几种表达系统的比较
不同表达系统在蛋白质产生方面的优缺点

不同表达系统在蛋白质产生方面的优缺点随着科技的日益发展,人们对于生物学研究的需求也越来越高。
而蛋白质作为生命体代谢过程中的重要组成部分,其产生机制的研究也变得越来越重要。
不同的表达系统在蛋白质产生方面有着不同的优缺点,本文将从多个方面进行分析。
一、概述蛋白质表达是指将 DNA 序列转录为 RNA 后再将其翻译为相应的蛋白质的过程。
在这个过程中,表达系统起到了至关重要的作用。
不同表达系统的优缺点直接影响了蛋白质的产率和质量。
二、大肠杆菌表达系统大肠杆菌系统是最常用的表达系统之一。
其最大的优点是表达量高,结构简单且易于操作。
此外,大肠杆菌表达系统还具有以下优点:1. 成本低廉:大肠杆菌的培养和酵母细胞相比较简单,生产成本相对较低。
2. 短周期:大肠杆菌表达系统的周期短,能够较快产生大量的蛋白质。
3. 稳定性高:大肠杆菌表达系统非常稳定,可以长期保存和传代。
但是,大肠杆菌表达系统也存在一些缺点:1. 没有真核系统那样完善的修饰功能:大肠杆菌表达的蛋白质无法进行真核系统所特有的复杂后修饰。
2. 易受到毒素的影响:表达的蛋白质会容易受到毒素、有害物质的影响。
三、哺乳动物系统表达系统哺乳动物系统表达系统可以表达具有多种复杂后翻译修饰的蛋白质,这些蛋白质更接近自然状态,因此常用于生产生物药物、抗体的制备。
哺乳动物系统表达系统相较其他表达系统的优点包括:1. 复杂修饰:哺乳动物系统表达的蛋白质可以被修饰成比较接近自然状态的蛋白质。
2. 有利于生产生物药:哺乳动物系统表达的蛋白质可以用于生产许多生物药。
但是,哺乳动物系统表达不是没有缺点,主要包括:1. 成本高:哺乳动物系统表达的成本比其他表达系统高。
2. 周期长:哺乳动物表达系统周期长,需要更长时间才能产生足够的蛋白质。
四、昆虫系统表达系统昆虫系统表达是近年来发展起来的新一代表达系统。
这种表达系统的优点主要有:1. 微生物介导不良反应少:由于昆虫细胞培养液比微生物培养液更接近人体环境,所以由昆虫细胞表达的蛋白质导致的过敏反应很少。
真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要 : 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。
并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。
随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。
利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。
在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。
该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。
其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。
但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。
为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。
原核,昆虫,哺乳动物表达系统 对比

表达系统是生物体进行交流和传递信息的重要工具,不同类裙的生物体在表达系统上有着独特的特点和功能。
本文将就原核、昆虫和哺乳动物的表达系统进行对比分析。
一、原核1. 原核生物是一类较为简单的生物体,其表达系统主要包括RNA转录和翻译,以及一些原核生物特有的机制,如转座子、限制酶等。
2. 在原核生物中,基因的表达和调控相对简单,通常是通过DNA的转录产生mRNA,然后再通过翻译产生蛋白质。
原核生物的基因组相对较小,基因的结构也相对简单。
3. 原核生物的表达系统不仅包括基本的基因表达,还包括许多在分子水平上进行信息交流和传递的机制,如质粒介导的DNA转移、RNA 介导的基因沉默等。
二、昆虫1. 昆虫是一类较为复杂的生物裙体,其表达系统包括了多种不同的信号传导和调控机制,如激素系统、化学信号系统等。
2. 在昆虫中,基因的表达和调控已经相对复杂起来,有许多基因调控网络参与其中。
除了mRNA的转录和翻译外,昆虫还具有一些特殊的表达机制,如miRNA介导的基因沉默、垂体激素调控等。
3. 昆虫的表达系统在进化上相对比较保守,但在不同物种和不同环境中,表达系统也会出现一些特殊的适应性和多样性。
三、哺乳动物1. 哺乳动物是一类高度复杂的生物裙体,其表达系统包括了多种不同的信号传导和调控机制,如内分泌系统、神经系统等。
哺乳动物的基因组相对较大,基因的结构也十分复杂。
2. 在哺乳动物中,基因的表达和调控已经相对复杂起来,有许多基因调控网络参与其中。
哺乳动物具有多种不同的表达机制,如DNA甲基化、组蛋白修饰等。
3. 哺乳动物的表达系统在进化上相对比较灵活,不同物种和不同环境中会呈现出不同的表达模式和调控机制。
在哺乳动物中,基因表达的调控和信号传导机制十分复杂,涉及到许多不同的细胞信号通路和调控网络。
原核、昆虫和哺乳动物在表达系统上具有明显的差异。
原核生物表达系统相对简单,主要是基因的转录和翻译,以及一些特殊的表达机制。
昆虫和哺乳动物的表达系统则相对复杂,涉及到多种不同的信号传导和调控机制。
重组蛋白的表达系统(详细版)

终止子:转录终止子按照是否依赖和不依赖ρ因子的作用分为两类,这两类终止子均在终止点前含有一段7-20bp的回文序列。终止子可以保护mRNA在核外不被降解,显著延长mRNA的寿命,由此提高重组蛋白的表达量。但是对于T7系统来说,由于T7 RNA聚合酶效率极高,宿主中随时都有充足的mRNA以供翻译,因此大部分在T7系统中表达的重组蛋白并不在意质粒上是否有终止子,只有一些自身带有翻译起始信号的外源基因需要终止子。启动子受细胞类型的限制,在不同的细胞系中有很大不同,因此需根据宿主细胞(尤其是真核宿主)的类型选择不同的启动子以便于目的基因的高效表达。
表4:常用原核表达载体质粒
1.3 优化表达条件
重组蛋白的表达流程很少有一次成形的,为了提高蛋白表达量、改善蛋白质量,表达条件和白不表达时:
2
如果重组蛋白不表达(包含体和可溶蛋白都没有),首先检查cDNA和质粒是否正确,蛋白对宿主菌是否有很大毒性,然后尝试更换菌株、质粒载体和融合标签。原核蛋白在大肠杆菌中不能表达的情况很少见,通常是真核蛋白不能表达。不能表达的重组蛋白,即使在更换了宿主、载体后可以表达,表达量也不会很高,如果需要大规模生产,最好尝试酵母和昆虫细胞表达系统。
融合标签:融合标签是与目的蛋白共表达的一段多肽,方便重组蛋白的纯化、固定和检测,表3给出了常用的重组标签。如果不需要对重组蛋白进行纯化,尽量不要引入融合标签,以免影响蛋白性质;如果重组蛋白本身能够结合某种亲和柱,如某些金属结合蛋白可以结合Ni-NTA,某些糖结合蛋白能够特异识别糖类,也不必引入标签。融合标签的引入能够大大简化重组蛋白的纯化流程,并提高蛋白溶解度。商业化表达质粒,如pET、pGEX等提供了各种纯化标签和融合蛋白供选,应根据蛋白具体情况进行选择。His-tag是最常用的纯化标签,它具有很多优点:标签较短(10-20个氨基酸残基),不带电(pH8.0),免疫原性差,通常不影响重组蛋白的结构和功能,Ni2+亲和力高,能够通过一步纯化达到60%-90%的纯度。如果蛋白质溶解度不高,导致折叠困难、表达量低,可以选择较大的融合标签(GST、MBP、Trx等)帮助重组蛋白表达和折叠,提高重组蛋白溶解度,从而提高表达量。较大的融合标签有时也会导致翻译困难甚至提前中止,纯化后发现大部分都是标签蛋白也是常见现象。翻译的提前中止会大大影响重组蛋白产率和后续纯化,所以在短标签能够达到目的的时候,尽量不要选择大的融合标签。标签位置的选择也很重要:N端标签(短的或长的)自身带有启动子和适应宿主偏好的密码子,可以帮助目的蛋白表达,提高表达量,但是提前中止翻译的蛋白片段也会被一并纯化出来,降低重组蛋白纯度,对蛋白酶敏感的、自身容易降解的以及一级序列中有集中的疏水残基区的蛋白尤其要避免使用N端标签;C端标签则可以保证只有完整蛋白得到纯化。另外,如果蛋白的近N端或近C端有重要功能区,如酶活中心、配体结合位点、二硫键、多聚体稳定界面、相互作用界面等,则要避免纯化标签位于该末端,以免影响重组蛋白的结构和功能。如果融合标签对蛋白性质有较大影响,但又是纯化所必须的,就可以考虑在纯化过程中去除标签。主要有三种方法:化学裂解,如溴化氰(CNBr)、羟胺(NH2OH)等,能够简单有效地去除标签,但反应条件苛刻(羟胺需要在pH9.0下反应),特异性较差,而且会引入不必要的修饰,除包含体蛋白的处理外已经很少使用了;酶解,如PPase等,其底物一般是一段比较长的肽链,特异性强,是目前比较常用的方法,缺点是酶切反应需要较长的时间,也增加了蛋白纯化的步骤,使纯化变得繁琐;IMPACT质粒,该质粒在纯化标签和目的蛋白之间插入了一个蛋白质内含子(intein),intein具有可诱导的自切割活性,使用IMPACT质粒表达的重组蛋白,只需要改变缓冲液的pH和温度,即可切掉融合标签。
简述基因工程中常用的表达系统及其优缺点

简述基因工程中常用的表达系统及其优缺点基因工程是一种在生物体内对其遗传物质(DNA)进行修饰的一种技术,包括基因插入、替换、转换等技术。
这些技术可以实现改变基因的大小、改变基因的结构、更改生物体的性状等。
表达系统是实现基因工程的重要技术手段,主要分为抗性表达系统和非抗性表达系统两大类。
抗性表达系统是一种自毒型表达系统,可以将外源基因表达于细胞内。
此种系统主要分为哺乳动物遗传载体系统(MCS)和细菌遗传载体系统(BCS),是基因编辑技术的主要载体。
MCS可以实现灭活特定基因的功能,BCS可以将外源基因表达于细胞内,使其能够表达特定基因。
而抗性表达系统的优点在于可以控制外源基因的表达,而对基因突变及其调控有重要意义。
但缺点是,它只能实现有限的基因操作,不能实现复杂的基因编辑技术。
非抗性表达系统由质粒、表达调控元件和外源基因组成。
它的优点是可以实现高效的外源基因表达,同时还可以实现复杂的基因编辑技术。
但缺点是对基因表达有较高的要求,且在许多情况下,非抗性表达系统的表达效率更低。
通过比较可知,抗性表达系统主要用于灭活特定基因,而非抗性表达系统则可以实现高效和复杂的基因编辑技术。
因此,在根据实际应用场景选择正确的表达系统时,应充分考虑其优缺点,才能够有效地实现基因工程。
基因工程技术是一种改变或改善生物体性状的有效手段,像MCS、BCS等抗性表达系统可以灭活特定基因的功能,而质粒、表达调控元件和外源基因构成的非抗性表达系统则可以实现高效的外源基因表达和复杂的基因编辑技术。
抗性表达系统可以控制外源基因的表达,但只能实现有限的基因操作;而非抗性表达系统虽然可以实现复杂的基因编辑技术,但受到基因表达的要求较高,且表达效率也更低。
因此,在基因工程技术中,正确选择表达系统以及充分考虑其优势和劣势是至关重要的。
综上所述,表达系统在基因工程中起着重要的作用,可以实现高效的基因表达和复杂的基因编辑技术。
MCS和BCS抗性表达系统可以灭活特定基因,而非抗性表达系统则可以实现复杂的基因编辑技术。
简述基因工程中常用的表达系统及其优缺点

简述基因工程中常用的表达系统及其优缺点基因工程是现代生命科学的主要分支之一,这门学科的发展主要是基于分子生物学的基础知识,致力于研究操纵和编辑生物体的遗传物质,以实现一定的目的。
基因工程在农业、医疗、军事、安全和环境保护等诸多领域的应用,已经给人类带来了许多好处。
基因工程中使用的表达系统主要有质粒、细菌表达系统、动物细胞表达系统和植物细胞表达系统。
它们各自具有独特的优缺点,可以满足不同的基因工程应用。
一、质粒表达系统质粒表达系统是基因工程中最常用的表达系统之一,它可以在宿主细胞中对外源基因进行稳定表达。
传统的质粒表达系统由一个含有增强子的外源基因组成,这些增强子可以有效地增强基因的表达,使基因的表达水平有所提高。
优点是这种表达系统的准备工作容易、成本低,表达效率较高,但是缺点也很明显,宿主细胞往往会产生抗性,导致基因表达受到抑制,这也是这种表达系统的主要缺点。
二、细菌表达系统细菌表达系统是一种非常常用的表达系统,主要是利用细菌的表达机制来表达外源基因。
优点在于它可以有效地表达基因,并且表达的成本也比较低,而且它的可制备性也很高,在细菌中表达的成本也比较低,但是也有缺点,如细菌中表达的基因通常缺乏活性,使得基因不能有效地表达。
三、动物细胞表达系统动物细胞表达系统是基因工程中最常用的表达系统之一,主要是利用动物细胞的代谢机制,将外源基因植入动物细胞中,再使其表达出目标基因t。
这种表达系统的优点有:(1)物细胞可以制备细胞因子,从而使表达的基因更具有活性;(2)动物细胞具有复杂的细胞调控机制,可以有效地表达基因;(3)动物细胞可以比较容易地进行克隆,这也是这种表达系统最有价值的地方。
但是,动物细胞表达系统也存在一些缺点,比如宿主细胞抗性增加,基因表达受到抑制;高细胞表达成本,细胞的获得和细胞的维护成本都很高;动物细胞的移植技术较弱,缺乏稳定的移植技术。
四、植物细胞表达系统植物细胞表达系统是基因工程中最近发展起来的表达系统,主要是利用植物细胞的代谢机制来表达外源基因。
哺乳动物细胞表达系统

哺乳动物细胞表达系统按照宿主细胞的类型,可将基因表达系统大致分为原核、酵母、植物、昆虫和哺乳动物细胞表达系统。
与其它系统相比,哺乳动物细胞表达系统的优势在于能够指导蛋白质的正确折叠,提供复杂的N型糖基化和准确的O型糖基化等多种翻译后加工功能,因而表达产物在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质分子。
从最开始以裸露DNA直接转染哺乳动物细胞至今的30余年间,哺乳动物细胞表达系统不仅已成为多种基因工程药物的生产平台,在新基因的发现、蛋白质的结构和功能研究中亦起了极为重要的作用。
本文主要从表达系统及其两个组成部分——表达载体和宿主细胞等方面,简要介绍哺乳动物细胞表达系统和相关的研究进展。
研究现状①部分蛋白在哺乳动物细胞中的表达已从实验室研究迈向生产或中试生产阶段。
②已有许多重要的蛋白及糖蛋白利用哺乳动物细胞系统表达和大量制备、生产。
如人组织型血纤蛋白酶原激活因子、凝血因子Ⅷ、干扰素、乙肝表面抗原、红血球生成激素、人生长激素、人抗凝血素Ⅲ,集落刺激因子等。
有些产品已投入临床应用或试用。
③虽然经过多年努力,哺乳动物细胞表达系统的表达水平有大幅度增高,但从整个水平上看仍偏低,一般处在杂交瘤细胞单克隆抗体蛋白产率的下限,即1-30μg/l08细胞/24小时。
有人认为其限速步骤可嚣是在工程细胞中(对于重组蛋白来讲,常是异源的),重组蛋白的分泌效率较低。
1 表达载体1.1 表达栽体的类型哺乳动物细胞表达外源重组蛋白可利用质粒转染和病毒载体的感染。
利用质粒转染获得稳定的转染细胞需几周甚至几个月时间,而利用病毒表达系统则可快速感染细胞,在几天内使外源基因整合到病毒载体中,尤其适用于从大量表达产物中检测出目的蛋白。
根据进入宿主细胞的方式,可将表达载体分为病毒载体与质粒载体。
病毒载体是以病毒颗粒的方式,通过病毒包膜蛋白与宿主细胞膜的相互作用使外源基因进入到细胞内。
常用的病毒载体有腺病毒、腺相关病毒、逆转录病毒、semliki森林病毒(sFv)载体等。
几种表达系统的比较

几种表达系统的比较生物技术通报・综述与专论・BIOTECHNOLOGY BULLETIN2002年第2期几种表达系统的比较吴丹仇华吉童光志(中国农科院哈尔滨兽医研究所兽医生物技术国家重点实验室,哈尔滨150001) 摘要: 随着蛋白质工程和DNA重组技术的发展,许多有应用潜力的蛋白分子有待开发。
不同蛋白在不同系统中表达水平有显著差异,所以选择一种合适的表达系统对蛋白表达水平非常关键。
对细菌、酵母、昆虫杆状病毒、哺乳动物细胞4种表达体系作一概述,并讨论各自优缺点及常见问题。
关键词: 表达系统大肠杆菌酵母昆虫细胞哺乳动物细胞ComparisonofSeveralExpressionSystemsWuDan QiuHuaji TongGuangzhi(NationalKeyLaboratoryofVeterinaryBiotechnologynVeteriResearchInstitute ChineseAcademyofAgricultSciencesAbstract: Withthedevelopmentofrecombinant,manytypesofproteinthathavepotential valuesneedtobeproduced.expressonlevelsamongdifferentproteinex2pressio nsystems.Soit’scriticaltosystemforproteinproduction.Thisreviewwillsum2m arizetheadvantagesand,insectandmammalianexpressionsystems,andalsodis cussthesolutionstoKeywords Ecoli Yeast Insectcells Mammaliancells 随着生物化学和分子生物学技术的发展,使人们得以更深入地了解蛋白质分子的一级和二级结构,这样就可以有目的的进行改造,创建新的有价值的蛋白质分子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 生物技术通报 Biotechnology B ulleti n 2002 年第 2 期
3 昆虫细胞表达体系
除了以杆状病毒介导的昆虫细胞表达体系外 , 又开发比较新型的稳定转化系统 ,用于大量制备具 有功能活性的目的蛋白[8 ,9 ] 。其表达水平高于哺乳 动物细胞表达系统 ,并且在表达真核蛋白时 ,可以对 其进行翻译后修饰 ,其优越性远超过细菌表达体系 。 3. 1 杆状病毒和宿主细胞
细菌是一个重要的表达体系 ,特别对于不需糖 基化的蛋白 ,并且表达水平很高 。但由于原核细胞 表达体系简单 ,所以有其局限性 ,只适合少数蛋白 。
2 酵母表达体系
酵母具有微生物和真核生物的双重特点 。与大 肠杆菌不同的是 ,酵母可以对异源蛋白进行修饰 ,当 采用酵母信号肽时 ,蛋白能被正确折叠和加工 ,然后 分泌到培养基中 ;与哺乳动物细胞不同的是 ,酵母可 以在简单培养基中迅速生长 。可用酵母发酵技术对 临床和工业上有用的重要蛋白进行了工业化生产 。 目前抗体及其片段都用该系统进行了表达[4 ] 。它 还可以表达几乎所有植物蛋白 。在大肠杆菌中以包 涵体形式出现的蛋白 ,在酵母中表达时可生成可溶 性蛋白[3 ] ,另外 ,该系统可以克服异源蛋白降解问 题。 2. 1 转录 、转译调控元件
Key words : Expression systems Ecoli Yeast Insect cells Mammalian cells
随着生物化学和分子生物学技术的发展 ,使人 们得以更深入地了解蛋白质分子的一级和二级结 构 ,这样就可以有目的的进行改造 ,创建新的有价值 的蛋白质分子 。为此 ,各种不同的表达体系应运而 生 ,如细菌[1 ] 、昆虫细胞[2 ] 、酵母[3 ] 、哺乳动物细胞 表达系统等 。
2002 年第 2 期 吴丹等 :几种表达系统的比较
31
溶剂和氧还偶的存在 、反应的 p H 值等 。 1. 3 蛋白的分泌
采用前导序列可将蛋白直接分泌到细菌的周质 腔隙中 。常用的前导序列有 pe IB 前导序列 (来自 Erwinia carotocora 的果胶酸盐裂解酶基因) 和衍生 于碱性磷酸酶基因的前导序列 。有时周质中的重组 蛋白通过外膜“渗漏“到培养基中 ,这主要决定于蛋 白的氨基酸序列等 ,而非信号序列[31 ] 。表达产物分 泌到培养基中有利于快速筛选 ,Байду номын сангаас产物产量很高时 , 可以从培养基上清中直接纯化 。如果在上清中没有 发现产物 ,就需要从周质浸出物中分离蛋白 ,通常通 过溶解的方法 。
关键词 : 表达系统 大肠杆菌 酵母 昆虫细胞 哺乳动物细胞
Comparison of Several Expression Systems
Wu Dan Qiu Huaji Tong Guangzhi
( N ational Key L aboratory of V eteri nary Biotechnology Harbi n V eteri nary Research I nstit ute Chi nese Academy of A gricult ural Sciences , Haerbi n 150001)
1 大肠杆菌表达体系
大肠杆菌 ( E. coli) 表达系统的优点是产量高 、 生长速度快 、操作容易 、成本低 ,其缺点是不能对表 达蛋白进行糖基化修饰 。 1. 1 启动子等元件
为获得成功的表达 ,蛋白编码基因上下游需有 合适的序列 ,确保蛋白有效转录和翻译 。用于控制 蛋白表达的关键元件是启动子 。常用的启动子有 lac 、t rp 启动子或其复合物 ,以及λPL 启动子 。λPL 启动子专司λDNA 分子的转录 , 受温敏阻遏物调 控 。T7 RNA 启动子可用于严格调控的高水平表 达 。原核生物的核糖体结合位点 ( RBS) 是 E. coli 有效转录的第二个重要元件 。它包括起始密码子
Abstract : Wit h t he development of recombinant DNA technology and protiein engineering ,many types of protein t hat havepotential values need to be produced. There are great differences at expresson levels among different protein ex2 pression systems. So it’s critical to choose an appropriate expression system for protein production. This review will sum2 marize t he advantages and disadvantages of bacterial ,yeast , insect and mammalian expression systems ,and also discuss t he solutions to common problems.
在制订外源蛋白分泌表达策略时 ,可利用外源 蛋白的天然信号肽来促成重组蛋白的分泌 ,但有比 较研究表明 ,利用外源蛋白的天然信号肽引导表达 的重组蛋白较易降解 ,而利用酵母蛋白信号肽引导 表达的外源蛋白较为稳定[23 ] 。通常采用 S. cerevisi2 aeα - M F 、Pichia Pastoris PHO 、S. cerevisiae SUC2 的前导序列[24 ] 。酵母表达体系可将蛋白糖基化[6 ] 。 哺乳动物中的糖链由多种糖类组成 ,其中包括 N 乙酰半乳糖胺 、半乳糖 、唾液酸 ,相比之下 ,酵母所加 的糖链仅为甘露糖残基 。 2. 3 新型酵母 Pichia Pastoris
在酵母中 ,5′端非翻译区的二级结构和过高的 G含量可抑制翻译的起始 。起始密码子 A T G 前通
常需要富含 A 的序列 ,如可有效启动翻译的基序 AAAAAAA T G。
该表达体系对于外源基因序列的内在特性要求 严格 ,A + T 的含量在 30~55 % ,密码子的使用也具 有选择性[5 ] 。 2. 2 蛋白的修饰与加工
在典型的杆状病毒载体中 ,外源基因由强大的 多角体启动子所控制 ,以确保基因高水平转录 ,便于 重组病毒的筛选 ,并且可将重组蛋白大量分泌至培 养液中 。常用的杆状病毒是 A utographa calif orni2 ca 多 核 型 多 角 体 病 毒 ( AcN PV ) 和 家 蚕 ( B om by x mori) 多核型多角体病毒 (BmN PV) 。宿主细胞通常 来 源 于 双 翅 目 昆 虫 , 包 括 果 蝇 、蚊 子 。其 中 有 Schnei der 2 和从 D rosophil a mel anogaster 中衍生的 Kc 。来源于 S podoptera f rugi perda 的 Sf9 细胞系 是最常用的宿主细胞[10 ] 。 3. 2 翻译后的修饰 、加工
酵母表达量很高 ,特别是新型酵母 Pichia Pas2 toris 的产量可达 100~250mg/ L [7 ] 。破伤风毒素片 段 C 的表达量达到 12g/ L [25 ] 。酵母可进行高密度 发酵培养 ,在发酵罐中细胞干重可达 120g/ L 。兔抗 人的白血病抑制因子抗体在 Pichia Pastoris 中表达 量比在 E. coli 中增加 100 倍 。Pichia Pastoris 分泌 的某些蛋白有多糖基化现象 , 如 HIVgp120[26 ,27 ] 。 目前 , 对 于 糖 链 的 添 加 机 制 还 知 之 甚 少 。Pichia Pastoris 发酵培养产量高 , 但也有不尽人意之处 。 目的蛋白产量增加的同时 ,也提高了其它细胞分泌 的浓度 ,特别是蛋白水解酶 。在此环境下 ,有些蛋白 稳定 ,而另一些蛋白则特别容易被降解 。通常采用 三种方法解决 : (1) 补加氨基酸丰富的培养基 ,如蛋 白胨或酪蛋白氨基酸 ,使其作为蛋白水解酶的底物 , 以减少表达产物的降解[28 ] 。(2) 改变培养基的 p H 值[16 ] ,Pichia Pastoris 可在 p H3~7 的范围内生长 , 可将 p H 值调至蛋白水解酶活性区间之外 。例如表 达γαNA GAL 时就是通过维持 p H5. 5 使产物保持 稳定 ,而表达 mEGF 时则是通过维持 p H6. 0 和添加 1 %酪氨酸蛋白水解物以增加产量 。(3) 使用蛋白水 解 酶 基 因 缺 陷 的 Pichia Pastoris 宿 主 菌 (SMD1168) ,如在表达乳糖酶时 ,使用 SMD1168 较 之正常受体菌 GS115 表达量提高 2 倍[29 ] 。
生物技术通报
·综述与专论· B IO T EC HNOL O G Y BUL L ETIN 2002 年第 2 期
几种表达系统的比较
吴丹 仇华吉 童光志
(中国农科院哈尔滨兽医研究所兽医生物技术国家重点实验室 ,哈尔滨 150001)
摘 要 : 随着蛋白质工程和 DNA 重组技术的发展 ,许多有应用潜力的蛋白分子有待开发 。不同蛋白在不同 系统中表达水平有显著差异 ,所以选择一种合适的表达系统对蛋白表达水平非常关键 。对细菌 、酵母 、昆虫杆状病 毒 、哺乳动物细胞 4 种表达体系作一概述 ,并讨论各自优缺点及常见问题 。
A T G 和 SD 序列 ,其在 SD 序列的位置和大小影响 蛋白翻译效率 。SD 序列由 3~9 核苷酸组成 ,位于 起始密码子上游 3~11 核苷酸处 。另一个重要调控 元件是转录终止子 ,它可以防止转录超出目的基因 , 并增加 DNA 分子稳定性 。 1. 2 蛋白的加工