单闭环可逆直流调速系统
单闭环直流调速系统

单闭环直流调速系统是一种常见的控制系统,用于控制直流电机的转速。
以下是单闭环直流调速系统的基本组成和工作原理:
基本组成:
1. 直流电机:负责将电能转换为机械能。
2. 编码器或传感器:用于测量电机的实际转速。
3. 控制器:通常使用PID控制器,根据实际转速和设定转速之间的误差进行调节。
4. 功率放大器:将控制器输出的信号放大后送至电机,控制电机的转速。
工作原理:
1. 测量阶段:编码器或传感器测量电机的实际转速,并将这个信息反馈给控制器。
2. 比较阶段:控制器将实际转速与设定的目标转速进行比较,计算出误差值。
3. 控制阶段:根据误差值,控制器通过PID算法计算出控制信号,控制电机的转速。
4. 执行阶段:功率放大器根据控制信号控制电机的转速,使实际转速逐渐接近设定转速。
调速过程:
-如果实际转速低于设定转速,控制器会增加电机的供电,使电机加速。
-如果实际转速高于设定转速,控制器会减小电机的供电,使电机减速。
-控制器通过不断地调整电机的供电,使得实际转速稳定在设定的目标转速附近。
通过单闭环直流调速系统,可以实现对直流电机转速的精确控制,广泛应用于工业生产中的传动系统、自动化设备等领域。
转速单闭环可逆直流脉宽调速系统实验报告

转速单闭环可逆直流脉宽调速系统实验报告成都信息工程大学课程实验报告课程名称所在学院专业指导教师实验小组小组成员姓名成绩总评学号签名 2021年 2 月《电机拖动及运动控制系统I》课程实验报告实验名称实验地点指导老师一、实验目的 1. 掌握转速单闭环可逆直流脉宽调速系统的组成及主要单元部件的工作原理。
2. 掌握转速单闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。
二、实验项目 1、各控制单元的仿真调试。
2、开环机械特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定 3、闭环静特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定三、实验线路简图及基本操作步骤(一)基本单元特性仿真测试 1、三相桥式晶闸管整流单元转速单闭环可逆直流脉宽调速系统实验实验日期实验小组教师评阅 A B C D 22、ASR调节器的调整(调零和正负限幅值的调整)(二)开环机械特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定四、数据记录及处理结果3n=1000r/min T2=200N.m alpha_deg=125 n=500r/min4(三)闭环静特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定四、数据记录及处理结果 1、开环系统调试,观测电动机在全电压起动和起动后加额定负载时电动机的转速、转矩和电流变化,系统(正转)开环机械特性测 n=1000r/minT2=200N.m alpha_deg=125 实验资料 Ia(A) n(r/min) T2(N.m) 1.75 -0.36 2.17 25.83 -5.13 31.97 54.20 -13.3 67.07 56.54 -17.6 69.97 1299 -12.7 1264.4 1259.6 46.37 53.07 1607.6 1654.7 1558.8 n=500r/min 实验资料 Ia(A) n(r/min)T2(N.m) 1.75 -0.36 2.17 25.83 -5.13 31.96 54.20 -13.3 67.07 55.54 -19.4 68.73 1193.8 1172.6 1154.9 -14.6 20.87 43.96 1477.3 1451.1 1429.2 2、闭环系统调试,系统(正转)闭环机械特性测 T2=200N.m n=500r/min 或n=1000r/min 5实验资料 Ia(A) n(r/min) T2(N.m) 1.75 -0.36 2.17 25.75 -5.11 31.86 28.33-5.64 35.06 54.15 -13.3 67.01 54.87 -13.7 67.90 56.67 -17.2 70.13 53.09 -24.1 65.69 五、思考题及考察为了防止上、下桥臂的直通,有人把上、下桥臂驱动信号死区时间调得很大,这样做行不行?为什么?您认为死区时间长短由哪些参数决定?答:不行。
单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。
接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。
在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。
因此,设计一个高性能的直流调速系统至关重要。
本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。
接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。
电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。
因此,通过改变电机的电压和电流可以实现电机的调速。
三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。
传感器用于测量电机的转速,并将信息传递给控制器。
控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。
执行器根据控制器的输出信号来控制电机的电压和电流。
在本实验中,采用PID控制器进行调节。
PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。
调整PID控制器的参数可以使用试错法、频率响应法等方法。
四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。
单闭环直流调速系统实验报告

单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。
本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。
二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。
电机通过功率电路接受控制器的指令,实现转速调节。
编码器用于测量电机转速,电流传感器用于测量电机电流。
三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。
2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。
3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。
4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。
5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。
四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。
实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。
2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。
实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。
3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。
实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。
五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。
实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。
然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。
因此,在实际应用中,还需要进一步优化和改进。
六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。
例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。
同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。
单闭环直流调速系统

① 闭环静特性比开环机械特性硬得多。负载电流相等时
nb
nk 1 K
sk s ② 闭环系统的静差率要比开环小得多。理想空载转速相等时, b 1 K
③ 闭环系统可比开环有更大的调速范围。静差率相等时, Db 1 K Dk ④ 闭环系统比开环系统的抗干扰性能好。
3、如右图所示,设电机开始工 作于A点,当负载电流增大时, 开环和闭环系统工作的原理是不 同的: (1)开环系统,给定不变,电枢电 压就不变,电流增加,工作点将 沿最下面那条机械特性向下移动
(2)而对于闭环调速系统,给定不变,电流增加时,系统有维持转速不 下降的趋势,通过调节,电枢电压升高,工作点将移至B、C或D。 ABCD所在直线就是闭环系统的在该给定电压下的一条静特性曲线。
U d Id R n Ce
由上述四式不难得出
R n Id Ce 1 K Ce 1 K
该式称为系统的静特性方程。
* K p KsU n
K
K p K s Ce
称为系统的开环放大系数。
静特性与机械特性的比较-1
1、机械特性调速系统对开环而言;静特性是对闭环系统而言的。两者 都表示电机转速与负载电流之间的关系,即n=f(Id)。 2、一条机械特性曲线对应于一个不变的电枢电压;而一条静特性曲线 对应于 一个不变的给定电压。
Ud Id R U d↓→ n ↓→ U n ↓→ U↑→ U ct↑→ U d↑→ n↑ Ce
3、单闭环调速系统的静特性
闭环调速稳定工作时,电机转速与负载电流之间的关系称为闭 环调速系统的静特性。 由稳态结构图可知
* U U n Un
U ct K p U
U d K sU ct
当然,转速上升,转速反馈电压会升高,但其升值小于 给定电压增值,电压差总体上是增大的,转速是上升的。
单闭环直流调速系统介绍课件

智能化:引入 人工智能技术, 实现系统的自 适应控制和自 学习能力
网络化:通过 互联网和物联 网技术,实现 远程监控和故 障诊断
集成化:将多 个子系统集成 为一个整体, 提高系统的集 成度和可靠性
节能和环保的发展趋势
01
提高能源利用率:通过优化控制策略和算法,降低能耗,提高能源利用率
02
减少污染排放:采用环保材料和工艺,减少生产过程中的污染排放
单闭环直流调速 系统介绍课件
目录
01. 单闭环直流调速系统的基本 概念
02. 单闭环直流调速系统的控制 方式
03. 单闭环直流调速系统的应用 领域
04. 单闭环直流调速系统的发展 趋势
1
单闭环直流调速 系统的基本概念
直流调速系统的组成
01
整流器:将交流 电转换为直流电
02
滤波器:去除直 流电中的交流成
04
应用场合:适用于对转速要求不高,但对响应速度要求较高的场合
电流控制方式
STEP1
STEP2
STEP3
STEP4
电压控制方式: 通过控制电压 来调节电流, 实现调速
电流控制方式: 通过控制电流 来调节电压, 实现调速
速度控制方式: 通过控制速度 来调节电流, 实现调速
位置控制方式: 通过控制位置 来调节电流, 实现调速
网络化:实现远程监控 和控制,提高系统的可 维护性和可扩展性
谢谢
速度控制方式
1
电压控制方式:通过调节直流电源的输出电压来控制电机的转速
2
电流控制方式:通过调节直流电源的输出电流来控制电机的转速
3
转速控制方式:通过调节电机的转速来控制电机的转速
4
位置控制方式:通过调节电机的位置来控制电机的转速
单闭环P和PI的PWM-M系统控制仿真

一.PWM调速系统的优点自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统,与V-M系统相比,PWM系统在很多方面有较大的优越性。
(1)主电路线路简单,需用的功率器件少。
(2)开关频率高电流容易连续,谐波少电机损耗及发热都较小。
(3)低速性能好,稳速精度高,调速范围宽,可达1: 10000左右。
(4)与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。
(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗不大,因而装置效率较高。
(6)直流电源采用不可控整流时电网功率因数比相控整流器高。
由于有上述优点,直流脉宽调速系统的应用日益广泛,特别是在中、小容量的高动态性能系统中,已经完全取代了V-M系统。
二.单闭环调速直流调速系统的介绍单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值,电动机以最大电流恒流加速启动。
电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。
在电动机转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。
三.调节器的作用在控制系统中设置调节器是为了改善系统的静、动态性能。
在采用了PI调节器以后,构成的是转速单闭环无静差调速系统。
改变比例系数和积分系数,可以得到振荡、有静差、无静差、超调大或启动快等不同的转速曲线。
如果把积分部分取消,改变比例系数,可以得到不同静差率的响应曲线直至振荡曲线;如果改变PI调节器的参数,可以得到超调量不一一样、调节时间也不一样的转速响应曲线。
单闭环直流调速系统

第十七单元 晶闸管直流调速系统第二节单闭环直流调速系统一.转速负反馈宜流调速系统转速负反馈直流调速系统的原理如图17-40所示。
转速负反馈直流调速系统由转速给左、转速调节器ASR 、触发器CF 、晶闸管变流器U 、 测速发电机TG 等组成。
直流测速发电机输出电压与电动机转速成正比。
经分圧器分圧取出与转速n 成正 比的转速反馈电压Ufn 0转速给定电压Ugn 与Ufn 比较,其偏差电压A U=Ugn-Ufn 送转速调节器ASR 输入 端。
ASR 输出电圧作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Udo 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统.1. 转速负反馈调速系统工作原理及其静特性设系统在负载T L 时,电动机以给定转速nl 稳定运行,此时电枢电流为Idl,对应 转速反馈电圧为Ufnl,晶闸管变流器输出电压为Udi 。
当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下 降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,A U=Ugn-Ufn 加。
转速调节器ASR 输出电压Uc 增加,使控制角a 减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为:T L t — Id t — ld (R 》+Rd ) t I -*Ufn I U t — Uc t -* a | —Ud t -*n t 。
图17-41所示为闭坏系统静特性和开环机械特性的关系。
n亠 =H o + A//图17—41闭环系统静特性和开环机械特性的关系.图中①②③④曲线是不同Ud之下的开环机械特性。
假设当负载电流为Idl时,电动机运行在曲线①机械特性的A点上。
当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由丁•电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至&点,转速只能相应下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制系统课程设计课题:单闭环可逆直流调速系统系别:电气与信息工程学院专业:自动化姓名:学号:成绩:河南城建学院2015年12月31日目录一、设计目的 (2)二、设计任务及要求 (2)三、总体方案设计 (2)四、硬件电路设计 (3)4.1.1 直流调速系统稳态性能分析 (3)4.1.2静态性能指标 (4)4.1.3 基于稳态性能指标闭环直流调速系统设计 (5)4.1.4 直流调速系统动态性能分析 (6)4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 (9)4.2、控制系统动、静态数学模型的建立 (10)4.2.1 双极性控制的桥式可逆PWM变换器的工作原理 (10)4.2.2桥式可逆PWM变换器 (10)五、计算机仿真 (13)六、设计总结 (14)参考文献 (16)一、设计目的在电力拖动系统中,调节电压的直流调速系统是应用最为广泛的一种调速方法,除了利用晶闸管获得可控的直流电源外,还可以利用其他可控的电力电子器件,采用脉冲调制的方法,直接将恒定的直流电压调制为极性可变、大小可调的直流电压,用以实现直流电机电枢电压的平滑调节,构成脉宽直流调速系统。
本设计采用了PWM 脉宽调制的方法,完成了带转速负反馈的单闭环直流调速系统的设计及实验。
本设计重点介绍了单闭环可逆直流调速系统的总体结构、设计原理及参数优化设计方法,提供了通过matlab 仿真进行实验效果预分析和校正处理,得到较为理想结果后进行实际操作和调试的实验思路。
二、设计任务及要求本次运动控制课程设计要求自拟控制系统性能指标的要求(调速范围、静差率、超调量、动态速降、调节时间等)设计系统原理图,完成元器件的选择,选择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。
为了进行定量的计算,选一组电机参数:功率kw P N 18=,额度电压v U N 220=,额定电流A I N 94=,额定转速min /1000r n N =,电枢电阻Ω=15.0a R ,主电路总电阻Ω=45.0R ,40=s k 。
最大给定电压V U nm15*=,整定电流反馈电压V U im 10=.要求系统调速范围20=D ,静差率%10≤,N dbt I I 5.1=,N dcr I I 1.1=。
三、总体方案设计为了提高直流系统的动静态性能指标,通常采用单闭环控制系统。
对调速系统的要求不高的场合,采用单闭环系统,而对调速系统指标要求高的采用多闭环系统。
按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。
在单闭环系统中,转速单闭环运用较多。
在本设计中,转速单闭环实验是将反应转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移向控制电压ct U ,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈的闭环系统。
电机的转速随给定的电压变化,电机最高转速由速度调节器输出限幅所决定,速度调节器采用P (比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI (比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围变化。
四、硬件电路设计4.1.1 直流调速系统稳态性能分析直流电动机具有良好的起、制动性能,可在大范围内平滑调速。
广泛应用于需要调速和快速正反向变化的电力拖动领域中。
直流电动机的转速和其它参量之间的稳态关系可用(1—1)式表示Φ-=e K IR U n (1—1)式中:U ——电枢供电电压; e K ——由电机结构决定的电动势常数;R ——电枢回路总电阻;n ——电动机转速;I ——电枢电流;调节电动机的转速可以有三种方法:(1)调节电枢的供电电压U 来调节转速;改变电枢回路电阻R 或减弱电机励磁磁通Φ调节。
在自动控制的直流调速系统往往以改变电压调速为主。
静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。
抗扰动性是指系统稳定在某转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。
4.1.2静态性能指标1.调速范围电动机在额定负载运行时,系统限定的最高转速m ax n 与最低转速m in n 之比叫做调速范围,用D 来表示min max n n D =(1—2)2.静差率 系统在一转速下运转的时候,当负载由空载增加到额定值的时候对应的转速降 落ed n ∆和理想空载转速0n 的比值,称作为静差率s ,表示为(1—3) 显而易见,静差率它是用来衡量调速系统在负载发生变化的时候其转速的稳定度。
同样情况下当机械特性硬度变大,ed n ∆就会变小,从而静差率也就变小,最终转速的稳定度就提高了。
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。
一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。
脱离了对静差率的要求。
任何调速系统都可以得到极高的调速范围,反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
4.1.3 基于稳态性能指标闭环直流调速系统设计调速原理根据自动控制原理,反馈控制闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。
调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统能减少转速降落。
图一 转速负反馈直流调速系统结构框图在有反馈的闭环直流调速系统里,安装测速发电机 TG 与电动机同轴运转,这时可以引出负反馈电压n U ,它被调量转速成正比。
n U 和给定电压*n U 比较后,就得出转速偏差电压ΔUn ,在经过放大器 A 的放大作用,最总控制电力电子变图二闭环系统静特性和开环机械特性的关系U得以产生,用它来控制电动机转速n。
换器UPE的电压c图三转速闭环直流调速系统稳态结构框图由图看来,闭环系统能够减少稳态速降的实质在于它的自动调节作用,在于它能随着负载的变化而相应地改变电枢电压,以补偿电枢回路电阻压降。
带有比例放大器的反馈控制闭环调速系统是有静差系统,而积分控制可以使系统在无静差的条件下恒速运行,实现无静差调速。
根据设计要求,要求稳态无静差,则要求调节器带有积分环节。
4.1.4 直流调速系统动态性能分析动态性能指标是实际生产对控制系统的动态性能有一定的要求,经过折算和量化表示出来的。
其动态性能指标包括了其对给定的跟随性能指标和其对扰动输入的抗扰性能指标。
1.跟随性能指标在给定信号R(t)的作用下,系统输出量C(t)的变化规律可以通过跟随性能指标来描述。
当给定信号不同时,输出的响应也就不一样。
通常情况下输出量的初始值为零的时候,在给定信号阶跃变化的情况下的过渡过程来作为典型的跟随过程,这时候的动态响应又我们又叫做阶跃响应。
在一般的情况下我们希望阶跃响应中的输出量c(t)和其稳态值∞c 的尽可能的小,而达到∞c 的时间尽可能的快。
通常用用来作为阶跃响应的跟随性能的指标有:上升时间r t ,超调量%σ和调节 时间s t 三个量。
下面分别介绍:1).上升时间r t在典型的阶跃响应跟随的过程中,输出量从零开始起第一次上升到稳态值∞c 是所用的时间我们称之为上升时间,它可以表示系统动态响应的快速性,见下图图四 输出量与时间关系2).超调量%σ在典型的阶跃响应跟随系统中,系统输出量超出了稳态值的最大偏离量在与 稳态值的比值,叫做超调量:%100%max ⨯-=∞∞c c c σ%σ反映了系统的相对稳定性。
系统的超调量越小,则表示系统的相对稳定性越好,即就是系统的动态响应比较平稳。
3).调节时间s t调节时间是衡量系统的整个调节过程快慢的物理量。
从原则上讲它是从给定量阶跃变化起到输出量完全稳定下来时的时间。
但对于线性的控制系统而言,原则上要等到∞=t 才是真正的稳定下来了,可是在实际的系统中由于存在一些非线性的因素致使其不用这样。
通常,我们一般在响应曲线的稳态值附近,取()%2%5±±或的范围作为允许的误差带并认为响应曲线达到了并且再也不超出 次范围的时候所需要的最短的时间定义为调节时间,如图1—2。
2.抗扰性能指标抗扰过程是在系统的稳定运行中,突然加上负载阶跃扰动后输出的动态相应过程,并根据这个指标来定义抗扰动态的性能指标,见图1—3。
同常我们用到 的抗扰性能指标分为动态降落%max c ∆和恢复时间f t : 1).动态降落%max c ∆动态降落:在系统稳定运行时,突然给其加一定的扰动而后引起的转速的最大降落值%max c ∆。
用输出量原稳态值1∞c 的百分数来表示。
输出量在动态降落后慢慢的恢复最后达到新的稳态值()212,∞∞∞-c c c 是该系统在此次扰动下的稳态降 落。
2).恢复时间f t系统从阶跃扰动的作用开始计时直到系统的输出量基本上恢复到稳态时,即距离新的稳态值2∞c 的差进入了某一基准量b c 的()%2%5±±或范时总共花费的 时间,我们定义其为恢复时间f t ,其中b c 叫做抗扰指标中输出量的基准值。
在实际系统中由于对于各种动态指标的要求不同工程各有不同,所以通常要根据生产机械的具体要求而设定。
不过一般来说,调速系统的动态指标以抗扰性 能为主。
4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 反馈控制系统对被反馈环包围的前向通道上的扰动都有抑制功能。
扰动——除给定信号外,作用在控制系统各环节上的一切会引起输出量变化的因素都叫做“扰动作用”。
这里调速系统的扰动源有以下几种:(1)负载变化的扰动(使d I 变化);(2)交流电源电压波动的扰动(使s K 变化);(3)电动机励磁的变化的扰动(造成e C 变化 );(4)放大器输出电压漂移的扰动(使p K 变化);(5)温升引起主电路电阻增大的扰动(使R 变化);(6)检测误差的扰动(使 变化)。
图五 闭环调速系统的给定作用和扰动作用在设计闭环调速系统,常常会遇到动态稳定性和稳态性能指标发生矛盾的情况,这是可以设计动态校正环节,来同时满足动态稳定性和稳态性能指标。
由静态设计要求得,调节器要包含积分环节,所以可以选择比例积分调节器或者比例积分微分调节器。
本设计中选择了后者,原因在后面的内容中加以详述。
4.2、控制系统动、静态数学模型的建立4.2.1 双极性控制的桥式可逆PWM变换器的工作原理PWM系统在许许多多的方面都有很大的优点例如:(1) PWM系统的主电路线路简单,需用的功率器件少;(2)由于其功率开关器件工作在开关状态,以致其导通损耗小,而开关频率适当时,开关损耗也不是很大,从而装置效率较高;(3)系统的开关频率高,因此其电流容易连续,谐波少,电机损耗及发热都比较小;(4)直流电源采用不控整流时,电网效率因数比相控整流器高。