高分子分离膜材料的发展与应用
高分子化工材料的应用现状及发展趋势探析

高分子化工材料的应用现状及发展趋势探析摘要:高分子化工材料在化工材料中占有非常重要的地位。
它是化学材料中一个非常重要的研究方向,在许多行业中发挥着不可替代的作用。
随着各种技术的不断进步,高分子化工材料获得了新的发展机遇。
专业人士对聚合物化工材料的性能提出了更高的标准,从根本上满足了多元化发展的实际需要。
关键词:高分子;化工材料;应用现状;发展趋势1高分子化学材料的应用现状1.1在军工领域的应用与其他材料相比,高分子材料具有很强的耐热性和耐腐蚀性,因此在军事工业中得到了广泛的应用。
大多数高分子材料都是特殊的,可以在短时间内取代金属材料。
同时,聚合物材料还具有金属材料所不具备的便携性特点。
高分子材料在军事工业中的发展也很有前景。
1.2 在建筑领域的应用聚合物化学材料主要用于建筑领域的室内。
由于高分子化学材料具有很强的耐磨性和抗压性,因此可以很好地延长其使用寿命。
此外,高分子材料还可以有效降低材料成本,对提高装修质量和档次起到重要作用,对我国建筑装饰行业的发展也有很大的推动作用。
1.3 在民用领域的应用高分子化工材料在民用领域的应用主要体现在轮胎、绝缘防护套管等方面。
这些高分子材料可以以较低的成本发挥最大的作用,因此受到民用领域的欢迎。
2常见的高分子化工材料2.1 高分子智能材料目前,聚合物智能材料已广泛应用于我国各行业。
这种材料也可以随着环境的变化而不断变化。
大多数聚合物智能材料具有很强的修复能力,可广泛应用于建筑行业。
大多数聚合物智能材料在寒冷天气下呈固体形状,在炎热天气下可以通过90%的光和热[2]。
相信随着科学技术的不断发展,高分子材料也将更好地造福人类。
2.2稀土催化材料稀土催化材料作为一种常见的高分子化工材料,也为环境保护做出了更大的贡献。
大多数稀土催化材料都是以稀土元素为基础的,以提高整个材料的性能。
20世纪以来,大多数研究人员开始对催化材料进行研究,并取得了一些进展。
越来越多的研究人员将不同类型的稀土化合物有效地结合起来,形成聚合物材料。
高分子分离膜专题

高分子分离膜专题
一、引言
高分子分离膜,是一种由高分子材料制成的精细分离膜,通过滤过、
吸附、扩散等方式分离物料。
高分子分离膜通常由分子级别的小孔和分子
级别的体系组成,具有高分离效率、低热效应、高质量、低成本等优点,
是精细化工的重要工艺手段,在生物分离、环境净化、液体质量改善、有
机溶剂萃取等领域有广泛的应用。
二、高分子分离膜的原理
高分子分离膜的原理主要是通过滤过、吸附、扩散等方式,通过膜法,分离出不同大小的微粒或溶质。
高分子分离膜以极小的空隙直接把物质进
行分离,不需热力的作用即可进行分离,具有高能量效率、低成本、操作
简单等特点。
滤过原理:滤过是物料在膜体系中通过极小的孔隙而排出的过程,其
实在滤过过程中,存在三种不同现象:渗透、滤筛和压力滤,选择合适的
滤过方法,来进行不同的物料分离,提高高分子分离膜的分离效率。
吸附原理:吸附是指分子间的相互作用,其分离机理是利用溶质的物
理和化学的交互作用,使其在膜的表面上形成一个薄膜,然后捕捉微粒,
进行分离。
三、高分子分离膜的应用
(1)生物加工:高分子分离膜可用于细胞因子、血清蛋白、抗原和。
膜分离技术在食品工业上的应用

膜分离技术在食品工业上的应用随着科技的不断发展,膜分离技术作为一种新型的分离技术,在食品工业中得到了广泛应用。
膜分离技术以其高效、节能、环保等特点,在食品加工过程中发挥着越来越重要的作用。
本文将详细介绍膜分离技术的原理、分类、特点,并探讨其在食品工业中的应用、存在的问题以及未来发展趋势。
膜分离技术是一种利用膜材料分离液体或气体混合物的新型分离技术。
其原理是利用膜材料的不同孔径和选择性能,将混合物中的不同组分进行分离、提纯和浓缩。
膜分离技术可分为微滤、超滤、纳滤、反渗透、电渗析等类别,具有高效、节能、环保、操作简便等特点。
在饮料加工过程中,膜分离技术主要用于果汁、酒类等液体的澄清和提纯。
通过超滤技术,可以有效地去除果汁中的果胶、蛋白质、细菌等杂质,提高果汁的澄清度和口感。
同时,在酒类加工中,膜分离技术可以去除酒中的甲醇、乙醛等有害物质,提高酒的质量和安全性。
在发酵工业中,膜分离技术主要应用于菌体分离、蛋白质分离和发酵液的澄清。
通过微滤或超滤技术,可以有效地将菌体和未发酵的溶液进行分离,得到高纯度的菌体蛋白质。
同时,膜分离技术还可以去除发酵液中的杂质,提高发酵产物的质量和产量。
在蒸馏工业中,膜分离技术主要应用于脱盐、脱氧、脱氨等操作。
通过反渗透技术,可以有效地去除溶液中的无机盐、有机物和微生物,得到高质量的蒸馏产品。
例如,在制糖工业中,反渗透技术可以去除糖汁中的盐分和色素,提高糖的纯度和白度。
膜污染是膜分离技术中普遍存在的问题。
由于原料液中的悬浮物、微生物和有机物等杂质会附着在膜表面,导致膜通量下降,甚至出现堵塞和破裂等问题。
为解决这一问题,可以采用预处理措施,如过滤、沉淀、离心等,以去除原料液中的杂质。
定期清洗和化学清洗也可以有效地减轻膜污染。
膜的寿命是影响膜分离技术成本的关键因素之一。
由于膜材料本身的质量和加工工艺的限制,膜的寿命存在一定的局限性。
为延长膜的寿命,可以选用高分子量、高稳定性、低污染的膜材料,优化膜组件的设计和加工工艺,避免极端操作条件等。
高分子膜材料

高分子膜材料姓名:***指导老师:**专业:高分子材料2011年6月8号摘要:高分子膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。
本文介绍高分子膜材料的分类、性能以及高分子膜材料在工业、农业以及日常生活中的应用,主要是论述高分子膜材料的研究进展以及发展前景等。
前言:高分子膜材料虽然很早就出现,但是对它的研究还是近些年来才开始。
在上世纪20年代,由于石油工业的发展促进了三大合成材料品种的不断增多,高分子膜材料的应用范围也在逐渐扩大。
由包装膜开始,在30年代已经将纤维膜应用于超滤分离;40年代则出现了离子交换膜和点渗析分离法;50年代出现了饭渗透法膜分离技术;60年代又加拿大和美国学者分别成功的制造出了高效能膜和超过滤膜,总之,国外高分子膜材料技术的发展是迅速的。
近年来,我国的科研工作者也开始重视这方面的研究,膜的汇总类及应用范围在不断扩大,其中用量最大的是选择性分离膜,如离子交换膜、微孔过滤膜、超过滤膜、液膜、液晶膜等等。
目前已应用的领域有核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的孩子早、医药、食品农药、化工等各个方面。
众所周知,进入二十一世纪以后,环境已经成为制约各国发展的重要因素,各种各样的工业废水、废气以及工业垃圾对环境造成了巨大破坏。
而高分子膜材料以其独特的微处理性可以很好的清除废水、废气以及工业垃圾中所含有的有毒重金属、有机物和矿物质等物质,因而在新世纪高分子膜材料必然迎来新的发展。
目录第一节:高分子膜材料的研究分类 (2)第二节:各种高分子膜材料的的介绍 (3)第三节:高分子膜材料的发展前景 (5)第四节:高分子膜材料的性能 (6)第五节:高分子膜材料的应用 (8)参考文献 (11)第一节:高分子膜材料的研究分类目前,高分子膜材料的种类繁多,而且分类方法也不相同,关于高分子膜材料的分类方法一般包括两个方面:已是制备方法,二是膜的性能测定方法,两者结合起来可以探讨膜的性能也合成条件之间的关系,从而达到有目的地合成性鞥有一得膜材料。
高分子分离膜材料

高分子分离膜材料高分子分离膜材料是一种具有特定结构和性能的材料,用于在液体或气体中分离、浓缩或纯化不同组分。
高分子分离膜材料广泛应用于水处理、废水处理、气体分离、食品工业等领域。
本文将介绍几种常见的高分子分离膜材料。
聚酯膜是一种常用的高分子分离膜材料,具有优异的抗化学腐蚀性能和机械强度。
聚酯膜具有独特的微孔结构,可以有效地分离和去除水中的微小颗粒、胶体和微生物等。
由于聚酯膜具有较高的通透性和分离效率,广泛应用于水处理领域。
聚醚膜是另一种常见的高分子分离膜材料,具有较高的化学稳定性和热稳定性。
聚醚膜具有独特的孔隙结构,能够有效地分离气体、液体和溶液中的组分。
聚醚膜广泛应用于气体分离、溶液浓缩和纯化等领域。
聚酰胺膜是高分子分离膜材料中一种重要的类型,具有优异的膜通透性和分离性能。
聚酰胺膜具有独特的孔隙结构,能够有效地分离和去除水中的溶解性固体、碱性和有机物质等。
聚酰胺膜广泛应用于废水处理、海水淡化和食品工业等领域。
聚酰亚胺膜是一种新型的高分子分离膜材料,具有极高的热稳定性和化学稳定性。
聚酰亚胺膜具有独特的孔隙结构和纳米级孔径,能够有效地分离和去除气体和液体中的微小分子。
聚酰亚胺膜广泛应用于气体分离、有机溶剂纯化和工业废气处理等领域。
除了上述几种常见的高分子分离膜材料外,还有许多其他种类的高分子分离膜材料,如聚丙烯膜、聚氨酯膜、聚碳酸酯膜等。
这些高分子分离膜材料各具特点,在不同的应用领域都有不同的优势。
总之,高分子分离膜材料是一类重要的功能材料,具有独特的结构和性能。
它们能够有效地分离、浓缩和纯化液体或气体中的组分,广泛应用于水处理、废水处理、气体分离、食品工业等领域。
随着科技的不断进步和需求的增加,高分子分离膜材料的研究和应用将更加广泛和深入。
膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。
膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。
本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。
通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。
二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。
根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。
微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。
其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。
超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。
超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。
纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。
纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。
反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。
反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。
电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。
高分子分离膜

超滤膜:不对称膜,形式有平板式、卷式、管式和中空纤维状等。
表面活性层:致密光滑,厚度,细孔孔径小于10nm
超滤 膜
过渡层:细孔大于10nm,厚度1-10μm
支撑层:厚度50-250μm,孔径大于10nm。起支撑作用,提高机械强度
性能主要取决于表面活性层和过渡层
超滤膜技术应用
超滤技术主要用于含分子量500-500,000的微粒溶液的分离,是目前应用最广的膜分离过程之一,应用领域涉及化 工、食品、医药、生化
3.4 高分子分离膜的制备方法
膜的制备工艺对分离膜的性能十分重要。同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。 合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。
制备方法
烧结法 拉伸法 径迹刻蚀法 相转化法 复合膜化法
多孔膜 最实用
1. 烧结法
将聚合物的微粒通过烧结形成多孔膜
聚合物的微粒
微孔膜的缺点: 颗粒容量较小,易被堵塞
微滤的应用
微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、药液的过滤、发酵工业的空气净化和除菌等。 微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而进行微粒和细菌含量的测定。 气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉、细菌、病毒等;溶液和水中存在的微小固体颗粒和微生 物,都可借助微孔膜去除。
实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。
日本: 纤维素酯类膜:53%, 聚砜膜:33.3%, 聚酰胺膜:11.7%, 其他:2%
材料
纤维 素
二醋酸纤维素 (CDA)、三醋酸纤维素 (CTA)、硝化 纤维素(CN),混合纤维素(CN-CA)、乙基纤维素 (EC)等。
特点
高分子膜材料在膜分离过程中的应用探析

第1期2021年2月No.1February,2021随着科技的进步,膜分离技术在各领域的应用也变得越来越广泛,尤其是在污水处理、冶金、纺织以及化工等领域的发展中发挥了巨大的推动作用。
对于膜分离技术而言,膜材料的研发与应用一直都是发展的主要方向,其中高分子膜材料就是较为主流的膜技术,其应用会对膜分离技术的效用发挥造成直接的影响,因此,针对高分子膜材料在膜分离过程中的实践应用加强研究是很有必要的。
1 在膜分离期间高分子膜材料的具体应用1.1 在膜制备方面的应用1.1.1 聚酰胺类材料所谓的聚酰胺类材料,实际上就是一些含有酰胺链段的聚合物,对其进行应用,可以制备气体分离膜以及液体分离膜等。
相关人员借助螺旋形聚醚砜中空纤维膜对洗毛废水的处理效果进行了研究。
试验发现,利用这种高分子膜材料对于羊毛脂能够实现92%以上的截留率,对于废水的浊度以及化学需氧量(Chemical Oxygen Demand ,COD )的去除率分别能够达到91%和99%。
由此可见,将其应用在膜分离技术中能够获得良好的处理效果。
也有研究人员对聚酰胺纳滤膜的分离效果进行了研究,分别对含有红色和黑色的活性染料废水进行处理,获得的截留率分别是92%和94%,而对COD 的去除率也能够达到94%。
此外,相关人员还对聚砜膜进行了试验,发现这种高分子膜材料表面具有负电荷,而很多染料分子同样含有负电荷,所以会产生相互排斥的作用,确保了相应的截留率及膜通量[1]。
尽管有很多高分子材料都可以用于膜的制备,但仍需要相关领域从功能材料、合金材料以及膜面化学改性等方面入手加强研究,不断提升高分子膜的性能、扩大适用范围。
1.1.2 纤维素纤维素这种高分子材料具有明显的天然性特征,主要是以植物细胞材料为来源。
目前,醋酸纤维素(Cellulose Acetate ,CA )在膜分离过程中的应用较为广泛。
早在1960年,相关人员就已经在膜分离工艺中对该项材料进行了有效的应用,使得膜分离期间的透水率以及脱盐率得到了显著的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子膜材料的发展与应用姓名:熊腾飞班级:材科jd1401学号:0121401101309班级序号:28摘要:作为膜分离技术的核心,膜材料越来越受到人们的重视。
目前膜材料的研究主要集中在已开发的功能高分子膜材料和无机膜材料。
相比无机膜材料,有机膜材料具有韧性好、成型性好、相容性好、空隙率大等优点,已成为成为研究的热点。
本文首先对高分子分离膜的概念,分离机理,膜的分类进行了简介。
全文主体是高分子分离膜的发展与应用,着重介绍了四类高分子膜材料的研究进展,包括天然高分子类、聚烯烃类、聚酰胺类以及聚砜类膜材料,涉及其特点、应用情况、缺点、改性方法等。
在文章结尾,总结了高分子分离膜面临的共性问题,并展望了最合适的解决方法。
关键词:高分子,膜材料,分离,改性1.引言随着科技的发展与社会的进步,人们对分离技术的要求逐渐提高。
特别是21世纪以来,药物缓释、肾脏透析膜、气体分离富集、海水淡化、污水处理、共沸物分离、食品加工等研究应用热点都离不开高水平的分离技术[1]。
传统的分离技术主要有沉淀、过滤、重结晶、筛分、蒸发、离子交换等。
然而,这些技术都伴随着大量能量的消耗。
相比之下,膜分离技术耗能较低,且过程相对简单,选择性高,被誉为“化学工业的明天”[2]。
膜分离技术的核心在于膜,可分为无机分离膜和有机分离膜。
无机分离膜难以成型,脆性强,抗冲击性有限,其低孔隙率也使其性能降低。
有机分离膜(也称高分子分离膜)很好的克服了这些缺点,不仅成型性好、韧性强,而且兼具环保、高选择性分离、生物相容性强、可设计性强的特点[3]。
然而,有机分离膜的发展也面临着一些挑战。
2.基本概念2.1高分子分离膜的定义及评价标准高分子分离膜,广义来讲,是指由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜,一般为固态或液态。
高分子分离膜之所以具有分离物质的功能,主要在于其选择透过性。
选择透过性的实现需要一定的推动力,例如压力差、浓度差、温度差或者电位差等。
在评价膜的性能时,也主要看其选择透过性,可以用两种物质的透过率比值衡量。
2.2高分子分离膜的原理高分子分离膜的原理分为三种。
2.2.1过筛分离原理过筛分离类似于机械过滤过程,分离的结果与效果主要取决于分离膜与被分离物质的尺寸大小。
除此之外,亲水性、结构相似性等也起着一定的作用。
往往与膜结构相似的物质在过筛时更容易通过。
2.2.2溶解扩散原理溶解扩散完全不同于过筛分离,其原理涉及溶解与扩散两个过程。
要求分离膜对混合物中的待分离物质具有良好的溶解能力,而对其他物质溶解性较差。
这样,经过足够长时间,待分离物质就会扩散至膜的另一侧,而其他物质被截留在膜上。
如果膜对混合物中的A、B都具有较好的溶解性,这时需要两者在扩散能力上表现出较大差异才可分离。
2.2.3选择性吸附原理选择性吸附原理发生在膜的表面,指混合物未进入膜之前,因膜与混合物中A物质的吸引力较强而使A快速吸附在靠近膜的一侧,而其他物质相应的远离。
因此,A物质将会优先完成膜的穿透而被分离出来。
一般来说,这种吸引力主要是分子间的范德华力和带电颗粒间的静电相互作用。
2.3高分子分离膜的分类高分子分离膜根据不同的标准可进行不同的分类。
根据被分离物质的状态,可以分为气体分离膜、液体分离膜和固体分离膜。
根据被分离物质颗粒大小的分类更为普遍,一般分为微滤膜、超滤膜、纳滤膜和反渗透膜(分离物质颗粒从大到小)。
这种分类因其分离条件、应用领域的差异而更具实用性。
2.3.1微滤膜微滤膜一般指过滤孔径在0.1-10微米之间的过滤膜,对应于过筛分离原理。
微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留悬浮物、细菌及大分子量胶体等物质。
微滤膜的运行压力一般为:70-200 kPa。
微滤膜具有如下特点:由于微孔滤膜可以做到孔径较为均一,所以微滤膜的过滤精度较高,可靠性较高;因表面孔隙率达到70 %,比同等截留能力的滤纸过滤至少快40倍;微滤膜的厚度小,液体被过滤介质吸附造成的损失非常少;高分子类微滤膜为一均匀的连续体,过滤时没有介质脱落,不会造成二次污染,从而得到高纯度的滤液。
2.3.2超滤膜超滤膜的分离原理与微滤膜相似,但其孔径位于纳米级(1-100 nm),主要用于分离胶体、大分子溶质。
由于孔径较小,操作时的压力相应较大,一般在350-700 kPa。
超滤膜特点如下:常温下进行,条件温和无成分破坏,因而特别适宜对热敏感且尺度位于1-100 nm的物质,如药物、酶、果汁等的分离、分级、浓缩与富集;超滤技术分离效率高,对稀溶液中的微量成分的回收非常有效。
2.3.3纳滤膜纳滤膜的孔径一般在1-2 nm,允许溶剂分子或某些低分子量溶质或低价离子透过。
根据实验数据,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98 %之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。
常被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。
纳滤膜的特性主要在于其能截留2 nm以下的颗粒,深层次处理经超滤膜过滤的滤液。
2.3.4反渗透膜反渗透膜往往用于分离溶质级别的物质。
反渗透技术原理是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来。
海水淡化是反渗透膜的经典应用。
反渗透膜与上述三种膜相比,具有一些独特的优点:在高流速下应具有高效脱盐率;具有较高机械强度和使用寿命;能在较低操作压力下发挥功能;能耐受化学或生化作用的影响;受pH值、温度等因素影响较小。
3. 高分子膜材料的研究进展与以上分类不同,在进行高分子膜材料的研究时,常采用化学组成进行分类。
研究较多的包括天然高分子类薄膜、聚烯烃类薄膜、聚酰胺类薄膜、聚砜类薄膜、含氟高分子薄膜以及芳香杂环类薄膜。
本文主要介绍前四种薄膜的研究进展。
3.1天然高分子类薄膜对天然高分子类薄膜的研究主要包括纤维素、纤维素衍生物、壳聚糖等。
纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50 %以上。
纤维素结构如图1所示,在高分子链中,椅形的葡萄糖单元含有3个羟基。
由于羟基的存在,纤维素分子间形成氢键,排列规则,结晶度高,结构稳定,高度亲水。
也正因此,其衍生物制成的分离膜选择性高、亲水性强、透水量大,在微滤和超滤技术中广泛使用。
图1纤维素的结构在纤维素类材料中,因其分子间距增大、透过性增强,醋酸纤维素的应用更为广泛。
且其具有工艺简单、选择性高、耐氯性好等优点,因此在生产生活中发挥了极大的作用。
但醋酸纤维素也存在致命的缺点:分子链中的酯基在非中性条件下易水解,且其热稳定性、压密性较差。
对此,人们进行了大量的改性研究。
为了提高其热稳定性,Ma等[4]制备了羟丙基醋酸纤维素反渗透膜,此渗透膜不仅具有耐热性,溶解性能也与原始的醋酸纤维素相似。
针对其水解性,研究发现,三醋酸纤维素的耐酸性比二醋酸纤维好。
另外,如果采用不同取代度的醋酸纤维素来制膜,可以显著提高膜的生物降解性。
Isabel等[5]利用硫醇聚合物改善了纤维素膜的高溶胀性。
壳聚糖又称脱乙酰甲壳素,是由自然界广泛存在的几丁质经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。
自1859年,法国人Rouget 首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。
壳聚糖也是一类天然分离膜材料,由于分子中存在氨基,可溶于酸性溶液;由于氨基、羟基的活性作用,壳聚糖易于改性,且改性后亲水性、透水性有显著提升。
Liu等[6]合成了两性离子的壳聚糖膜材料(如图2),具有理想的孔隙度、防污能力、亲水性和选择渗透性能。
Toledo等[7]制备了季胺化的壳聚糖膜材料,在pH为6-10 的环境中,分离膜对HAsO42-和CrO42-有强烈的吸附作用。
图2两性离子壳聚糖的制备3.2聚烯烃类薄膜聚烯烃类膜材包括聚乙烯、聚乙烯醇、聚丙烯、聚丙烯腈等。
这类材料的优点是制备容易,易加工成型,成本低。
共同的缺点是是疏水性强,耐热性差。
聚乙烯醇因其亲水耐酸性、抗污染性,在药用膜、人工肾膜等方面应用广泛。
其缺点是易溶胀、易蠕变、易变形。
因此,研究人员常用醋酸纤维素、聚苯胺等对其改性。
Hameed等[8]采用复合胶原颗粒的方法,使聚乙烯醇膜材的抗拉强度明显提高。
Liu等[9]对其采取表面接枝PV A的方法,成功提高了其抗污染性和稳定性。
聚丙烯腈存在氰基,因此具有耐霉菌性、抗氧化性和耐水解性;成膜后柔韧,被广泛用于制备超滤膜[10]。
然而聚丙烯腈热稳定性差,亲水性较差,也因此易造成膜污染[11]。
Nazri等[12]在比较聚丙烯腈和聚乙烯醇物理化学性质的基础上,通过相转变法成功制备了中空纤维状的超滤膜,其分离性能优异:纯水渗透通量达250 L/(m2·h)以上,牛血清蛋白截留率也达到了97 %。
Liu等[13]通过静电纺丝技术,制备了聚丙烯酸改性的聚丙烯腈纤维膜,其抗拉升强度比原始的聚丙烯腈膜增大1倍。
进一步研究发现,通过控制溶质比,可以将纤维膜的孔径尺寸控制在17-44 nm。
测试结果表明,该膜对300-500 nm大小的的NaCl气溶胶有99.99 %的截留率,因此在空气分离技术中具有应用前景。
Panda等[14]采用聚氨酯对聚丙烯腈进行复合制备膜材。
在污物几乎完全滤出的情况下,复合膜保持了良好的防污性能。
Liang等[15]将纳米级氧化石墨烯分离膜复合在聚丙烯腈膜中,复合膜表现出极高的渗透性能和截留水平,同时在高浓度溶液中分离性能优越。
3.3聚酰胺类薄膜聚酰胺类高分子是指含酰胺链段(-CO-NH-)的一系列聚合物。
这类聚合物机械强度高、高温性能优良,适合制作高强度分离膜。
但其抗蛋白质污染性能较差,往往需要从改善亲水性和粗糙度方面进行改性[16,17]。
为了提高其亲水性,ElSherbiny 等[18]采用复合聚醚砜的方法,制备出的复合膜不仅具有良好的透水性,而且存在大量孔结构。
也有研究者[19]利用界面聚合,在膜的表面植入两性离子基团,其渗水通量相比一般的聚酰胺类薄膜提高了1倍多,同时制备的纳滤膜的脱盐率在99.5 %以上。
在聚酰亚胺类材料中,聚酰亚胺因具有优良的力学性能且分离膜选择性高,常被用于气体分离膜。
除此之外,其结构较易设计,可以在分子水平上设计出符合分离体系要求的分子结构[20, 21]。
但溶解性较差,成膜困难是聚酰亚胺十分突出的缺点。
为提高可溶性,通常引入醚键、硫醚键、亚甲基等柔性基团,或者是构建非共平面、不对称、脂环等特殊结构结构。
例如,为了改善亲水性,Liu等[22]制备了两性离子聚酰亚胺,测试发现超滤膜亲水性提高,抗蛋白质污染性极大提高。