ进一步利用简化基因组(RAD)测序开发全基因组SNP分子标记ꎬ利用F2代群体构建高密度遗传图谱进行西瓜叶片黄化基因定位ꎬ结合转录组测序及基因功能注释锁定关键候选基因ꎮ本研究结果可为进一步全面解析西瓜叶片黄化基因及其生物学功能奠定重要基础ꎮ1㊀材料与方法1.1㊀试验材料2014年ꎬ利用甲基磺酸乙酯(EMS)诱变获得的稳定遗传的叶片黄化西瓜材料ꎬ经5代连续自交获得相对纯合的叶片黄化突变材料ly104ꎮ本研究以ly104为母本(P1)ꎬ以正常绿叶西瓜材料w3为父本(P2)构建F1代㊁F2代㊁BC1代群体ꎬ群体的构建与表型调查试验均于淮安市农业科学研究院科研创新基地进行ꎬ群体配制过程严格自交㊁杂交ꎬ整个生育期采取商品化管理ꎮ1.2㊀形态观察与遗传规律分析以第1张完全展开的真叶进行表型统计与分析ꎬ采用人工观察和便携式色差仪RM200QC(爱色丽X ̄Riteꎬ美国)对叶片颜色指数进行测定ꎬ测定指标为亮度值(L∗)㊁红绿值(a∗)和黄蓝值(b∗)3个颜色参数ꎮ对F1代㊁F2代㊁BC1代群体分离表型进行统计ꎬ分析西瓜叶片黄化遗传规律ꎬ并进行卡方检验ꎮ1.3㊀通过BSA测序进行叶片黄化初定位BSA测序即混合分组分析法ꎬ是一种简单快速的目标性状定位方法ꎬ已被广泛应用于多种园艺作物重要性状的基因定位[31]ꎮ本研究从F2代西瓜群体中选取黄叶㊁绿叶极端表型植株各20株ꎬ采用十六烷基三甲基溴化铵(CTAB)法[32]提取植株幼叶基661江苏农业学报㊀2024年第40卷第1期因组DNA并检测其浓度ꎬ通过等量混匀构建2个极端混池ꎬ利用亲本DNA构建亲本池进行测序分析ꎬ送至上海凌恩生物科技有限公司ꎬ利用IllunimaHiSeq4000进行测序ꎬ亲本测序深度为10ˑꎬ混池测序深度为20ˑꎬ测序读长为150bpꎮ对原始序列(Read)进行过滤ꎬ去除接头ꎬ过滤掉包含未确定碱基(N)>15%和低质量的read(质量值ɤ20的碱基数占整个Read的10%以上)ꎬ将获得的干净序列(Cleanread)用于后续分析ꎮ使用BWA软件[33]将高质量的Cleanread映射到西瓜基因组97103v2(ht ̄tp://cucurbitgenomics.org/organism/21)上ꎮ然后用GATK[34]㊁SnpEff[35]软件对突变位点进行检测和注释ꎬ用SNP ̄index算法进行关联分析ꎬ阈值为0 5ꎮ1.4㊀西瓜高密度遗传图谱的构建为了更精确地定位获得西瓜叶片黄化突变位点ꎬ本研究根据F2代群体中黄叶㊁绿叶分离比选取共100份单株ꎬ分别提取基因组DNAꎬ采用RAD建库方式构建长度范围在300~500bp的双端文库ꎮ将产物送至上海凌恩生物科技有限公司ꎬ利用IllunimaHiSeq进行测序ꎬ测序读长为150bpꎮ对原始Read采用以下标准进行质控:(1)去除Read中的接头序列ꎻ(2)修剪测序质量较低的Read末端(测序质量值小于Q20)ꎻ(3)去除含N比例达到10%的Readꎻ(4)舍弃接头及质量修剪后长度小于100bp的小片段ꎮ用BWA软件将Cleanread比对至参考基因组97103v2ꎬ并对映射结果进行统计分析ꎮ用GATK软件进行变异位点检测获得SNPꎮ对获得的SNP按以下标准进行过滤:(1)去除比对Read质量值小于20的位点ꎬ同时过滤掉缺失率大于50%的SNPꎻ(2)删除无义SNP位点ꎻ(3)用joinmap4.0软件[36]对过滤后的SNP进行卡方测验ꎬ先后过滤掉P<0 01和缺失率30%以上的标记ꎬ对于最终获得的SNPꎬ采用joinmap4.0软件进行西瓜遗传图谱构建ꎬ选用Kosamb s参数ꎮ1.5㊀转录组分析从亲本及其F2代群体中取ly04和w3单株各3份ꎬ当第1张真叶完全展开后取样进行转录组分析ꎮ用PlantRNAPurificationReagent试剂盒(购自上海凌恩生物科技有限公司)提取植物总RNAꎬ并构建转录组测序文库ꎮ送至上海凌恩生物科技有限公司采用IlluminaHiSeq进行测序ꎬRead长度为150bpꎮ测序数据经质控过滤获得Cleanreadꎬ用Hisat2软件[37]将其映射到西瓜基因组97103v2上ꎮ用每个基因在一个样本中所对应的基因转录本数(FPKM)计算基因表达水平ꎮ基于KEGG(http://www.ge ̄nome.jp/kegg/)和GO(http://www.geneontology.org/)数据库进行基因注释和功能分析ꎮ差异表达基因以差异倍数(Foldchange)ȡ1 5㊁Pɤ0 005为标准ꎮ1.6㊀候选区域功能注释与候选基因筛选结合遗传规律分析及BSAꎬ利用RAD测序开发全基因组SNP标记ꎬ加入叶色表型标记进行西瓜2号染色体图谱的构建ꎬ对西瓜叶片黄化基因进行定位ꎮ以97103v2为参考基因组对定位区间基因进行注释ꎬ通过基因序列分析及转录组测序差异表达情况分析进一步筛选并确定候选基因ꎮ2㊀结果与分析2.1㊀西瓜叶片黄化特性及遗传规律分析经EMS诱变获得叶片黄化的西瓜材料ꎬ经5代连续自交后ꎬ获得遗传稳定的叶片黄化材料ly104ꎬ该材料从子叶期至果实收获时的叶片均保持黄化状态(图1A)ꎮ通过对ly104㊁w3的叶片颜色指标进行测定ꎬ发现叶片黄化西瓜材料与绿叶西瓜材料在叶片颜色指标上存在极显著差异(图1B)ꎮ㊀㊀分析结果显示ꎬly104和w3的杂交F1代所有植株叶片均呈绿色ꎬ表明控制黄色和绿色的基因是等位基因ꎬ黄色的突变基因为隐性遗传ꎮF2代群体中有174个单株为绿叶ꎬ63个单株为黄叶(表1)ꎮ在F1代与叶片黄化亲本(P1)回交群体后代中ꎬ有73个单株为绿叶ꎬ63个单株为黄叶ꎮ卡方检验发现ꎬF2代群体的分离比符合3ʒ1的孟德尔分离比[χ2(1ꎬn=237)=0.31646ꎬP=0.5737>0 0500ꎬn为群体样本数量]ꎬBC1群体的分离模式符合1ʒ1的孟德尔分离比[χ2(1ꎬn=136)=0.73529ꎬP=0.3912>0 0500](表1)ꎬ说明西瓜叶片的黄色突变符合单基因控制的隐性遗传规律ꎬ叶片绿叶对黄色表现为显性遗传ꎮ表1㊀F2代和BC群体中叶片黄化突变型与野生型的分离比Table1㊀Segregationratioofyellow ̄leafmutantandwildtypeinF2andBCpopulations群体类型群体数量绿叶植株数量黄叶植株数量期望分离比卡方检验值(χ2)BC113673631ʒ10.74F2237174633ʒ10.32χ2检验采用0.05水平ꎮ761张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因A:表型ꎻB:颜色指数ꎮL∗:亮度(阈值0~100)ꎻa∗:红绿色范围(阈值-128~+127)ꎻb∗:黄蓝色范围(阈值-128~+127)ꎻMT:突变体叶片黄化材料ꎻWT:野生型材料ꎮ∗∗表示不同材料间差异极显著(P<0 01)ꎮ图1㊀西瓜绿叶和黄叶突变体的表型及颜色指数Fig.1㊀Phenotypeandcolorindexofwatermelongreen ̄leafmutantandyellow ̄leafmutant2.2㊀西瓜叶片黄化基因的BSA初定位原始Read经质控过滤ꎬ2个混池共获得12.4Gb高质量CleanreadꎬQ30在93 0%以上ꎬ与参考基因组97103v2的平均比对率在98 0%以上ꎮ使用GATK软件进行变异检测ꎬ共获得523303个SNPꎬ经过滤后用SNP ̄Index算法对性状相关侯选区域进行选择ꎬ作图窗口大小为1Mbꎬ作图步移为10kbꎬ阈值为0 5ꎬ结果表明ꎬ西瓜叶色黄化基因定位于2号染色体8490001~26410000bp(大小约为17 92Mb)(图2A)ꎮ2.3㊀高密度西瓜遗传图谱的构建与叶片黄化基因的定位㊀㊀根据分离比ꎬ从F2代群体中选取76株绿叶㊁24株黄叶西瓜单株进行RAD测序ꎬ共获得69 17Gb高质量CleanreadꎬQ30在91 3%以上ꎬ与参考基因组的平均比对率在97 6%以上ꎮ使用GATK软件进行变异检测ꎬ共获得229704个SNPꎬ经过滤筛选ꎬ最终确定4273个SNP用于西瓜高密度遗传图谱的构建ꎮ西瓜遗传图谱总长度为1602.44cMꎬ平均遗传距离为0 39cMꎬ最大间隔为7 38cM(表2)ꎮ㊀㊀为了进一步精确定位西瓜叶片黄化基因ꎬ用RAD测序结果对西瓜2号染色体上的SNP标记进行过滤筛选ꎬ剔除检测率低于40%的样品单株和标记ꎬ最终用91份单株(68份绿叶ꎬ23份黄叶)㊁286个SNP标记进行叶片黄化基因定位ꎬ叶片颜色标记(Leafcolor)用绿叶(D)㊁黄叶(B)表示ꎬ用joinmap4进行西瓜叶片黄化基因的定位ꎮ结果显示ꎬLeafcol ̄or定位于Clas97Chr02 ̄13950306与Clas97Chr02 ̄15517591标记之间(大小约为1 567Mb)(图2B)ꎬ以西瓜97103v2为参考基因组ꎬ该区间包含24个注释基因(图2C㊁表3)ꎮ表2㊀西瓜高密度遗传图谱构建结果Table2㊀Constructionofhighdensitygeneticmapofwatermelon基因组位置标记数量遗传长度(cM)平均遗传距离(cM)标记最大间隔(cM)Lg01437161.150.372.62Lg02504185.490.372.32Lg0310960.130.553.16Lg04628278.320.443.87Lg05314114.810.372.87Lg0638095.080.252.75Lg07481186.900.392.82Lg0820572.030.352.17Lg09437147.520.342.21Lg10459121.600.262.40Lg11319179.410.567.38合计42731602.440.39-861江苏农业学报㊀2024年第40卷第1期2.4㊀西瓜黄化叶片转录组分析及候选基因的筛选RNA ̄seq共检测12个样本ꎬ其中P1㊁P2分别选取3个样本ꎬF2代群体中叶片黄化类型㊁绿叶类型分别选取3个样本ꎬ每个样本平均获得6 4Gb高质量Cleanread数据ꎬQ30在92 0%以上ꎬ平均基因组比对率为91 4%ꎮ分别以P2G(亲本绿叶)与P1Y(亲本黄叶)和F2G(F2代绿叶)与F2Y(F2代黄叶)为对比组进行独立分析ꎬ其中P2G与P1Y对比组中共检测到1356个差异表达基因ꎬ其中上调表达的基因529个ꎬ下调表达的基因827个ꎻF2G与F2Y对比组中共检测到4180个差异表达基因ꎬ其中上调表达的基因1378个ꎬ下调表达的基因2802个(图3Aꎬ图3B)ꎮP2G与P1Y对比组和F2G与F2Y对比组中均显著下调表达的基因共有327个㊁均显著上调表达的基因共有132个(图3A)ꎮ以上结果表明ꎬ亲本中黄叶和绿叶差异表达基因数量显著小于F2代群体ꎬ说明P1和P2已相对纯合ꎻGO和KEGG富集分析结果表明ꎬ差异表达基因富集通路多与光合㊁应激反应等有关ꎬ说明黄叶和绿叶西瓜植株在光合作用等方面存在较大差异ꎮ表3㊀候选区间注释基因Table3㊀Genefunctionannotationinformationincandidateinterval基因㊀㊀染色体起始位置(bp)终止位置(bp)基因方向基因功能注释㊀㊀㊀㊀㊀Cla97C02G035890染色体21395641713957327-acanthoscurrin ̄1 ̄likeCla97C02G035900染色体21402996814031110-未知的蛋白质Cla97C02G035910染色体21403120214032265-acanthoscurrin ̄1 ̄likeCla97C02G035920染色体21403358014037379-未知的蛋白质Cla97C02G035930染色体21405567614057378-含BPTI/Kunitz结构域的蛋白质2亚型X2Cla97C02G035940染色体21415712214158310+未知的蛋白质Cla97C02G035950染色体21420137314202375-与TMA7相关的翻译机制蛋白质Cla97C02G035960染色体21426731014270809-B类锌指蛋白质转录因子ꎬ包含DUF1664结构域Cla97C02G035970染色体21427090614274847+脂质结合血清糖蛋白质Cla97C02G035980染色体21427768614278904-蛋白质核融合缺陷6ꎬ叶绿体/线粒体样亚型X1Cla97C02G035990染色体21428304714283329+未知的蛋白质Cla97C02G036000染色体21437008614372002+抗坏血酸氧化酶同源物Cla97C02G036010染色体21437643914376782+未知的蛋白质Cla97C02G036020染色体21446137614464307-双组分反应调节蛋白质Cla97C02G036030染色体21449460714497114+双组分反应调节蛋白质Cla97C02G036040染色体21454976514550425+包含DUF679结构域的蛋白质Cla97C02G036050染色体21455062614551935-DNAJ同源亚家族B成员13Cla97C02G036060染色体21467069314671707+蛋白质Ycf2Cla97C02G036070染色体21483721914875277-U11/U12小核核糖核蛋白(相对分子质量65000)蛋白质亚型X2Cla97C02G036080染色体21499052014990719-未知的蛋白质Cla97C02G036090染色体21505989915063209+环型E3泛素转移酶Cla97C02G036100染色体21515520915157456+含五肽重复的家族蛋白质Cla97C02G036110染色体21516514215226986+尼曼 ̄匹克C1蛋白样亚型X2Cla97C02G036120染色体21523146015231976-锌指家族蛋白质+ 表示基因注释在染色体正链ꎻ - 表示基因注释在染色体负链ꎮ㊀㊀对西瓜2号染色体13950306~15517591bp(大小约为1 56Mb)内的24个注释基因进行功能分析和转录组表达差异分析ꎬ结果显示ꎬ24个注释基因中有17个在植株叶片中表达ꎬ仅有基因Cla97C02G036060㊁961张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因A:BSA定位结果ꎮB:西瓜2号染色体遗传图谱及叶色黄化标记定位ꎮC:根据西瓜参考基因组97103v2注释候选区域的基因ꎮSNPindex:单核苷酸多态性指数ꎮ图2㊀西瓜叶片黄化基因精细定位Fig.2㊀FinemappingofleafyellowinggenesinwatermelonA:P2G与P1Y对比组及F2G与F2Y对比组上调和下调基因数量Venn图ꎻB:P2G与P1Y对比组及F2G与F2Y对比组上调和下调基因数量柱形图ꎻC:F2G与F2Y对比组差异基因火山图ꎬ标注基因为候选区间基因ꎮP1Y:亲本黄叶ꎻP2G:亲本绿叶ꎻF2G:F2代绿叶ꎻF2Y:F2代黄叶ꎮ图3㊀西瓜黄叶与绿叶转录组差异表达基因分析Fig.3㊀Analysisofdifferentiallyexpressedgenesinthetranscriptomeofwatermelonyellowleafandgreenleaf071江苏农业学报㊀2024年第40卷第1期Cla97C02G035950㊁Cla97C02G036010㊁Cla97C02G036020在叶片黄化植株与绿叶植株中的表达存在显著差异ꎬCla97C02G036060在P2G和F2G中均显著上调表达(图3C)ꎬ其注释功能为Ycf2蛋白编码基因ꎬ该编码基因为被子植物中最重要的质体基因ꎬ与植物光合作用有关ꎮ3㊀讨论与结论化学EMS诱变是人工创造突变体最常用的处理方式之一ꎬ叶片黄化是最常见的诱变表型[22]ꎮ笔者所在课题组前期通过EMS诱变西瓜种子ꎬ获得稳定遗传的西瓜叶片黄化材料ꎬ其整个生育期均可保持黄化状态ꎮ植物叶片黄化突变ꎬ又称叶绿素缺乏突变ꎬ通常是由叶绿素合成或降解途径被破坏所致[38]ꎮ目前ꎬ研究者已经在水稻[39]㊁番茄[40]㊁黄瓜[19]㊁拟南芥[41]等植物中发现了黄化突变体ꎮ有研究发现ꎬ不同类型的叶色突变的遗传规律差异较大ꎬ有些叶色突变可能是核遗传ꎬ也可能是细胞质遗传ꎬ水稻[42]㊁玉米[43]㊁小麦[44]㊁黄瓜[45]㊁番茄[46]等都由1对或2对隐性核基因控制ꎮZhang等[21]研究证实ꎬ西瓜叶片白化突变是由1对隐性等位基因(jaja)控制的ꎮProvvidenti[20]发现ꎬ西瓜叶色斑驳突变由1对隐性基因(slv)控制ꎮKidanemariam等[30ꎬ47]发现ꎬ西瓜叶色后绿突变是由1个隐性基因(dgdg)控制的ꎮZhu等[25]研究发现ꎬ西瓜黄化突变体w ̄yl由1对隐性核基因控制ꎬ与本研究结果一致ꎮ西瓜作为重要的园艺经济作物[48 ̄51]ꎬ在中国的栽培面积和产量均居世界首位ꎮ经长期人工选择ꎬ栽培西瓜遗传背景狭窄ꎬ多态性分子标记开发受限ꎬ致使西瓜分子标记辅助育种及品种改良进展缓慢ꎮ高密度遗传图谱的构建不仅是开发西瓜重要农艺性状遗传基因/QTL紧密连锁分子标记的重要手段ꎬ亦是深入挖掘和解析西瓜重要农艺性状基因的基础ꎬ通过遗传图谱构建进行基因/QTL定位研究已经在西瓜多种性状研究中得到成熟应用[52 ̄53]ꎮ本研究基于BSA定位ꎬ将西瓜叶片黄化基因定位于2号染色上ꎬ为了进一步获得可靠定位基因ꎬ本研究开发了SNP标记ꎬ用于构建高密度西瓜遗传图谱ꎬ并将西瓜叶片黄化基因定位到2号染色体13950306~15517591bp(大小约为1 56Mb)ꎬ比对西瓜参考基因组97103v2发现ꎬ在候选区段内包含24个注释基因ꎬ17个基因在叶片中表达ꎬ4个基因在黄叶与绿叶转录组分析中存在显著差异表达ꎬ其中基因Cla97C02G036060是Ycf2蛋白的编码基因ꎬYcf2/FtsH调控的烟酰胺腺嘌呤二核苷酸 ̄苹果酸脱氢酶是叶绿体或非光合质体在黑暗中产生腺嘌呤核苷三磷酸的关键酶[54]ꎬ是光合生长必需的酶[55]ꎮ目前ꎬYcf2基因已被证实是被子植物中最重要的质体基因[56]ꎬ它在高等植物中发挥着重要功能[57]ꎮ在本研究中ꎬ由于双亲重测序深度不高ꎬ候选区间注释基因编码区中未发现可靠突变ꎬ但转录组结果显示ꎬYcf2在叶片黄化西瓜材料中的表达量显著下调ꎬ说明叶片黄化西瓜材料的光合作用系统可能与正常绿叶植株光合系统存在显著差异ꎬ相关机制需要进一步研究ꎮ本研究结果可为进一步挖掘叶片黄化植株光合作用机制奠定一定科学基础ꎮ参考文献:[1]㊀陈婷婷ꎬ符卫蒙ꎬ余㊀景ꎬ等.彩色稻叶片光合特征及其与抗氧化酶活性㊁花青素含量的关系[J].中国农业科学ꎬ2022ꎬ55(3):467 ̄478. [2]㊀徐明远ꎬ何㊀鹏ꎬ赖㊀伟ꎬ等.植物叶色变异分子机制研究进展[J].分子植物育种ꎬ2021ꎬ19(10):3448 ̄3455. [3]㊀马道承ꎬ王凌晖ꎬ梁㊀机.形态标记在植物中的应用研究进展[J].江苏农业科学ꎬ2022ꎬ50(8):55 ̄62.[4]㊀杨小苗.番茄EMS突变体库的构建及叶色黄化突变体的分析[D].沈阳:沈阳农业大学ꎬ2017.[5]㊀刘忠学ꎬ张渝竣ꎬ刘㊀林ꎬ等.水稻黄绿叶突变体yellow ̄greenleaf4的表型鉴定及候选基因定位和功能分析[J].南京农业大学学报ꎬ2022ꎬ45(4):627 ̄636.[6]㊀徐薪璐ꎬ蔡㊀鸥ꎬ秦㊀敏ꎬ等.植物叶色变异研究进展[J/OL].分子植物育种:1 ̄8[2022 ̄11 ̄21].http://kns.cnki.net/kcms/de ̄tail/46.1068.S.20220517.1326.020.html.[7]㊀ZHANGHTꎬLIJJꎬYOOJHꎬetal.Ricechlorine ̄1andchlo ̄rine ̄9encodeChlDandChloIsubunitsofMg ̄chelataseꎬakeyen ̄zymeforchlorophyllsynthesisandchloroplastdevelopment[J].PlantMolecularBiologyꎬ2006ꎬ62(3):325 ̄337.[8]㊀SUGLIAMꎬABDELKEFIHꎬKEHꎬetal.AnancientbacterialsignalingpathwayregulateschloroplastfunctiontoinfluencegrowthanddevelopmentinArabidopsis[J].PlantCellꎬ2016ꎬ28:661 ̄679. [9]㊀李素贞ꎬ杨文竹ꎬ陈茹梅.水稻黄绿叶突变体研究进展[J].生物技术通报ꎬ2018ꎬ34(11):15 ̄21.[10]赵绍路ꎬ刘㊀凯ꎬ宛柏杰ꎬ等.水稻叶色突变研究进展[J].大麦与谷类科学ꎬ2018ꎬ35(6):1 ̄6.[11]张文慧ꎬ杨宜豪ꎬ陈铭蔚ꎬ等.水稻一新黄绿叶突变体ygl10 ̄2(t)的遗传分析与基因定位[J].扬州大学学报(农业与生命科学版)ꎬ2019ꎬ40(1):1 ̄7.171张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因[12]陈桂华ꎬ王㊀悦ꎬ熊跃东ꎬ等.水稻叶色突变体xws的基因定位与育种利用[J].分子植物育种ꎬ2018ꎬ16(1):155 ̄162. [13]李㊀秦ꎬ杜何为.玉米叶色突变体研究进展[J].南方农业ꎬ2019ꎬ13(28):14 ̄21ꎬ27.[14]NAGATANꎬTANAKARꎬSATOHSꎬetal.Identificationofavi ̄nylreductasegeneforchlorophyllsynthesisinArabidopsisthalianaandimplicationsfortheevolutionofProchlorococcusspecies[J].PlantCellꎬ2005ꎬ17(1):233 ̄240.[15]王㊀萌ꎬ赵㊀虎ꎬ赵曾菁ꎬ等.辣椒彩色斑叶突变体叶片显微结构及超微结构研究[J].西北植物学报ꎬ2022ꎬ42(4):600 ̄608. [16]赖㊀艳ꎬ付秋实ꎬ吕建春ꎬ等.一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J].四川农业大学学报ꎬ2018ꎬ36(3):372 ̄379.[17]朱华玉ꎬ张凯歌ꎬ宋芃垚ꎬ等.甜瓜黄绿叶色性状的遗传分析及其初步定位[J].河南农业大学学报ꎬ2019ꎬ53(6):855 ̄860. [18]陈远良ꎬ刘新宇ꎬ李树贤.黄瓜黄绿色叶片颜色遗传规律研究[J].北方园艺ꎬ2000(5):3 ̄4.[19]XIONGLRꎬDUHꎬZHANGKYꎬetal.AmutationinCsYL2.1encodingaplastidisoformoftriosephosphateisomeraseleadstoyellowleaf2.1(yl2.1)incucumber(CucumissativusL.)[J].In ̄ternationalJournalofMolecularSciencesꎬ2020ꎬ22(1):322. [20]PROVVIDENTIR.Inheritanceofapartialchlorophylldeficiencyinwatermelonactivatedbylowtemperaturesattheseedlingstage[J].HorticultureScienceꎬ1994ꎬ29(9):1062 ̄1063.[21]ZHANGXPꎬRHODESBBꎬBAIRDWVꎬetal.Developmentofgenicmale ̄sterilewatermelonlineswithdelayed ̄greenseedlingmarker[J].HorticultureScienceꎬ1996ꎬ31(1):123 ̄126. [22]侯㊀艳ꎬ朱子成ꎬ朱娜娜ꎬ等.EMS诱变西瓜突变体库的构建及表型分析[J].西北植物学报ꎬ2016ꎬ36(12):2411 ̄2420. [23]徐㊀铭ꎬ高美玲ꎬ郭㊀宇ꎬ等.西瓜后绿突变体光合特性分析[J].西北农林科技大学学报(自然科学版)ꎬ2022ꎬ50(3):91 ̄96ꎬ106.[24]任艺慈ꎬ朱迎春ꎬ孙德玺ꎬ等.一个西瓜叶色黄化突变体的生理特性分析[J].果树学报ꎬ2020ꎬ37(4):565 ̄573.[25]ZHUYꎬYUANGꎬWANGYꎬetal.Mappingandfunctionalveri ̄ficationofleafyellowinggenesinwatermelonduringwholegrowthperiod[J].FrontiersinPlantScienceꎬ2022ꎬ13:1049114. [26]GUOSGꎬZHANGJGꎬSUNHHꎬetal.Thedraftgenomeofwa ̄termelon(Citrulluslanatus)andresequencingof20diverseacces ̄sions[J].NatureGeneticsꎬ2013ꎬ45:51 ̄58.[27]GUOSGꎬZHAOSJꎬSUNHHꎬetal.Resequencingof414cul ̄tivatedandwildwatermelonaccessionsidentifiesselectionforfruitqualitytraits[J].NatureGeneticsꎬ2019ꎬ51(11):1616 ̄1623. [28]WUSꎬWANGXꎬREDDYUꎬetal.Genomeof CharlestonGray ꎬtheprincipalAmericanwatermeloncultivarꎬandgeneticcharacterizationof1365accessionsintheU.S.NationalPlantGermplasmSystemwatermeloncollection[J].PlantBiotechnologyJournalꎬ2019ꎬ17(12):2246 ̄2258.[29]LILIMꎬQINGWꎬYANYANZꎬetal.Cucurbitaceaegenomeevo ̄lutionꎬgenefunctionꎬandmolecularbreeding[J].HorticultureResearchꎬ2022ꎬ9:uhab057.[30]KIDANEMARIAMHG.西瓜叶色后绿和植株短蔓性状的遗传与分子机制研究[D].北京:中国农业科学院ꎬ2020. [31]周雨晴ꎬ郭宇玲ꎬ伊㊀然ꎬ等.基于BSA ̄Seq的黄瓜重要园艺性状遗传定位研究进展[J/OL].分子植物育种:1 ̄12[2023 ̄10 ̄10].http://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html.[32]张菊平ꎬ张长远ꎬ张树珍.苦瓜基因组DNA提取和RAPD分析[J].广东农业科学ꎬ2002(4):18 ̄20.[33]LIH.AligningsequencereadsꎬclonesequencesꎬandassemblycontigswithBWA ̄MEM[J].arXivꎬ2013ꎬ1303.3997v2[q ̄bio.GN].DOI:10.48550/ARXIV.1303.3997.[34]VANDERAUWERAGAꎬCARNEIROMOꎬHARTLCꎬetal.FromFastQdatatohigh ̄confidencevariantcalls:thegenomeanal ̄ysistoolkitbestpracticespipeline[J].CurrentProtocolsinBioin ̄formaticsꎬ2013ꎬ43(1110):1 ̄33.[35]CINGOLANIPꎬPLATTSAꎬWANGLLꎬetal.Aprogramforan ̄notatingandpredictingtheeffectsofsinglenucleotidepolymor ̄phismsꎬSnpEff:SNPsinthegenomeofDrosophilamelanogasterstrainw1118ꎻiso ̄2ꎻiso ̄3[J].Flyꎬ2012ꎬ6(2):80 ̄92. [36]STAMP.Constructionofintegratedgeneticlinkagemapsusinganewcomputerpackage:JoinMap[J].ThePlantJournalꎬ1993ꎬ3(5):739 ̄744.[37]KIMDꎬPAGGIJMꎬPARKCꎬetal.Graph ̄basedgenomealign ̄mentandgenotypingwithHISAT2andHISAT ̄genotype[J].Na ̄tureBiotechnologyꎬ2019ꎬ37(8):907 ̄915.[38]崔慧琳ꎬ李志远ꎬ方智远ꎬ等.结球甘蓝自交系YL ̄1的高效遗传转化体系的建立及应用[J].园艺学报ꎬ2019ꎬ46(2):345 ̄355.[39]张天雨ꎬ周春雷ꎬ刘㊀喜ꎬ等.一个水稻温敏黄化突变体的表型分析和基因定位[J].作物学报ꎬ2017ꎬ43(10):1426 ̄1433. [40]姚建刚ꎬ张贺ꎬ许向阳ꎬ等.番茄叶色突变体的弱光耐受性研究[J].中国蔬菜ꎬ2010(4):31 ̄35.[41]SUNJLꎬTIANYYꎬLIANQCꎬetal.MutationofDELAYEDGREENINGimpairschloroplastRNAeditingatelevatedambienttemperatureinArabidopsis[J].JournalofGeneticsandGenomicsꎬ2020ꎬ47(4):201 ̄212.[42]孙立亭ꎬ林添资ꎬ王云龙ꎬ等.水稻白条纹突变体st13的表型分析及基因定位[J].中国水稻科学ꎬ2017ꎬ31(4):355 ̄363. [43]王㊀飞ꎬ段世名ꎬ李㊀彤ꎬ等.玉米叶色突变体遗传分析及基因定位[J].植物遗传资源学报ꎬ2018ꎬ19(6):1205 ̄1209. [44]蒋宏宝.小麦叶绿素缺失突变体B23的鉴定及基因定位[D].杨凌:西北农林科技大学ꎬ2018.[45]GAOMLꎬHULLꎬLIYHꎬetal.Thechlorophyll ̄deficientgoldenleafmutationincucumberisduetoasinglenucleotidesub ̄stitutioninCsChlIforthemagnesiumchelataseIsubunit[J].The ̄oreticalandAppliedGeneticsꎬ2016ꎬ129(10):1961 ̄1973. [46]郭丽杰.番茄杂色叶基因vg的遗传定位分析[D].武汉:华中农业大学ꎬ2017.[47]RHODESBB.Genesaffectingfoliagecolorinwatermelon[J].271江苏农业学报㊀2024年第40卷第1期JournalofHeredityꎬ1986ꎬ77(2):134 ̄135.[48]秦㊀涛ꎬ刘新社.氮钾肥配施对土壤微生物与西瓜形态建成㊁品质㊁产量的影响[J].江苏农业科学ꎬ2022ꎬ50(16):154 ̄161. [49]杨㊀柳ꎬ况佳颖ꎬ任春梅ꎬ等.江苏省主要葫芦科作物病毒种类及分布[J].江苏农业学报ꎬ2022ꎬ38(1):65 ̄72.[50]胡晨曦ꎬ张㊀甜ꎬ陈㊀刚ꎬ等.不同嫁接方式对西瓜幼苗生长和生理的影响[J].江苏农业科学ꎬ2022ꎬ50(1):139 ̄143. [51]何㊀毅ꎬ解华云ꎬ陈东奎ꎬ等.设施与露地兼用型优质西瓜新品种桂玲的选育[J].南方农业学报ꎬ2023ꎬ54(4):1216 ̄1223. [52]高美玲ꎬ刘小松ꎬ刘秀杰ꎬ等.基于GBS高密度遗传图谱初步定位西瓜种皮斑块基因[J].分子植物育种ꎬ2022ꎬ20(1):186 ̄192.[53]李兵兵ꎬ刘文革ꎬ路绪强ꎬ等.基于全基因组重测序构建西瓜高密度遗传图谱和果实相关性状的基因定位[J].中国瓜菜ꎬ2019ꎬ32(8):164 ̄165.[54]KIKUCHISꎬASAKURAYꎬIMAIMꎬetal.AYcf2 ̄FtsHihetero ̄mericAAA ̄ATPasecomplexisrequiredforchloroplastproteinim ̄port[J].PlantCellꎬ2018ꎬ30(11):2677 ̄2703.[55]PARKERNꎬWANGYXꎬMEINKED.AnalysisofArabidopsisaccessionshypersensitivetoalossofchloroplasttranslation[J].PlantPhysiologyꎬ2016ꎬ172(3):1862 ̄1875.[56]HUANGJLꎬSUNGLꎬZHANGDM.Molecularevolutionandphylogenyoftheangiospermycf2gene[J].JournalofSystematicsandEvolutionꎬ2020ꎬ48(4):240 ̄248.[57]DRESCHERAꎬRUFSꎬJRCALSATꎬetal.Thetwolargestchlo ̄roplastgenome ̄encodedopenreadingframesofhigherplantsareessentialgenes[J].PlantJournalꎬ2000ꎬ22(2):97 ̄104.(责任编辑:徐㊀艳)371张朝阳等:BSA联合转录组分析发掘西瓜叶片黄化候选基因。
叶绿体的基本形态及动态特征

高等植物中叶绿体像双凸或平凸透镜, 更容易收集光能,叶绿体多分布在向阳的 一面,也是为了收集光能,发挥功能
叶绿体在细胞去分化后的变化
•
叶绿体在细胞去分化后会变小,同时数 量减少,主要以原质体的形式存在
细胞分化在什么情况下是可逆的?
• 细胞分化在正常情况下是不可以逆转的,但 如果是在离体并且有适当的环境,类似的情况是 会发生的,在植物组织培养技术中,利用植物体 细胞分化的全能性来培育新的个体,其中就有一 个脱分化的过程,在那个过程中,离体的植物细 胞会在植物激素的作用下进行脱分化成为愈伤组 织,当愈伤组织达到一定规模后再次分化成各种 器官,然后型成新的个体。
• ● 数目 • 大多数高等植物的叶肉 细胞含有几十到几百个 叶绿体, 可占细胞质体 积的40%~90%。 • ● 分布 • 叶绿体在细胞质中的分 布有时是很均匀的,但 有时也常集聚在核的附 近, 或者靠近细胞壁。
图 植物叶肉细 胞中的叶绿体分 布
高等植物成熟叶绿体体积与数目相对保持稳定,但细胞内的 叶绿体仍呈现动态特征;叶绿体在细胞内的位置与分布受光 照影响,且叶绿体定位(chloroplast positioning)借助微 丝骨架的作用,在拟南芥叶肉细胞中,微丝结合蛋白 CHUP1(chloroplast unusual positioning)为叶绿体正常定 位所必须。
植物在黑暗条件下生长时,细胞中原 质体不能形成叶绿体,幼苗呈黄色。 可见,叶绿体是原质体的一种分化。
储藏组织(如块根、块茎、胚乳)和一些其 他白化组织中,质体以造粉质体或白色体的 形式存在。 原质体亦成为前质体,为叶绿体、白色体、 有色体等质体的前身结构。 质体包括:叶绿体、有色体、白色体。
叶绿体分化于幼叶的形成和生长阶段。因此,从 生长中的植物顶芽纵切片上,可观察到分化细胞 中的原质体分化形成叶绿体的连续过程。 叶绿体的分化: 1. 形态上,表现为体积的增大,内膜系统的形成和 叶绿体的积累。 2. 生化和分子生物学上,体现为叶绿体功能所必需 的酶、蛋白质、大分子的合成、运输及定位。
水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析

行 表达分 析,并分 析 了 而 一 J突变体 在 白化 、转 绿 2个 时期 的基 因表达谱 。结果 表 明,类胡 萝 卜 素 、植物 激素 ( G A、
AB A和 S L ) 生物合 成相关 基 因在 h f a 一 突变体 白化期 叶 片中表达 量减低 ,暗示 h w 』 ቤተ መጻሕፍቲ ባይዱ D 基 因的突变 抑制 了苗期类 胡萝
郭 涛
摘 要:
黄 永相
罗 文龙 黄 宣 王 慧
陈志强
刘 永柱
华南农 业大 学 /国家 植物航 天育种 工程技 术研 究中心 ,广东 广州 5 1 0 6 4 2
. J的白化转绿 、多分蘖矮 秆表 型受单 隐性 核基 因 h w — ( f ) 控制 。该基 因编 码含线 粒体交 替氧化 酶 AOX结
Dwa r f Mu t a n t h f a - 1 b y Us i n g Ri c e Mi c r o a r r a y
GUO T a o , HUA NG Y o n g . Xi a n g , L UO We n . L o n g , HUA NG X u a n , WA NG H u i , C H E N Z h i . Qi a n g , a n d
上对 h w . , ( f ) 起 一 定 的补 偿 功 能 。
关 键词 :水 稻 ;白化转 绿 ;突变 体 J l 2 屈一 J ;基 因表达分 析
Ge ne Di f f e r e nt i a l Ex pr e s s i o n o f a Gr e e n- - Re ve r t i bl e Al bi no a nd Hi g h - - Ti l l e r i ng
水稻叶色突变分子机制的研究进展

_1 1 l
、
O C 2 表 1。 sA0 i等( “ )
不正 常的 白化 、 黄化 、 浅绿 、 白、 绿 白翠 、 黄绿 、 黄和条 绿 纹等 [ 3 1 。突变基 因直接或间接影响 叶绿素 的合成和降
解 , 变叶绿 素含量 , 以大部分叶色 突变体 同时也是 改 所
5 氨基 乙酰丙 酸( L 的合 成是植物 四吡咯物质 一 A A) 合成途径 的关键 步骤 ,也是 整个叶绿素合成途径 中的
( 中国水稻研究所 国家水 稻改良中心 水稻生物学 国家重点实验室 , 浙江 杭州 30 0 ;通讯作者 , - a :qag 2 . m) 10 6 E m i stn@16 o l c 摘 要: 叶色突变表型明显 、 易于鉴别 , 在高等植物叶绿素代谢 、 叶绿体结构 、 功能和发育机理等基础研究 中具有
限速步骤 。谷 氨酰一R A还原酶 ( l R) A A合成 tN Gu 是 L T
叶绿 素突变体 。叶色突变通常在苗期表达 , 与其 他突 变体相 比具有表 型明显 、 易于鉴别 、 图位克 隆周期短等 特点 。 目前 在水 稻中 已经定位约 8 叶色突变 位点 , 0个
过程 中第一个 关键酶 , H M 由 E A基 因家族编码 。拟南 芥 中已经鉴定 出三个 H MA基 因-, E l 水稻 谷氨 酰一R 2 1 t— N A还原酶基 因 O Gu s 已经被克隆 , sl 也 R 其突变体表现 为叶片 黄化 , 呈现温 度特异性 , 并 株高 降低 , 抽穗 期推
二步 由 A A形成 原卟啉 I L X;第三步为原 卟啉 I x在镁 离子螯合酶 、叶绿 素合 成酶 以及叶绿素 a 氧化酶 的作 用下 最终合成 叶绿 素 a 叶绿素 b 和 。双子 叶模式植 物
辣椒花药颜色突变体Caya_表型特征分析及遗传定位

湖南农业大学学报(自然科学版)2023,49(6):661–666.DOI:10.13331/ki.jhau.2023.06.005Journal of Hunan Agricultural University(Natural Sciences)引用格式:陈莹,王瑾,崔清志,杨慧萍,李秀敏,刘峰.辣椒花药颜色突变体Caya表型特征分析及遗传定位[J].湖南农业大学学报(自然科学版),2023,49(6):661–666.CHEN Y,WANG J,CUI Q Z,YANG H P,LI X M,LIU F.Phenotypic analysis and genetic mapping ofanther color mutant Caya in Capsicum annuum[J].Journal of Hunan Agricultural University(Natural Sciences),2023,49(6):661–666.投稿网址:辣椒花药颜色突变体Caya表型特征分析及遗传定位陈莹1,王瑾5,崔清志2,杨慧萍5,李秀敏1,刘峰1,2,3,4*(1.湖南大学隆平分院,湖南长沙 410125;2.湖南农业大学园艺学院,湖南长沙 410128;3.园艺作物种质创新与新品种选育教育部工程研究中心,湖南长沙 410128;4.蔬菜生物学湖南省重点实验室,湖南长沙 410128;5.南京农业大学园艺学院,江苏南京 210095)摘要:以通过EMS诱变筛选得到的黄色花药辣椒突变体Caya为材料,以野生型樟树港辣椒ST–8为对照,测定花药中花青素及类黄酮的含量,进行花粉活力鉴定,发现突变体Caya花药中花青素含量显著降低,类黄酮含量和花粉活力与ST–8的无显著变化。
以ST–8和Caya进行正反交,得到F1群体,F1自交构建F2群体,F1和Caya回交构建BC1群体,调查各群体的紫色花药和黄色花药植株数量,分析花药颜色的遗传规律,发现黄色花药受1对隐性核基因控制;采用BSA–Seq技术对控制花药颜色的基因进行定位,将候选区域锁定在2号染色体142 Mbp至157 Mbp;设计9对SNP标记对F2分离群体进行基因分型,进一步缩小候选区间,最终将目的基因定位于147 461 604 bp至150 376 942 bp,在候选区间内筛选到2个与花青素合成密切相关的基因,登录号为Capana02g002586、Capana02g002763。
番茄叶色黄化突变体的遗传分析及SSR分子标记[1]
![番茄叶色黄化突变体的遗传分析及SSR分子标记[1]](https://img.taocdn.com/s3/m/5fb1e3dc50e2524de5187eb0.png)
中国蔬菜 2010(14):31-35CHINA VEGETABLES番茄叶色黄化突变体的遗传分析及SSR分子标记郭 明 张 贺 李景富*(东北农业大学园艺学院,黑龙江哈尔滨 150030)摘 要:在番茄普通栽培品种中蔬4号06884中发现能稳定遗传的叶色黄化突变体06883,该突变体新出叶最初为绿色,四叶一心时第一片真叶开始转黄,果实转色慢,硬度大耐贮藏。
通过该突变体和栽培品种中蔬4号的正反交试验的遗传分析证明,该突变材料的叶片黄化性状由1对隐性主效核基因控制,该性状可以用来作为指示性状鉴定杂种纯度。
应用SSR分子标记技术对该突变基因进行初步定位,经连锁分析表明,该基因与LEaat006、LEtat002和Tom196-197连锁,与它们的连锁距离分别为8.9、16.3和18.7 cM。
关键词:番茄;叶色黄化突变;SSR;基因定位中图分类号:S634 文献标识码:A 文章编号:1000-6346(2010)14-0031-05 Genetic Analysis and SSR Molecule Marker on Tomato Yellow Leaf MutantGUO Ming, ZHANG He, LI Jing-fu*(College of Horticulture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China) Abstract:A natural yellow leaf mutant named 06883, found in tomato(Lycopersicon esculentum Mill.)variety‘Zhongshu No.4’, can be inherited stably. Originally the leaves were green, but the first true leaf color turned into yellow during the period of four leave and one shoot. The fruits turned to red slowly, and became hard which is good for storage. The mutant was reciprocally crossed with tomato variety ‘Zhongshu No.4’, and the genetic analysis indicated that the mutant is nucleolus inheritance and controlled by one recessive gene. It can be used as a phonotypical marker to identify purity of F1 hybrids. We roughly mapped the mutant gene using SSR molecular markers. Three SSR markers LEaat006, LEtat002 and Tom196-197 were linked to the mutant gene. They were 8.9 cM, 16.3 cM and 18.7 cM apart from the mutant gene, respectively.Key words:Tomato; Yellow leaf mutant; Simple sequence repeat(SSR)marker; Molecular mapping叶色突变是自然界比较常见的一种突变,由于突变基因往往是直接或间接影响叶绿素的合成和降解,改变叶绿素含量,所以叶色突变体也称为叶绿素突变体(何冰 等,2006)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学基金(BK2003076)和农业部“948”项目(2004-224)。 *通讯作者(E-mail: wanjm@mail.njau.edu.cn, Tel: 025-
84396516)。
2பைடு நூலகம்
植物生理学通讯 第 42 卷 第 1 期,2006 年 2月
等很多物种中都有发现,其最明显的特征是生育 末期叶片保绿时间较长甚至完全不黄化。
常绿突变以外的苗期后叶色变异比较少见, 通常根据突变发生时的叶色对突变体进行归类, 这一类突变体中研究比较透彻的是来自于小麦矮变 一号的返白突变体(王保莉等 1996)。 2 叶色突变体的来源
事实上,叶色突变体在研究植物叶绿素生物 合成的过程中曾发挥过作用。以叶色突变体为研 究对象,不仅可分离、鉴定参与叶绿素合成的基 因,还可验证前人对叶绿素合成的种种假说。在 以往的研究中,用叶色突变体不但鉴定出了 CAO (Oster 等 2000)、CHLH (Jung 等 2003)、CHLI1 (Petersen等1999) ( 表1)等对叶绿素合成起决定作 用的基因,而且验证了谷氨酰 - t R N A 还原酶 (Kumar 和 Soll 2000)、NADPH:原叶绿素酸酯氧 化还原酶(Frick等 2003)、叶绿素合酶(Gaubier等
四吡咯合成途径之外的叶绿体蛋白基因主要 通过 3 种途径引起叶色突变。(1)基因突变间接干
4
植物生理学通讯 第 42 卷 第 1 期,2006 年 2月
表1 参与被子植物叶绿素合成途径的酶的基因(Beale 2005)
酶名称 步骤a 基因名b 中文名 英文名
植物生理学通讯 第 42 卷 第 1 期,2006 年 2月
3
图1 被子植物叶绿素生物合成途径(Beale 2005) 标有数字的箭头涉及表 1 中所列的酶;根据有效底物发生反应 1 2 或 1 3 ;反应 1 4 可利用 2 种底物。
1995)等关键酶在叶绿素合成过程中的功能。 4.2 血红素→光敏色素生色团生物途径中基因突变 叶绿素生物合成和血红素生物合成是四吡咯生物 合成途径的两个分支,原卟啉 IX 与 Mg 2+ 螯合产 生镁原卟啉 I X ,与 F e 2 + 螯合形成血红素,血红 素经一系列反应最终形成光敏色素生色团(图 2)。 叶绿素合成速率受细胞内血红素含量影响,若血 红素→光敏色素生色团途径受阻、细胞内血红素含 量上升,过剩的血红素将反馈抑制叶绿素合成, 引起突变体叶色变异(Terry和Kendrick 1999)。
基因沉默引起的叶色突变体主要用于分析特 定基因功能。目前仅从烟草(Monde 等 2000)、拟 南芥(Kumar和Soll 2000)等少数植物中分离出基因 沉默叶色突变体。 3 叶色突变体的遗传方式
叶色变异种类繁多,不同突变体的遗传规律 相差很大。叶色突变可能是数量性状,也可能是 质量性状;可能是细胞核遗传,也可能是细胞质 遗传。例如,芽黄突变体多数受单隐性核基因控 制,少数受两对核基因控制(肖松华等 1995),在 大豆中还发现了细胞质遗传芽黄突变体(马国荣等 1994)。与细胞核遗传叶色突变体相比,已发现的 细胞质突变体较少,仅在小麦(王保莉等 1996)、 大豆(马国荣等 1994)、烟草(Monde 等 2000; Barak 等 2000)等作物中有少量报道。这可能与植物细胞 中含有多个细胞器(叶绿体、线粒体) DNA 分子有 关。 4 叶色突变的分子机制
性状为基础,具有一定的局限性。植物的表型性 状与内部的遗传物质之间的关系并非一一对应。 同一叶色突变性状可能受不同基因控制;同一基 因发生突变,由于基因功能缺损的程度不同,可 能造成不同表现型。番茄黄叶突变体 au和 yg-2的 表型性状极为相似,而研究表明在这两个突变体 中分别发生了血红素加氧酶(heme oxygenase)和光 敏色素生色团合酶(PΦB synthase)基因突变(Terry 和 Kendrick 1999)。Kumar 和Soll (2000)将HEMA 基因(编码谷氨酰 -tRNA 还原酶)的反义 RNA 转入 拟南芥后,转基因植株间即存在明显的叶色差 异,并且叶色变异程度与 H E M A 基因的表达水平 成反比。由此可见,简单以叶色为标准对突变体 进行划分,很可能不利于研究基因的生物功能。 但由于还未找到更为合理的分类方法,所以目前 仍然根据苗期叶色划分叶色突变体。 1.2 其它分类法 对于突变性状在苗期之后表达的 叶色突变体,必须采取其它分类方法。如常绿 (stay green)突变体是常见的苗期后叶色变异体, 在拟南芥(Sung 等 1997)、菊花(Reyes-Arribas 等 2001)、羊茅(Festuca pratensis) (Vincentini等1995)
人工诱发植物基因突变是创造新种质、选育 新品种的有效途径。通过人工诱变可在较短时间 内获得大量突变体,由此而产生的叶色突变已广 泛应用于植物育种工作,并取得了很大的成就 (Zhao 等 2000)。然而诱发突变在功能基因组学研 究中的应用价值有限。理化因素通常诱发点突变 和缺失突变,仍需通过图位克隆的方法分离突变 基因;组织培养引起的染色体断裂和重排(Phillips 等 1994)以及DNA的甲基化(Kaeppler等1998),在 基因功能鉴定中难以利用。
插入突变最大的优点在于,可将插入元件作 为标签从基因组中分离出相应的基因。从正向遗 传学来看,可以鉴定插入叶色突变体,根据插入 序列迅速克隆到突变基因,确定突变基因的功 能,阐明叶色变异机制。从反向遗传学来看,可 以根据目的基因序列设计引物,通过 PCR 技术从 突变体库中筛选出目的基因发生插入突变的叶色突 变体,以全面了解叶色突变基因功能。值得注意 的是,插入突变以转基因技术为基础,涉及转基 因安全性问题,在将插入叶色突变体用于农业生 产之前,必须对其环境安全性和食品安全性进行 深入的研究和分析。
叶色突变体的来源十分广泛,包括自发突 变、人工诱发突变、插入突变和基因沉默突变。 每种来源的突变体各有其优缺点,只有了解这些 特点,才可有针对性的选择突变体应用策略。
自发突变在自然条件下发生,未经过复杂的 生物技术操作手段,将其直接用于常规育种,不 存在转基因安全性问题。但自发叶色突变的频率 极低,即使获得了感兴趣的突变体,也需要通过 繁琐的图位克隆法分离自发突变基因,时间长, 难度大。这些不利因素极大限制了自发叶色突变 在功能基因组学研究中的应用。
叶色突变的分子机制较为复杂。突变基因可 直接或间接干扰叶绿素的合成及稳定,经由多种 途径引起叶色变异。
根据叶色突变体的研究结果,目前,对其发 生机制的推测主要有以下几种观点: 4.1 叶绿素生物合成途径中的基因突变 绿色植物 和某些藻类的叶绿素形成从谷氨酰 -tRNA 开始, 至叶绿素 a、b 合成结束(Beale 2005)。目前,被 子植物叶绿素合成途径中所有的关键酶都已被鉴定 出来(图 1、表 1),该途径中任何基因发生突变都 可能阻碍叶绿素形成,改变叶绿体中各种色素的 比例,引起叶色变异。
叶色变异通常影响突变体光合效率,造成作 物减产,严重时甚至导致植株死亡,因此过去常 被认为是无意义的突变。近年来,叶色突变体的 利用价值受到越来越多关注。在育种工作中,叶 色变异可作为标记性状,简化良种繁育(马志虎等 2001)和杂交种生产(Zhao 2000); 某些叶色突变体具 有特殊的优良性状,为作物遗传育种提供了优秀 的种质资源(Gan 和 Amasino 1995)。在基础研究 中,叶色突变体是研究植物光合作用(Fambrini等 2004)、光形态建成(Parks 和 Quail 1991)、激素 生理(Agrawal等2001)以及抗病机制(Singh等2000) 等一系列生理代谢过程的理想材料;同时利用此 种突变体可分析鉴定基因功能(Hansson等1999),了 解基因间互作(Lopez-Juez 等 1998)。本文综述了叶 色突变体研究现状,并对其在遗传育种、功能基 因组学和植物生理学研究中的应用前景作了展望。 1 叶色突变体的分类 1.1 苗期叶色分类法 叶 色 突 变 常 在 苗 期 表 达 , 且易于识别,因此苗期叶色一直是最为常用的叶 色突变体分类标准。然而苗期叶色分类法以表型
提要 叶色变异是比较常见的突变性状。叶色突变体在基础研究和育种工作中越来越显得重要。文章概述叶色突变体的 分类方法、来源、遗传方式和突变的分子机制,着重介绍其应用价值及前景。 关键词 叶色突变体;分子机制;育种研究
叶色变异是比较常见的突变性状,一般在苗 期表达,但少数突变体直到生育后期才发生叶色 突变。由于突变基因往往是直接或间接影响叶绿 素的合成和降解,改变叶绿素含量,所以叶色突 变体也称为叶绿素突变体。
植物生理学通讯 第 42 卷 第 1 期,2006 年 2月
1
专论与综述 Reviews
植物叶色突变体
何冰 刘玲珑 张文伟 万建民*
南京农业大学作物遗传与种质创新国家重点实验室,江苏省植物基因工程中心,南京 210095
Plant Leaf Color Mutants
HE Bing, LIU Ling-Long, ZHANG Wen-Wei, WAN Jian-Min* National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Plant Gene Engineering Center of Jiangsu Province, Nanjing 210095, China
缺乏光敏色素生色团的叶色突变体是研究血 红素对叶绿素合成的调节作用的理想材料,也是 研究高等植物光形态建成的理想材料。光敏色素 生色团是光形态建成的光受体——光敏色素的必需 组分,对光敏色素活性起决定作用(Terry 1997)。 Terry等(1993)以缺乏光敏色素生色团-叶色突变体